Apparent and inherent optical properties in the ocean

Tomorrow: "Open questions in radiation transfer with a link to climate change"

9:30 Gathering and Coffee
9:50 Opening - Ilan Koren, Environmental Sciences and Energy Research, WIS
10:00 Warren Wiscombe, NASA - Goddard Space Flight Center, USA "What is the minimum ante for playing the radiation game in climate models?"
11:00 Alexander Marshak, NASA - Goddard Space Flight Center, USA "From ICESat and MODIS to ARM; how radiative transfer helps to interpret satellite and ground-based measurements"
12:00 Lunch break
13:30 Emmanuel Boss, School of Marine Sciences, University of Maine, USA, "The backscattering enigma: what contributes to oceanic backscattering?"
14:30 Eli Tziperman, Department of Earth and Planetary Sciences, Harvard University, USA, "Dinosaur forecast: cloudy (warming of the high latitudes by a convective cloud feedback)"
15:30 Alex Kostinski, Department of Physics, Michigan Technological University, USA, "Extinction vs. Spatial distribution of Scatterers"

Review:

In a plane-parallel medium without internal sources for a given wavlength:
$\cos \theta d L(\theta, \phi) / d z=-c(z) L(z, \theta \cdot \phi)+\int_{4 \pi} \beta\left(z, \theta, \phi ; \theta^{\prime}, \phi^{\prime}\right) L\left(\theta^{\prime}, \phi^{\prime}\right) d \Omega^{\prime}$

Which we can rewrite as:

$$
\begin{aligned}
& \mu \mathrm{dL}(\theta, \phi) / \mathrm{dz}=-c(z) L(z, \theta, \phi)+b(z) \int_{4 \pi} \beta^{\prime}\left(z, \theta, \phi ; \theta^{\prime}, \phi^{\prime}\right) L\left(\theta^{\prime}, \phi^{\prime}\right) \mathrm{d} \Omega^{\prime} \\
& \rightarrow \quad \mu \mathrm{dL}(\theta, \phi) / \mathrm{d} \tau=-L(\tau, \theta, \phi)+\omega_{0}(\tau) \int_{4 \pi} \beta^{\prime}\left(\tau, \theta, \phi ; \theta^{\prime}, \phi^{\prime}\right) L\left(\theta^{\prime}, \phi^{\prime}\right) \mathrm{d} \Omega^{\prime}
\end{aligned}
$$

\rightarrow media with the same ω_{0} and boundary conditions will have the same radiance distribution at similar optical depth horizons.

Some things to note about transmission, optical depth and attenuation:

$$
\begin{aligned}
& \tau_{12}\left(r_{1} \rightarrow r_{2}\right)=\int_{r_{1}}^{r_{2}} c d r=\bar{C}\left(r_{2}-r_{1}\right)=\bar{c} \Delta r \\
& t\left(r_{1} \rightarrow r_{2}\right)=e^{-\bar{c} \Delta r}=e^{-\tau_{12}} \\
& \Rightarrow \tau_{1 N}=\sum_{i=1}^{N-1} \tau_{i, i+1} \quad \begin{array}{l}
\text { Demo (Petty): } \\
\text { effect of } \\
\text { dilution on } \tau
\end{array} \\
& \Rightarrow t_{1 N}=\prod_{i=1}^{N-1} t_{i, i+1}=e^{-\sum_{i=1}^{N-1} \tau_{i, i+1}}
\end{aligned}
$$

Apparent Optical Properties

usually: ratios of radiometric properties (L, E, etc') or normalized depth derivatives of radiometric properties.

Why AOPs?
-IOPs are not always easy to measure.
-Radiometric properties depends strongly on sky conditions.
\rightarrow Relatively insensitive OPs

Ed and Eu at 555 nm

Mobley, 2004: Hydrolight runs with $1 \mathrm{mgchl} . / \mathrm{m}^{3}$, with sun at $0,30,60^{\circ}$ in clear skies and overcast skies.

Apparent Optical Properties: ratios of radiometric quantities

Diffuse Attenuation, $\mathrm{K}\left(\mathrm{m}^{-1}\right)$

Table 3.2. Terms, units, and symbols for apparent optical properties.

Only when K_{d} is not depth dependent

$$
E_{d}(z)=E_{d}(0) e^{-k d z}
$$

Apparent Optical Properties

Diffuse attenuation, $K\left(\mathrm{~m}^{-1}\right)$:

Note that c and K are very different because K depends Upon the properties of the solar source

K_{d} describes the loss of E_{d} from z to $z+\Delta z$,

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{d} 2}>\mathrm{K}_{\mathrm{d} 1} \\
& \mathrm{~K}_{\mathrm{d}}<c
\end{aligned}
$$

Apparent Optical Properties: diffuse attenuation coefficients

How do different attenuation compare:

Asymptotic regime,

 1507, with a Dadnotia emelianes profile. The petilar drope ai
 am.
Zaneveld et al., 2001.

Mobley, 2004, Hydrolight with $2 \mathrm{mgChI} . / \mathrm{m}^{3}$

Changes in spectral light penetration with depth for different water bodies.

What causes the difference?

Apparent Optical Properties

Average cosines describe the angular distribution of the light field:

$$
\begin{aligned}
& \mu_{\mathrm{d}}=\mathrm{E}_{\mathrm{d}} / \mathrm{E}_{\mathrm{od}} \\
& \mu_{\mathrm{u}}=\mathrm{E}_{\mathrm{u}} / E_{\mathrm{ou}} \\
& \bar{\mu}=\vec{E} / E_{o}
\end{aligned}
$$

Table 3.2. Terms, units, and symbols for apparent optical properties.

Quantity	SI units	Recommended symbol	Historic 1 symbol
distribution function average cosine of light field of downwelling light of upwelling light	dimensionless dimensionless dimensionless dimensionless	$\begin{aligned} & \bar{D} \\ & \bar{\mu}_{\bar{\mu}} \\ & \bar{\mu}_{\mathrm{u}} \end{aligned}$	$\begin{gathered} D \\ D=1 / \bar{\mu} \\ D(-)=1 / \bar{\mu}_{\mathrm{d}} \\ D(+)=1 / \bar{\mu}_{\mathrm{u}} \end{gathered}$
irradiance rentectance dim	dimensionless	${ }^{R}$	$R(-)$
remote sensing reflectance	sr^{-1}	$R_{\text {rs }}$	-
(vertical) diffuse attenuation coefficients (K-functions):			
of downward irradiance $E_{\mathrm{d}}(z)$	m^{-1}	$K_{\text {d }}$	K(-)
of upward irradiance $E_{u}(z)$	m^{-1}	K_{u}	$K(+)$
of downward scalar irradiance $E_{\text {os }}(z)$	(${ }^{(z) \mathrm{m}^{-1}}$	$K_{\text {od }}$	$k(-)$
of upward scalar irradiance $E_{\text {ou }}(z)$	(m^{-1}	$K_{\text {ou }}$	$k(+)$
of total scalar irradiance $\mathrm{E}_{0}(z)$	m^{-1}	$K_{\text {。 }}$	k
of $\operatorname{PAR}(z)$	m^{-1}	$K_{\text {PAR }}$	-

Apparent Optical Properties

Average cosines describe the angular distribution of the light field:

$$
\left\lvert\, \begin{aligned}
& \mu_{d}=E_{d} / E_{o d} \\
& \mu_{u}=E_{u} / E_{o u} \\
& \bar{\mu}=\vec{E} / E_{o}=\left(E_{d}-E_{u}\right) /\left(E_{o d}+E_{o u}\right) \\
& \\
& \mu_{d}=\cos \theta_{s} \\
& \mu_{u}=0 \\
& \mu=\cos \theta_{s}
\end{aligned}\right.
$$

Apparent Optical Properties

Average cosines describe the angular distribution of the light field

$$
\begin{aligned}
& \mu_{d}=E_{d} / E_{o d} \\
& \mu_{u}=E_{u} / E_{o u} \\
& \bar{\mu}=\vec{E} / E_{o}=\left(E_{d}-E_{u}\right) /\left(E_{o d}+E_{o u}\right) \\
& \mu_{d}=\frac{1}{2} \quad\left(\theta=60^{\circ}\right) \\
& \mu_{u}=-\frac{1}{2}\left(\theta=120^{\circ}\right) \\
& \mu=0
\end{aligned}
$$

Isotropic light field

Average cosines

Observed Ranges

Fig 6.14. Variation of average cosines for downwelling (ij). upureling
(ij) and total (i) Aux, and irradiance reflectance (R) with opical depti (is) and total (i) Aux, and irradiance reflectance (R) with optical deptb
$\left(6=K_{t}\right)$ in water with $b / a=5$. Data obtained by Monte Carlo calcula-

Rank in magnitude
of $\bar{\mu}, \bar{\mu}_{\mathrm{d}}, \bar{\mu}_{\mathrm{u}}$
$\bar{\mu}_{\mathrm{d}}>\bar{\mu}>\bar{\mu}_{\mathrm{u}}$
Variations with z?

Why does μ_{d} vary -
More than μ_{u} ?

Average cosines

The more scattering \rightarrow the faster is asymptotic attained

Mobley, 2004, Hydrolight with $b=a(b / c=0.5)$ \& $b=4 a(b / c=0.8)$.

Apparent Optical Properties

Reflectance ratios (upward to downward):

Apparent Optical Properties

Reflectance ratios (upward to downward)

Sample spectra

Not all reflectances are equally good:

Mobley, 2004, Hydrolight with chl. $=0.1,1,10$ and sun angle, $0,30 \& 60^{\circ}$

Rrs is less dependent on sun angle compared to R , a better AOP.

Absorbers and scatterers in ocean/lakes

- Water
- Phytoplankton
- Non-algal organic particles (CPOM)
- Dissolved organic matter (CDOM)
- Inorganic mineral particles (CPIM)

Note: most available information is in the visible (400-700nm). Why?

Absorption by (liquid and frozen) water:

Features:

- Extremly complex
- Variety of vibrational modes
-Combination possible

http://omlc.ogi.edu/spectra/water/index.html \& http://www.lsbu.ac.uk/water/vibrat.html

x

It's not really the molecules

Water clusters with salt

- Density inhomogeneities
Water clusters

Fig. 2.2.4. The Frank-Wen cluster model of liquid water (adaptation taken from Nemethy an
Scheraga, 1962, with permission of the American Institute of Physics; see also Horne, 1969)

Unlike Rayleigh
~ $\lambda^{-4.32}$ (Morel, 1974)

Phytoplankton

Phyto planition

Bidigare et al 1991

Phytoplankton vs Chlorophyll

Sosik \& Mitchell 1991

Phytoplankton

Model for attenuation and

 scattering:$$
b_{b, p}(\lambda)=b_{b, p}\left(\lambda_{0}\right)\left(\frac{\lambda}{\lambda_{0}}\right)^{-\gamma}
$$

IOPs of phytoplankton (Bricaud et al., 1983, L\&O):

Fig. 5. Specific spectral values of absorption (a^{*}), attenuation (c^{*}), total scattering (b^{*}), and backscattering ($b_{b}{ }^{*}$) determined on four algal species and normalized to unit (Chl $a+$ Pheo a) concentration (1 $\mathrm{mg} \cdot \mathrm{m}^{-3}$) (the parts of the $b_{b}{ }^{*}$ curves plotted as dashed lines correspond to a signal-to-noise ratio <10). The spectral values of absorption by the corresponding acetone solution of extracted pigments are also given with the same normalization (dotted lines). Right scales-corresponding values of efficiency factors for absorption (Q_{a}), attenuation (Q_{e}), total scattering (Q_{b}), and backscattering ($Q_{\Delta s}$). Spectral values of $b_{b}{ }^{*}$ are not shown for C. huxleyi. A previously published curve (fig. 4: Morel and Bricaud 1981b) has data are from an uncontaminated culture and deal only with a^{*}, b^{*}, and c^{*}

Optical properties and HABs:

- Phyto. blooms

Roesler and Etheridge, 2002

Prorocentrum micans ($27 \mu \mathrm{~m}$) Photo M. Keller

Aureococcus anafragefferens
Photo S. Etheridge

Non-algal organic particles

Heterotrophic Ciliates, Flagellates, and bacteria

Figure 2. (a) Efficiency factor for absorption as function of wavelength for ciliates and flagellates. (b) Spectral absorption values, normalized by their maximum near 415 nm , when measurements are carried out with cells collected onto a GF/F; (c) absorption spectra (normalized as above) of acetonic and methanol extracts for flagellates only.

164
Journal of Marine Research
[48, 1

Figure 7 . Spectral values of the optical density determined after having collected bacteria on a
GF/F fiter The spectra are normalized with respect to their maximum at $412-415 \mathrm{n}$ (a) GF/F filer. The spectra are normalized with respect to their maximum at $412-415 \mathrm{~nm}(\mathrm{a})$
The corresponding size distribution functions for these four populations are shown in inser The corresponding size distribution functions for these four populations are shown
Absorption spectra (normalized as above) of acetonic and methanol extracts (b).

Detritus

absorption of individual particles
\rightarrow microphotometry
Iturriaga and Siegel 1989
Ahn and Morel

$$
a_{\text {СРОМ }}(\mathrm{l})=a_{\text {СРОМ }}(400) * \exp \left(-\mathrm{S}_{\text {СРОМ }}(\lambda-400)\right)
$$

$$
\mathrm{S}_{\mathrm{CPOM}}=0.007 \text { to } 0.011
$$

Scattering:

Average spectral shape:

Phytoplankton:

Fig. 11. The observed average spectra of the $b_{p}(\lambda):\left\langle b_{p}\right\rangle$ ratio for (a) case 1 and (b) case 2 waters (see also Fig. 3). The calculated spectra for typical pure phytoplankton and pure mineral particles are also shown.

From Babin et al., 2003

CDOM: chromophoric "dissolved" organic matter

$$
a_{\text {CDOM }}(\mathrm{l})=a_{\text {CDOM }}(400)^{*} \exp \left(-\mathrm{S}_{\mathrm{CDOM}}(\lambda-400)\right)
$$

Fig. 3.5. Absorption spectra of soluble yellow material (gilvin) in various Australian natural waters (from Kirk, 1976b). The lowest curve (Batemans Bay, NSW) is for coastal sea water near the mouth of river; the next curve (Clyde River, NSW) is for an estuary; the remainder are for inland water bodies in the southern tablelands of New South Wales/Australian Capital Territory. The ordinate scale

Kirk 1983
$\mathrm{S}_{\mathrm{CdOM}}=0.011$ to 0.022

Carder et al. 1989

CDOM/Colloids scattering.

Mostly negligible in the ocean

Similar results for viruses (Balch et al. 2000)

$\beta(\theta)$ response to particle size distribution

First let's talk about particle size distributions

$\beta(\theta)$ and response to particle size distribution

$\beta(\theta)$ response to index of refraction

Theoretical dependence of the backscattering ratio ($\left.\tilde{b}_{b_{p}} \equiv b_{b_{p}} / b_{p}\right)$ on index of refraction (n) and size (ξ):

Twardowski et al., 2001

Backscattering ratio (55,000 observations from NJ shelf): consistent with theoretical prediction.

Varies from: phytoplankt on \rightarrow inorganic particles.

Estimated index of refraction near Leo15(N~55,000)

Backscattering ratio relates to the relative concentration of phytoplankton and particulate material:

Beware of photoaclimation!

Inelastic scattering:
$F(\lambda)=F_{w}(\lambda)+F_{\text {dissolved }}(\lambda)+F_{\text {pigments }}(\lambda)$
Over all fluorescence is much weaker than absorption: $O(1 \%)$ of absorbed photon fluoresce. Important in the clearest waters and water rich in phytoplankton (New paper, Behrenfeld et al., 2009 in Biogeosciences).
F_{w} - Raman Scattering (no consensus, Mobley, 1994). About $0.1 b_{w}$.
F_{d}-Less well known. Variable shape and quantum yield.
F_{p}-known, but depend on pigment composition
(chlorophylls, phycobillins). Variable quantum yield depend on physiology. $F_{c h l}$ line height is a product of MODIS.

Conclusions

- The dominant components in the ocean have characteristic absorption and scattering coefficients
- We use the optical coefficients as proxies for the component so as to determine concentration and composition (another lecture)
- While we measure bulk optical properties, there are methodological and modeling approaches to separate the constituents (another lecture)

