SMS-204: Integrative Marine Sciences II (2014b).

Final examination (physics part)

Name:
Please answer all questions (total time 50min): Please provide a short answer to the 7 following questions (6 pts each). Please provide your derivations so I can provide you with partial credit in case the answer is not correct.

1. A \log floats on fresh water $\left(\rho=1 \mathrm{~g} \mathrm{~cm}^{-3}\right)$ with $1 / 6$ of its volume outside the water. What is the density of the \log in $\mathrm{kg} \mathrm{m}^{-3}$?

Based on Archimedes' principle, the log displaces a volume of water that has a mass that equals its own mass: V_displaced $x 1000=V _l o g x \rho _l o g$. The volume of displaced water $=$ volume of the log below the surface.

But we know that $5 / 6$ of the \log is submerged. Hence:
$\rightarrow V$ diplaced $/ V _l o g=5 / 6 \rightarrow \rho _l o g=5 / 6 \times 1000=833.333 \mathrm{~kg} \mathrm{~m}^{-3}$
2. The ocean's volume is approximately $328,000,000$ cubic miles. What is the ocean's volume in cubic kilometers ($1 \mathrm{mi}=1.6093 \mathrm{~km}$)? Given that the ocean is about 70% of the Earth's surface area and that the Earth's radius is 6400 km , what is the average depth of the world's ocean (assume the ocean to be rectangular)? The surface ocean temperature is $\sim 15^{\circ} \mathrm{C}$. If we heat it by $1^{\circ} \mathrm{C}$ will the volume of the oceans increase, decrease or stay the same? (Surface area of a sphere $=4 \pi R^{2}$)
$328,000,000$ miles $^{3}=328,000,000(1.6093 \mathrm{~km})^{3}=1.37 \cdot 10^{9} \mathrm{~km}^{3}$.
Earth's surface area: $4 \pi R^{2}=5.15 \cdot 10^{8} \mathrm{~km}^{2}$.
Ocean's surface area is 70% of Earth's surface area $=0.7 \cdot 5.15 \cdot 10^{8} \mathrm{~km}^{2}=3.6 \cdot 10^{8} \mathrm{~km}^{2}$. Ocean mean depth $=$ volume $/$ surface area $=3.79 \mathrm{~km}$.
Since water expands when we heat it, the volume of the ocean will increase if we warm the surface.
3. A whale swims at a constant speed while feeding on plankton.
a. How many cubic meters of water enter the open mouth $\left(50,000 \mathrm{~cm}^{2}\right.$ area) of the whale each minute as it swims through the water at $200 \mathrm{~cm} \mathrm{~s}^{-1}$ (provide answer in MKS)?
b. How many plankton can the whale ingest per second if the plankton concentration is 0.002 plankton per cm^{3} (provide answer in MKS)?
c. Each plankton provides 2 Calories to the whale. How many Calories does the whale ingest each day?
a. $50,000 \mathrm{~cm}^{2} \cdot 200 \mathrm{~cm} \mathrm{~s}^{-1}=10,000,000 \mathrm{~cm}^{3} \mathrm{~s}^{-1}=600 \mathrm{~m}^{3} \mathrm{~min}^{-1}$
b. $10,000,000 \mathrm{~cm}^{3} \mathrm{~s}^{-1} \cdot \mathbf{0 . 0 0 2}$ plankton $\mathrm{cm}^{-3}=20,000$ plankton s^{-1}
c. 20,000 plankton $s^{-1} \cdot 2$ Calories plankton $^{-1} \cdot 86400$ s day ${ }^{-1}=3.46 \cdot 10^{9}$ Calories day $^{-1}$
4. Water is flowing through a horizontal fireman hose. The hose is mated to a garden hose in which the water keeps flowing.
a. How is the water speed different between the two hoses?
b. How is the pressure different between just before the connection area and just after it?
c. What physical principles did you need to invoke to answer part a ? to answer part b ?
a. Faster in the garden hose since the same volume flux needs to be passed in both (continuity principle).
b. Pressure is lower in the garden hose (Bernoulli's principle).
c. Continuity in (a) and Bernoulli in (b).
5. Phytoplankton, photosynthetic microorganisms, are observed to have many different shapes. Some scientists think that shape makes a difference in their ability to stay in the near-surface sunlit zone of the oceans. Based on what you learned in class, will their sinking speed increase, decrease or stay the same as a sphere of the same mass and volume? Base your answer on what you learned about drag and the hydrodynamic regime these organisms are experiencing.

In general (when averaged over all orientations) their sinking speeds will be less than that of an equivalent sphere having the same mass and volume because they operate at low Reynolds number where the viscous drag dominates and is proportional to the surface area of the particle. Spheres have the minimal surface area to volume and thus will have the least drag.
6. Which takes more energy, the evaporation of 1 gr of water or the melting of 1 g of water? When water is evaporated from the ocean where is the energy taken from? When drops condense in clouds where is the energy going?

It takes approximately six times as much energy to evaporate $1 g$ of water as to melt $1 g$ of ice. When evaporation occur, the water left looses energy (cools down). When condensation occurs it is the atmosphere that gains the heat.
7. You free dive to spearfish off your boat. You fill your lungs to capacity (4.5 liters) at the surface and jump in. At 20m you exhale 1 liter of air. Assuming you do not exhale any more, what will your lung volume be when you surface following the dive? (Ideal gas law: $\mathrm{PV}=\mathrm{nRT}$, atmospheric pressure $\sim 10^{5} \mathrm{~Pa}$)?

At twenty meters the volume of the lungs is a third what it was at the surface (pressure tripled); thus it is 1.5 . 1 liter is exhaled, 0.5 is left in the lungs. When reaching the surface again this volume tripled (the pressure reduced to a third) \rightarrow the lung volume at surfacing is 1.5 liters.

True/False questions (2pts each):

a. Liquid water is denser than ice.
b. An object whose center of gravity is below its center of buoyancy is unstable. F
c. A larger object on the Earth's surface feels a larger pressure than a smaller object. F
d. Solute flux equals the Mass flux of water times solute concentration. T
e Some Microorganisms use jet propulsion as a mechanism to propel themselves. F
f. The no-slip condition implies that swimming organisms will always experience drag
while swimming. T T
g. Streamlining reduces pressure (rather than viscous) drag for high Reynolds number swimmers. T
h. Objects radiate heat according to their color. F
i. A solid object that sinks in warm seawater may float in cold seawater. T
j. Force has a dimension of $\mathrm{ML}^{2} \mathrm{~T}^{-2}$, in MKS its units are: $\mathrm{Kgm}^{2} \mathrm{~s}^{-2}$. F
k. Conduction refers to passage of heat through contact. T

1. At high Reynolds number, viscosity is not a primary contributor to drag. T

Multiple choice questions (6pts each):

1. How can an organism under water change the buoyancy force acting on it?
a. Change its mass (e.g. burn energy, get rid of waste products).
b. Change its own temperature (e.g. work harder).
c. Change its own volume (e.g. drink ambient fluid and expand).
d. All of the above.
B. You are asked to measure the volume flux of the Penobscot. Which measurement will you conduct (circle all that apply)?
a. water depth;
b. water temperature;
c. water speed;
d. water pressure;
e. width of the river;
2. 3. A Pitot tube is a device used to measure air speed by measuring the pressure of the moving air and the pressure of air that does not move.
Which is the underlying physical principle it is based on?
a. Archimedes principle.
b. Bernoulli's principle.
c. Continuity principle.
d. Newton's second law.

Please provide short answers to the following questions (6pts for questions associated with each picture):

1. How is the following graph related to concepts associated with the Earth heat balance? How can we explain the Polar Regions not getting continuously colder given the data in this graph?

The graph provides the zonal distribution of absorbed solar and emitted infrared radiations and the different between them. The reason the polar regions do not get colder despite the net radiation pattern is that atmospheric winds and ocean currents transfer heat from equator to poles.
2. Explain what phenomenon is illustrated in the figure below. What is the physical principle causing it? What is its most important implication to swimming organisms?

The phenomenon illustrated is the no-slip condition, whereby fluid near an object must flow with the object. It is due to molecular and turbulen viscosity (which causes lateral diffusion of momentum). The implication for a swimming organism is that it will always experience drag as the water right next to it must move with it (and hence he has to spend energy to do it).

Surface of Object

