

From last week: Equation of state of an ideal gases *PV=nRT*•Temperature: kinetic energy of molecules (applet).
•Pressure: momentum transfer (normal) to sides of container.
•Viscosity: momentum transfer between molecules.
In class demonstration (change of volume with pressure)

1/31/17

Buoyancy issues for marine organisms:

- Blubber is buoyant (0.7-0.9g cm⁻³)
- Muscles (1.08g cm⁻³) and bones (1.9g cm⁻³) are denser than water
- Air is buoyant (but compressible, that is buoyancy changes with pressure (depth))

Some strategies:

- Air in stomach (some sharks).
- Swim bladder (many bony fishes, physiologically regulated).
- Large oily liver (Sharks). SMS 204: Integrativ sciences

1/31/17

12

• Energy: - Capacity to do work (force x distance). • Kinetic energy: mv²/2 [(m) (L² T⁻²)] • Pressure-volume energy: *PV* [(m L⁻¹ T⁻²)(L³)] • Potential energy: mgh [(m) (L T⁻²) (L)] • Other: internal energy, heat, light. Conservation of energy: mv²/2+mgh+PV=constant where we neglected friction.

Conservation of energy *per unit mass*: $v^2/2+gh+P/\rho$ =*constant* \leftarrow Bernoulli's principle SMS 204: Integrative marine sciences 15 15

Today we discussed the following topics: Buoyancy. Energy conservation in fluids. Dynamic pressure. Questions? SMS 204: Integrative ma sciences 1/31/17

23