Derivation of the basic equations of F/uid flows. No
particle in the fluid at this stage (next week).

-Conservation of mass of the fluid.

Conservation of mass of a solute (applies to nhon-sinking
particles at low concentration).

-Conservation of momentum.

*Application of these basic equations to a turbulent fluid.



A few concepts before we get to the meat...

Tensor (Stress), Vectors (e.g. position, velocity) and

scalars (e.g. T, S, CO,).

We need to define a coordinate system, and an
(infinitesimal) element of volume.
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We assume a continuous fluid, and
that all the fields of interest are
differentiable.



The Lagrangian framework is the framework in which the
laws of classical mechanics are often stated. The
coordinates of a point x(t) describe the trajectory from
X, =x(t=0). Density, p, can evolve along the trajectory.

By the chain rule, along a parcel trajectory:
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Example:

Let's assume that we are in a river that feeds on glacial
melt. The water warms at a constant rate that is a
function of distance from the source. If we drift down
river (A la 'Huckleberry Fin’), the temperature increases
with time (DT/Dt>0). At one point along the river,
however, we may see no change in temperature with time
(0T/0t=0), as the water arriving there is always at the
same temperature. The heat flux is advective, (uoT/0x>0).

In short, the convective derivative is:
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Mass conservation (Eulerian, differential approach):
Accounting for the change in mass inside a fixed, constant-
size volume:
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Mass conservation (Eulerian, integral approach):

Accounting for the change in mass inside a fixed,
constant-volume volume (V,):
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Where we used the divergence theorem: / / / F)dv = #F -ndsS.
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It states that the volume total of all sinks and sour'ces, the volume integral of
the divergence, is equal to the net flow across the volume's boundary (WIKT).



Reiteration (no sinks/sources):

Mass conservation (Lagrangian, integral):

D
— | pdV =0
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Mass conservation (Eulerian, integral):
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Mass conservation:

Note that:
op
+V. =0
-+ V(i)
Can be written as:
1D'O +V-u=0
o) D

The 2nd term is the fluid divergence (rate of outflow of volume per unit
volume). This can be nonzero only for compressible fluids. It is the rate of
loss of density due to compression/expansion.

For both water and air we can assume that V-# =0 in terms of their
dynamics (we need compressibility to pass sound...).



Mass balance for conserved scalar:
Adding molecular diffusion:
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Where V is the volume of the control volume and S its surface, and
using Fick's law. By the help of the divergence theorem:

E+V-(Cﬁ—KVC).dV=O
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Since the volume is arbitrary, this can be true if and only if:

%—f+v-(czz)=v-(1<vc)



Momentum balance (Navier-Stokes):

Newton's 2" law of motion states that the time rate of change of
momentum of a particle is equal to the force acting on it. This law is
Lagrangian, the "time rate of change" is with respect to a reference system
following the particle.

j pidv = | pgdv + [Tds
V(t) V(t) oV (t)
Where g is the body force per unit mass (e.g. gravity) and T is the surface

force per unit surface area bounding 7.
If the volume is small enough, the integrands can be taken out of the integral:
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Momentum balance (Navier-Stokes):
The body force is similarly treated:

I pgdV = pgoV
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Defining a stress tensor (expanded on the next slide):

—_—

I'=T-n

And applying the divergence theorem:
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Surface forcing:

For an inviscid fluid, the surface force exerted by the surrounding
fluid is normal to the surface, i.e. T=-p-ii ,and p is called the
pressure force.

In general, viscous stress force, S, is also present. For viscous
fluids: T=-p-i+S. By definition T=T-7 , and we now have
T=—pl+X> ,where S=X-7 and| is the identity tensor.

For Newtonian fluids,
V-T =V
And the resultant Navier-Stokes equations for incompressible fluids are:
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Rotational symmetry:
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(a) Translation

(c) Shear

(d) Combination of
all three motions



Total stress tensor, Newtonian fluid:
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Stokes, 1845:
1. %;; linear function of velocity gradients.

2. %;; should vanish if there is no deformation of fluid elements.
3. Relationship between stress and shear should be isotropic.
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Navier-Stokes equations:
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Coriolis is added when moving the framework to an accelerating
framework. Have to add boundary & initial conditions.



Navier-Stokes equations (Boussinessq approximation):
Separate balance of fluid at rest from moving fluid.

p=polz)+p'(x, y,2,1)

p=py+p(xyz1)

First order balance (hydrostatic):
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2nd order balance:
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Example: steady flow under gravity down an inclined plane.
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Example: steady flow under gravity down an inclined plane.
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Solution:
P—DP, :Pog(h—Z)COSOl

U= éZ(Zh —Z)Sin o
2V

Q: what v should we use?



Reynolds decomposition of the N-S equations
Assume a turbulent flow. At any given point in space we

separate the mean flow (mean can be in time, space, or
ensemble) and deviation from the mean such that:

p=p+p u=ut+u,u=v+v,u=w+w'
(p)=Dp,(p")=0,etc

Substituting into the continuity equation (linear):
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Substituting intfo x-momentum Navier-Stokes equation:
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The evolution of the mean is forced by correlations of fluctuating properties.
The correlation ferms time density are the "Reynolds stresses”.

Substituting into a scalar conservation equation:
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Note that the Reynolds stress tensor is symmeftric (as is
the viscous stress tensor):
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The closure problem: to develop equations for the evolution of the Reynolds
stresses themselves, higher order correlation are needed (e.g. w'u'u’) and so

on. For this reason theories have been devised to describe 1;; in terms of
the mean flow.

For more, see: http://www.cfd-
online.com/Wiki/Introduction_to_turbulence/Reynolds_averaged_equations
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Note: Correlation coefficient: R(A,B)E A A_é
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One solution to the closure problem is to link the Reynolds' stress to mean-flow
Quantities. For example:
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This type of formulation is appealing because it:

a. Provide for down-gradient flux.

b. Isreminiscent of molecular diffusion and viscosity.
c. Provide closure to the equations of the mean fields.

This type of formulation is problematic because:

a. K, is a property of the flow and not the fluid.
b. K, is likely to vary with orientation, unlike molecular processes.

How is K., related to the turbulence?



Assume a gradient in a mean property (momentum, heat, solute, efc'.
Remember: no mean gradient->no flux). Assume a fluctuating velocity field:
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b | C=-1’dC/dz -
21 Prandt| mixing-length

w'Cl=-w 1'dCrdz hypothesis

I'is the distance a parcel travels before it loses its identity (mixing length).
The rate of upward vertical turbulent transfer of Cis down the mean
gradient:

Flux =w(C = w'(EJrl'a—Cj :W@—C =—-K o
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How is K., related to the turbulence?
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Tennekes and Lumley (1972) approach this problem from dimensional analysis
based on assuming a single length scale-/ and a single velocity scale w=<w'?>!/2,

—pow'_u' =cp,l’w’; ¢~ O0(1)

The eddies involved in momentum transfer have vorticities, o/I; this
vorticity is maintained by the mean shear (/ is the length scales of the
eddies, e.g. the decorrelation scale).
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It follows that:
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In analogy with momentum flux, for heat we have:
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It is most commonly assumed, and verified that y1=K,4q,.

— PoC, W' = PoC,Vr <

Limitation: K,,,,=0 where du/dz=0 (e.g. heat transfer at a center of a pipe)

Higher order schemes involve turbulent kinetic energy: k=0.5uz,



Eddy-diffusion: perspective from a dye patch (figures from lecture notes of
Bill Young, UCSD)
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Dye patch << dominant scale of eddies. Dashed circle denotes initial position of patch
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Dye patch & dominant scale of eddies
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Dye patch >> dominant scale of eddies



Cheat sheet:

1. Gradient of a scalar (a vector):
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2. Divergence of a vector (a scalar):
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Cheat sheet (cotinued):

4. Laplacian of a vector (a vector):
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