
Derivation of the basic equations of fluid flows. No 
particle in the fluid at this stage (next week)particle in the fluid at this stage (next week).

•Conservation of mass of the fluid.

•Conservation of mass of a solute (applies to non-sinking 
particles at low concentration).

•Conservation of momentum.

•Application of these basic equations to a turbulent fluid•Application of these basic equations to a turbulent fluid.



A few concepts before we get to the meat…

Tensor (Stress), Vectors (e.g. position, velocity) and 
scalars (e.g. T, S, CO2).

We need to define a coordinate system, and an 
(infinitesimal) element of volume. ( )

We assume a continuous fluid, and 
that all the fields of interest are 
differentiabledifferentiable.



The Lagrangian framework is the framework in which the 
laws of classical mechanics are often stated  The laws of classical mechanics are often stated. The 
coordinates of a point        describe the trajectory from

. Density, ρ, can evolve along the trajectory.
By the chain rule  along a parcel trajectory:
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Example:
Let’s assume that we are in a river that feeds on glacial 
melt. The water warms at a constant rate that is a 
function of distance from the source. If we drift down function of distance from the source. If we drift down 
river (A la ‘Huckleberry Fin’), the temperature increases 
with time (DT/Dt>0). At one point along the river, 
however  we may see no change in temperature with time however, we may see no change in temperature with time 
(∂T/∂t=0), as the water arriving there is always at the 
same temperature. The heat flux is advective, (u∂T/∂x>0).

In short, the convective derivative is:
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Mass conservation (Eulerian, differential approach): 
Accounting for the change in mass inside a fixed, constant-g g ,
size volume:
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Mass conservation (Eulerian, integral approach): 
Accounting for the change in mass inside a fixed  Accounting for the change in mass inside a fixed, 
constant-volume volume (V0):
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Where we used the divergence theorem:g

It states that the volume total of all sinks and sources, the volume integral of 
the divergence, is equal to the net flow across the volume's boundary (WIKI).



Reiteration (no sinks/sources):

Mass conservation (Lagrangian, integral): 
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Mass conservation: 
Note that:
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Can be written as:
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The 2nd term is the fluid divergence (rate of outflow of volume per unit 

Dtρ

The 2 term is the fluid divergence (rate of outflow of volume per unit 
volume). This can be nonzero only for compressible fluids. It is the rate of 
loss of density due to compression/expansion. 

F  b th t  d i     th t                i  t  f th i  0∇
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dynamics (we need compressibility to pass sound…).
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Mass balance for conserved scalar: 
Adding molecular diffusion:ng mo cu ar ffus on
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Where V is the volume of the control volume and S its surface, and 
using Fick’s law. By the help of the divergence theorem:
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Momentum balance (Navier-Stokes): 
Newton’s 2nd law of motion states that the time rate of change of g
momentum of a particle is equal to the force acting on it. This law is 
Lagrangian, the “time rate of change” is with respect to a reference system 
following the particle. 
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Where g is the body force per unit mass (e.g. gravity) and T is the surface 
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Momentum balance (Navier-Stokes): 
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The body force is similarly treated:
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Defining a stress tensor (expanded on the next slide):Defining a stress tensor (expanded on the next slide):
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Surface forcing:
For an inviscid fluid, the surface force exerted by the surrounding , y g
fluid is normal to the surface, i.e.        , and p is called the 
pressure force.

npT vv
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In general, viscous stress force, S, is also present. For viscous 
fluids:                   . By definition             , and we now have

, where              and I is the identity tensor.∑+−= IT p
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For Newtonian fluids, 

uv2∇=Σ⋅∇ μ

And the resultant Navier-Stokes equations for incompressible fluids are: 
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And the resultant Navier Stokes equations for incompressible fluids are: 
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Rotational symmetry:
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⎞⎛ ⎞⎛ ∂∂⎞⎛ ∂∂∂

Total stress tensor, Newtonian fluid:
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Stokes, 1845: 
1  Σ linear function of velocity gradients
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1. Σij linear function of velocity gradients.
2. Σij should vanish if there is no deformation of fluid elements.
3. Relationship between stress and shear should be isotropic.
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Navier-Stokes equations:
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Coriolis is added when moving the framework to an accelerating 
framework. Have to add boundary & initial conditions.



Navier-Stokes equations (Boussinessq approximation):
Separate balance of fluid at rest from moving fluid.
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First order balance (hydrostatic):
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Example: steady flow under gravity down an inclined plane.
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Example: steady flow under gravity down an inclined plane.
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Q: what ν should we use?



Reynolds decomposition of the N-S equations

Assume a turbulent flow. At any given point in space we 
separate the mean flow (mean can be in time, space, or 
ensemble) and deviation from the mean such that:

',',' ,' wwuvvuuuuppp +=+=+=+=
ensemble) and deviation from the mean such that:
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Substituting into the continuity equation (linear):
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Substituting into x-momentum Navier-Stokes equation:
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The evolution of the mean is forced by correlations of fluctuating properties.
The correlation terms time density are the “Reynolds stresses”.

Substituting into a scalar conservation equation:Substituting into a scalar conservation equation
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Note that the Reynolds stress tensor is symmetric (as is 
the viscous stress tensor):the viscous stress tensor):
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The closure problem: to develop equations for the evolution of the Reynolds The closure problem to develop equations for the evolution of the Reynolds 
stresses themselves, higher order correlation are needed (e.g. w’u’u’) and so 
on. For this reason theories have been devised to describe τij in terms of 
the mean flow.

For more, see: http://www.cfd-
online.com/Wiki/Introduction_to_turbulence/Reynolds_averaged_equations
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One solution to the closure problem is to link the Reynolds’ stress to mean-flow 
Quantities. For example:
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This type of formulation is appealing because it:
a. Provide for down-gradient flux.
b   f l l  d ff  d 

zeddy ∂0ρ

b. Is reminiscent of molecular diffusion and viscosity.
c. Provide closure to the equations of the mean fields.

This type of formulation is problematic because:This type of formulation is problematic because:
a. Keddy is a property of the flow and not the fluid. 
b. Keddy is likely to vary with orientation, unlike molecular processes.

How is Keddy related to the turbulence?



Assume a gradient in a mean property (momentum, heat, solute, etc’. 
Remember: no mean gradient no flux). Assume a fluctuating velocity field:

Prandtl mixing-length
hypothesis

l’ is the distance a parcel travels before it loses its identity (mixing length). 
The rate of upward vertical turbulent transfer of C is down the mean 
gradient:

CKClwClCwwCFlux eddy
∂

−=
∂

=⎟⎟
⎞

⎜⎜
⎛ ∂

+== ''''

gradient:

zzz eddy ∂∂⎟
⎠

⎜
⎝ ∂



How is Keddy related to the turbulence?
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Tennekes and Lumley (1972) approach this problem from dimensional analysis 
based on assuming a single length scale-l and a single velocity scale ω=<w’2>1/2.
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The eddies involved in momentum transfer have vorticities  ω/l; this The eddies involved in momentum transfer have vorticities, ω/l; this 
vorticity is maintained by the mean shear (l is the length scales of the 
eddies, e.g. the decorrelation scale).
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It follows that:
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In analogy with momentum flux, for heat we have:

z
TcTwc Tpp ∂
∂

=− γρρ 00 ''

It is most commonly assumed, and verified that γT=Keddy.

Limitation: Keddy=0 where du/dz=0 (e.g. heat transfer at a center of a pipe)

Higher order schemes involve turbulent kinetic energy: k=0.5uiui



Eddy-diffusion: perspective from a dye patch (figures from lecture notes of 
Bill Young, UCSD)

Dye patch << dominant scale of eddies. Dashed circle denotes initial position of patch.



Dye patch ≈ dominant scale of eddiesDye patch dominant scale of eddies

Dye patch >> dominant scale of eddies
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Cheat sheet (cotinued):

4  L l i f   (  )4. Laplacian of a vector (a vector):

( ) +⎟⎟
⎞

⎜⎜
⎛

∂
∂

+
∂
∂

+
∂
∂

=⋅∇⋅∇=∇ 2

2

2

2

2

2
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