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Abstract

We present a software environment, implementedviit | ab, which addresses a sphere
moving steadily in a fluid. The sphere leaks solute which is transported through the fluid. The
environment allows the fluid flow to be approximated with Stokes’ flow, or the Navier—Stokes
equations can be solved numerically. Subsequently, the advection—diffusion equation for the
concentration of the solute is solved numerically. Our purpose for developing the environment
was to investigate solute concentrations around sinking marine snow, but the environment has
more general applicability. The allowable parameter range depends on computational
ressources; on our PC we investigated Reynolds numbers up to 20 and Peclet numbers up to
20,000. The environment features a graphical user interface which makes it useful to people
who have never used Matlab, but the experienced Matlab user can also operate from the
command prompt 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Steady flow around a sphere; Navier—Stokes equations; Stokes flow; Advection—diffusion equ-
ation; Heat equation; Marine snow

1. Introduction

We have developed a Matlaenvironment, name&now, for computation and
analysis of fluid flow and concentration fields around a sphere. The sphere moves
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with constant velocity through a fluid and is a sink or a source of some substance,
which is transported through the surrounding fluid by advection and diffusion.

The fluid flow is governed by the Navier—Stokes equations. The steady-state con-
centration field is governed by a linear advection—diffusion equation. See e.g. Ache-
son (1990) for the underlying physical theory.

Our original interest in this problem was to study the situation of marine snow in
the ocean. Sinking particles leak organic solutes which form a chemical trail in the
water. This trail may be sensed by zooplankton, which attempt to follow the trail
and colonise the particles. See Kigrboe and Thygesen (2001) for a description of
this situation.

However, the model has wider applicability. Firstly, negative production and trans-
port corresponds to particles which consume some substance (e.g. oxygen) in the
surrounding fluid. Secondly, the same advection—diffusion eguation models both
molecular diffusion and heat transfer, so the model also describes temperature fields
in, for example, a cold fluid flowing past a hot sphere. Finally, if we add a uniform
flow field to the Stokes flow we obtain the flow around a spherical pump; the model
can then describe the catch rate of predators which generate a feeding current as in
Kigrboe and Visser (1999).

Regarding mathematical analysis of the model, there exist approximate analytical
solutions to the problem in terms of asymptotic expansions. See for instance Acrivos
and Taylor (1962) and Acrivos and Goddard (1965); these expansions are used in
Jackson (1989) in a context similar to ours. These expansions, however, assume
Stokes flow and either very low or very high Peclet numbers. It is an open question
as to how sensitive the conclusions are to these assumptions. In addition to the
expansion techniques, the engineering literature is abundant with empirical relation-
ships which, however, typically concern overall scalar descriptors such as the Sher-
wood or the Nusselt number.

This motivated us to implement the following functionality in the environment:
to analyse the fluid flow through Stokes' approximation, or by direct numerical sol-
ution, and, subsequently, to analyse the transport through direct numerical solution
of the advection—diffusion equation. This functionality is available from Mat | ab
through a graphical user interface, which does not require familiarity with Matlab
or the underlying mathematics and numerics. For the experienced Matlab user the
functionality is aso available as a set of classes which can be activated from the
Matlab command line, or from another Matlab application.

From a numerical point of view, the advection—diffusion equation is linear and,
in principle, straightforward to solve. For typical parameters, however, the transport
is dominated by advection which leads to long trails, sharp gradients, and numerically
sensitive calculations. Concerning the fluid flow, it isin general anotorioudly difficult
task to solve the Navier—Stokes eguations. In our particular situation, where the
geometry is simple and the flow is slow with Reynolds numbers below 20, the pro-
cess is feasible but still time consuming and prone to convergence problems.

The paper is organised as follows. In Section 2 we give an overview of the graphi-
cal user interface and show example screen captures. Section 3 describes the physics
of fluid flow and solute transport and discusses appropriate mathematical models.
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Section 4 describes the numerical analysis of the model, including discretisation and
iteration schemes. Section 5 gives some details on the software architecture, for the
benefit of the advanced user who wants to by-pass the graphical user interface, or
make changes to the environment. Section 6 is a brief summary of the application
to marine snow which motivated the development of the software. Information about
installation, system requirements, and parameter recommendations are found in
Appendix A.

The numerical analysis performed by the environment has earlier been described
in condensed form in an appendix in Kigrboe, Ploug, and Thygesen (2001).

2. An overview of the environment

This section assumes that the environment has been installed and started as
described in Appendix A.

The graphical environment contains four windows: one for specification of the
grid to be used for the computations, Fig. 1. Another for specification, computation,
and visualisation of the fluid flow, Fig. 2. A third, Fig. 3, for specification of the
transport, and for computation and visualisation of the concentration field. And
finaly a fourth, Fig. 4, for post-processing the solution; e.g. computing the width
of the plume, where the concentration exceeds some threshold level.

In atypical session, the user first specifies the computationa grid in the window
in Fig. 1. How far away from the sphere should the fields be computed, and how
fine amesh is required? In addition, it is possible to make the grid finer downstream
than upstream, by varying a parameter y between 0 and 1; see Section 4 below
for details.

Next, the fluid flow field is specified in the window in Fig. 2. Is the problem of

Logarithmic polar grid

Mo. of angles [~ 19

No. ofradii [ g
Max, radius 10

0<Gamma 05

¥ Shaow both sides
-5 0 5 Help

Fig. 1. The window for specification of the computationa grid. This particular grid is too small and
coarse for most applications, but shows the structure. Notice that the grid is finer downstream (up) than
upstream since y > 0.
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Fig. 2. Thewindow for specification and analysis of the fluid flow field. This plot shows lines of constant
vorticity for a Reynolds number of 20. The cap at the top of the sphere indicates a change in sign of the
vorticity; hence separation is present. The plot supports the notion that vorticity is generated at the surface
and transported through the fluid.

interest that of a trandating sphere, or a spherical pump? In the former case, is the
Stokes approximation adequate, or are full numerical solutions needed, in which
case, for what Reynolds number? The resulting fluid flow can be visualised in a
number of ways. For instance, one may plot the stream function, the individua flow
components, deformation, or vorticity. These can be visualised as contour plots,
colour-coded “surf” plots, or the fields can be plotted aong the polar axis or along
aline in the equatorial plane. A zoom capability is also available, using the mouse.
Numerically computed flow fields can then be saved to disk for later retrieval.
With the fluid flow in place, we turn attention to the transport problem. First, if
the Peclet number is high, a different computational grid may be required, i.e. the
concentration field is solved on a finer mesh than was used for computing fluid flow
fields. The transport problem is now specifed in the window in Fig. 3. In addition
to the Peclet number, we must also specify the parameter A, which determines the
ratio of molecular diffusivity to total diffusivity (see Section 3.4 below). A lies
between 0 and 1. The boundary conditions at the sphere are chosen as either Dirichlet
or Neumann conditions (see Section 3.3 below for a discussion about these boundary
conditions and their biological significance). As a numerical method, the third/fourth
order upwind scheme is a reasonable default, but those with an interest in the
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Fig. 3. The window for computation and analysis of the concentration field. The graph shows lines of
constant concentration in a concentration field with Peclet number 20,000; the underlying flow field is
the one from Fig. 2 with Reynolds number 20. Notice how the recirculation behind the sphere in this
case leads to an area with high and fairly constant concentration.
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Fig. 4. The window for post-processing the solutions.

numerics can compare with two alternatives. By default the solution satisfies a nor-
malised boundary condition (i.e. the dimensionless concentration or its gradient has
magnitude 1 at the surface of the sphere), but the solution may be multiplied by a
constant so that the dimensionless flow is normalised to 1. Once the concentration
field has been solved, it can be visualised with options similar to those of the fluid
flow field, or saved to disk for later retrieval.

The last window, in Fig. 4, contains various information about the solution. Our
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origina interest was concerned with the extent of the plume, which is defined as
the region in which the concentration exceeds a given threshold. This window shows
the width, cross-sectional area, and volume of the plume. In addition, the total solute
flow away from the sphere is given.

3. The mathematical model

The mathematical model consists of Navier—Stokes eguations for the flow around
the sphere, and an advection—diffusion equation for the transport.

3.1. Co-ordinate system and dimensionless variables

The model is formulated in dimensionless variables in a spherical co-ordinate
system following the sphere.

r denotes the distance from the centre of the sphere, ¢ denotes longitude, and 6
denotes latitude with 6 = 0 pointing downstream (i.e., up for the case of a sinking
particle) and 6 = & pointing upstream.

The situation is rotationally symmetric. This means that the longitude ¢ does not
appear in the equations.

All computations are done in dimensionless variables. To use the environment in
an application, one must determine the dimensionless variables which describe the
application, and then use these as inputs to the program. After the computation, one
must convert the dimensionless results back to the dimensional setting in the appli-
cation.

The characteristic length is taken as the radius a of the sphere, and the free fluid
flow speed U is used as the characteristic speed. The fluid flow and the concentration
fields are then described by the Reynolds number

v
oy

and the Peclet number

_Ua
D

Re

Pe

where v is the kinematic viscosity (for seawater, approximately 107 m? s™1) and
D is the diffusivity (approximately 107° m? s 1 for small biologically relevant
molecules). These two parameters, the Reynolds and the Peclet number, completely
specify the physics up to scale, and are the only physical input needed to the program.
Their ratio is termed the Schmidt number (in the context of heat transfer, the Prandtl
number Pr) and is a material constant:

Pe v
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with an approximate value of 1000 for small molecules in seawater.

Interpretation of the results from the program may involve conversion back to
dimensional quantities, using Table 1.

While most of these conversions are straightforward, those involving solute flows
and concentrations require some explanation. The concentration of the solute in the
fluid is made dimensionless with an affine transformation

C=cC +C. )

where C is dimensional concentration, C’ is dimensionless concentration, C.. is the
ambient concentration found very far from the sphere, and c is a scaling factor. This
eguation implies a relationship between dimensional and dimensionless solute flows
as follows:

F = cUa?F'. 2

The scaling factor ¢ can be fixed in a number of ways, depending on circumstances,
as discussed below.

3.1.1. Normalised solute flow from the sphere

If one knows the actual solute flow F from the sphere (e.g. because one knows
the internal production), then one may choose to scale the dimensionless concen-
tration so that the dimensionless solute flow F’ away from the sphere is 1. In that
case the scaling factor c is found from Eq. (2):

F

Czi
a’u

Table 1
Conversion between dimensional and dimensionless quantities

Quantity With dim. Dim.-less Relation
Radia co-ordinate r r’ r=r'a
Dist. from symmetry axis X X' x=xa
Dist. from equatoria plane z z z=7a
Latitude 0 0’ 6=0
Stream function v 74 w(r,0) = 22Uy (r',0")
Fluid flow velocity u u’ u(r,8) = u'(r',6"U
U
Fluid vorticity Q Q' Or,0) = Q’(r’,e’)g
. . U
Max. fluid deformation A A’ A(r,0) = A’(r’,e’)a
Concentration C c’ C=cC +C.
Conc. derivativ % o 9 _occ
one. der © ar ar’ a o' a

Solute flow F F’ F = ca2UF’
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after which dimensiona concentrations can be found from Eq. (1). To use this nor-
malisation, choose “Flow” in the “Normalise” menu in window 3.

3.1.2. Normalised concentration

If one knows the dimensional concentration at the surface of the sphere, and this
concentration is constant = C, over the surface, then it is natural to use a Dirichlet
boundary condition (see Section 3.3 below) and normalise the concentration so that
dimensionless concentration at the surface is 1. In this case the scaling factor c
becomes

c=C,—C.,

and dimensional solute flows and concentrations can now be found from Egs. (1)
and (2). To use this normalisation, choose “BC” in the “Normalise” menu, and
“Dirichlet” in the “Inner BC" menu in window 3.

3.1.3. Normalised radial derivative of concentration

If the radia derivative of the concentration is constant over the surface of the
sphere and known (which then aso implies that the solute flow is known), then it
is natural to use a Neumann boundary condition (see Section 3.3 below) to normalise
the concentration so that the dimensionless radial derivative of concentration at the
surface is —1. In this case the scaling factor ¢ becomes

¢ = —aC
~ T0r |

and dimensional solute flows and concentrations can now be found from Egs. (1)
and (2). To use this normalisation, choose “BC” in the “Normalise” menu, and “Neu-
mann” in the “Inner BC” menu in window 3.

In the remainder of the paper, al variables are dimensionless, except when
explicitly stated otherwise. For ease of notation we drop the prime, as is customary
in the field.

3.2. Modd of the fluid flow

The fluid flow around the sphere is assumed to be incompressible, axialy sym-
metric and in steady state, and can therefore be described by the time-independent
stream function, denoted y(r,0), see e.g. Acheson (1990, p. 173). The physical sig-
nificance of the stream function v is that 2zy(r,0) is the flow through the circle in
space given by r and 6.

The fluid flow field is found by differentiating the stream function:

1 oy 1 oy

r25n0 99’ % = " rsing ar

Here u,, U, and u, are the components of the fluid flow in longitudinal, latitudinal,
and radial directions, respectively.

u, =0, u =
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Navier—Stokes equations for water can be formulated as a fourth order nonlinear
partial differentia equation in the stream function, see van Dyke (1964, p. 124):

Re |0y d ody 0 oy 20y
2__ _— _—— =
(" rzsne[ae or oroo (ZC"“’E ro0)])°=° @
where
=L 4)

and the operator? L? is shorthand for
F 1P o
o2 r200% r? 00

The boundary conditions of this equation state that the velocity is zero at the
surface of the sphere, and approaches free flow far from the sphere:

L2 =

v =0 at the surface of the sphere, (5)

oy

o 0 at the surface of the sphere, (6)

L2y—0 asr—o, and @)
1

1//—>§r25i N6 asr—w, (8)

The vorticity V x u is another useful descriptor for the fluid flow field, which is
equal to two times the angular velocity (rotation) of afluid element. The environment
also allows plotting of the maximum deformation rate, which is defined as the spec-
tral radius (largest eigenvalue) of the rate of strain matrix, cf. Kigrboe and Visser
(1999, Eq. (A8)). Our interest in the maximum deformation rate is that some zoo-
plankters appear to react to this particular fluid flow component.

3.2.1. Analytical approximate solutions

The best known analytical approximation is due to Stokes himself, and omits the
nonlinear terms in the Navier—Stokes equation, which corresponds to setting the
Reynolds number Re = 0. This leads to the following solution:

1 1
Vstokes(l10) = 4(Zr2 + r—3r)sin26.

In addition to the Stokes stream function, the environment also implements the free
flow stream function

2 This operator is typically given the symbol D? in the literature, e.g. van Dyke (1964). We use L2 to
avoid confusion with the diffusivity D.
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1.
Vereelr,0) = érzs n%6.

One should of course be aware that in a free fluid flow, the water penetrates the
sphere, which make the subsequent analysis of transport dubious. The free flow is
mainly implemented to enable comparison.

Finally, the environment implements the spherical pump stream function of

1/1 .
l//F’ump(r!g) = V/Stok&e(r!g)_WFree(rﬂ) = 4<r_3r>5|n291

which is a Stokes-type approximation (i.e., the nonlinear inertial terms are neglected)
but for the fluid flow problem where the sphere acts as a pump rather than trandates
through the fluid. To be precise, the spherical pump stream function solves the Nav-
ier—Stokes equations with Re = 0 and with the boundary conditions (5), (8)
replaced by

Veump(10) = Weree(r,0) @t the surface of the sphere,
Veump(r,0) = 0 as r—oe.

Those who prefer to work from the command line, the st r eanf ct class makes it
possible to define other stream functions which are given by closed-form expressions.
Analytical approximations such as Oseen’s and Proudman—Pearson’ s approximations
are predefined in the environment. These approximations are discussed in van Dyke
(1964). It was our experience, however, that they were less than useful for the sub-
sequent analysis of transport, which iswhy they are not implemented in the graphical
user interface.

3.3. The transport

At apoint in the fluid, the flux of the solute is (in original, dimensional variables)
u-C—DVC. )

Here D is diffusivity and C is the concentration of the solute while u is the fluid
flow vector. V is the gradient operator. The first term in this equation is advection;
the solute flux is in the direction to the fluid flow field. The second term is diffusion;
the solute flux is in the opposite direction of the concentration gradient.

Conservation of the solute and steady state implies that this flux is divergence
free, i.e. the concentration satisfies the advection—diffusion equation (in dimen-
sionless variables)

Pe u-VC—V2C = 0. (10)

Here we have used constant diffusivity D, i.e. VD = 0, and the fluid flow is diver-
gence free, i.e. V-.u = 0. In addition we have used Table 1 to convert to dimen-
sionless variables.

Far from the sphere, the dimensionless concentration approaches 0, i.e.
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Cl—. = O. (12)

It is less obvious from physics which boundary condition to use at the surface of
the sphere. We investigate two choices of boundary conditions. First, the Dirichlet
condition, where the concentration is fixed and constant over the surface of the
sphere:

Cliz1 = Co. (12)

Secondly, the Neumann condition, where the radial derivative (hence the flux) is
fixed and constant over the surface of the sphere.

oC .
Er:]_ = Co. (13)

The constants ¢, and ¢, are either 1 or fixed such that the resulting flow is one, cf.
Section 3.1.

Roughly, the Dirichlet condition corresponds to a situation where the solute flows
freely inside the sphere, hence providing a uniform distribution of the solute. At the
other extreme, the Neumann condition corresponds to the situation where the solute
flow inside the sphere is very restricted, and the solute therefore travels to the closest
point on the surface and escapes from there. In this case, we also assume that the
internal production is uniform and fixed. It is beyond our scope to model in detall
the production and flow of the solute in the interior of the sphere, which is why we
investigate these two boundary conditions only.

3.4. Including turbulent diffusion

The diffusion in the previous subsection is pure molecular diffusion, i.e. the macro-
scopic description of the random motion of molecules. Diffusion, however, can aso
be a macroscopic (time-averaging) description of the apparently random velocity
fluctuations in turbulent fluid flow.

In this case, the diffusivity D in Eq. (9) is a turbulent diffusivity D" which varies
in space:

D*(r,0) = oe3r4s,

Here, o is a universal constant sometimes referred to as Richardson’s constant, and
athough it is not very precisely known, it has an approximate value of 1.37. € is
the dissipation rate, which in oceanographic applications lies between 1078 m?s—1
and 1074 m?s L.

This statistical approximation of turbulent dispersion of nearby particles goes back
to Richardson (1926) and can qualitatively be explained as follows. The turbulence
adds a random time-varying velocity field @i(r,0,¢4,t) to the mean velocity field. Two
passive tracers at seperate positions in the fluid will therefore experience a random
velocity difference because this random component @ varies in space. The closer the
two tracers are, the smaller this velocity difference will be, because of the spatial
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autocorrelation of the random velocity @. Therefore the equivalent diffusivity D
grows with r. See Shraiman and Siggia (2000) for arecent discussion and further ref-
erences.

Our software environment allows molecular and turbulent diffusion to be simul-
taneously present in the model. In dimensionless variables this means that the flux
in Eq. (9) is replaced by

PeuC—(A + (1-A)r*3)VC.

The parameter A is specified by the user in the interval between 0 and 1 and describes
the ratio of molecular to total (molecular plus turbulent) diffusivity at the surface of
the sphere:

D B D
D + D*(@f) D + oe¥3a¥*

Thus A = 1 corresponds to pure molecular diffusion, while A = 0 corresponds to
pure turbulent diffusion.

The approximation of turbulence with spatialy varying diffusivity is only valid
for distances r which are smaller than the integral scale of the embedding turbulent
flow. For the applications in marine biology — which was our original interest —
this does not cause concern, but this should be kept in mind if applying the environ-
ment to other fields.

Note that concentration fields computed in this way with A < 1 are time-averaged
fields. At any point in time the actual concentration field may be very much different,
and a fixed point in space may experience large concentration fluctuations due to
the turbulence.

l:

4. Numerical analysis

The advection—diffusion Eqg. (10) and, unless one reconciles with an analytical
approximation, cf. Section 3.2.1, the Navier—Stokes Eq. (3) are discretised using a
finite difference scheme on a rectangular grid in polar coordinates (r,0).

Using circular symmetry, we are interested in the solution in the region

0e[0n], re[1,Rnal. ¢ = 0.

Here we should in principle take R, = ° but we will reconcile with a large
Ra Specified by the user. See the comment in Appendix C regarding this approxi-
mation.

The computational grid is rectangular in the spherical co-ordinates r, 6, and con-
tains M radii and N angles. M and N are specified by the user.

The grids are not uniform. In the radial direction, the spacing is logarithmic, i.e.

r = hi_l, | = 1,...,M

which enhances resolution near the surface of the sphere, where gradients are steep.
In the latitudinal direction, the spacing is given by
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k
; + ysin(6) = kj_i’
Here the step sizes h and k are determined by hM~* = R, and kN = 7. The para-
meter ye[0,1) is defined by the user and makes the grid denser downstream than
upstream, which is useful for solving the transport Eq. (10) at high Peclet numbers.
We have found y = 0.7 to be an appropriate value for Peclet numbers up to 20,000;
this grid has a density downstream which is (1 + 0.7)/(1—0.7)=5.7 higher than
upstream. When solving the Navier—Stokes equations, we prefer using y = 0, i.e.
the angle 6 is equidistantly spaced.

The partial differential equations are discretised on these computational grids using
finite difference schemes. The Navier—Stokes equations for the fluid flow use a
fourth-order central difference scheme. For the advection—diffusion equation for the
concentration the user may choose between second-order and fourth-order central
schemes, and a third/fourth order upwind scheme. The second-order scheme is the
fastest, but has higher numerical diffusion than the fourth order scheme. For high
Peclet numbers, the use of upwind schemes is necessary to avoid unphysical
unboundedness (ripples) in the solution. In summary, we recommend the third/fourth
order upwind scheme for the advection—diffusion equation.

In the event that different grids for the fluid flow and the concentration are used,
the flow field is interpolated onto the diffusion grid before solving the advection—
diffusion eguation. This is done using cubic splines.

j=1...N.

4.1. Solution of the algebraic equation systems

The discretisation transforms the partial differential equations into algebraic equa
tions.

The advection—diffusion equation is linear and is solved in one step using a solver
for sparse matrix systems which is built into Matlab.

The Navier—Stokes equations are nonlinear and are solved iteratively by con-
structing a sequence y; and ¢; of approximative solutions to Egs. (3) and (4). The
iteration law is that v; and ; satisfy the PDE (4) with the boundary conditions (5),
(8), whereas {; and v; , , satisfy (3) with boundary condition (7) at the exterior
boundary and the condition {;(1,0) = &,(6) at the inner boundary r = 1. Thus, the
Navier—Stokes equation is solved by iteratively solving Dirichlet problems. The inner
boundary condition &;(6) is not specified by the physics but must correspond to (6),
and a technique originating from stochastic adaptive control is employed to guarantee
this by refining guesses on &;(6). See the documentation in the source code for details.

5. Program details
This section is included for those who want to modify the environment, or access

some of its components without using the graphical user interface. It can be skipped
by the user who only wants to use the graphical user interface.
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The environment was developed using Matlab’s features for object oriented pro-
gramming. It is our experience that this development style makes it relatively easy
to make changes to the model, which is important in research where it is most often
not clear what the program should do until after one has seen preliminary results,
so that development is done iteratively. Other important benefits of object orientation
in Matlab are that it makes it easy to test and validate the program, debugging each
class interactively from the command line, which makes it relatively easy for other
developers to use, expand, or modify the components in the software. A disadvantage
of object orientation in Matlab is that it may involve some overhead of memory and
CPU-time, because of the functional structure of Matlab, and because of the absence
of pointers and references.

5.1. Architecture

The environment consists of a set of classes which represents fluid flow fields,
computational grids, etc. Table 2 lists these classes. It is beyond the scope of this
paper to go through in detail al the classes available from the command line; more
information about a class and its available methods can be obtained from the com-
mand line by e.g.

Table 2
The classes in the application

Class name Brief description

Visual classes

aul The over-all graphical user interface (GUI)

QU grid The GUI for the computational grid

GUl flow The GUI for the stream function and fluid flow field

GUl con The GUI for the transport and concentration field

GUl post The GUI for post-processing of the solution

Mathematical classes

compgrid Computational grid

flowfiel d Numerical values of fluid velocities

streanf ct A stream function given by an analytical, closed-form expression

Numnst r eanfct Numerically solved stream function

Nunti el d Numerical values of a scaar field

Spar seTensor A sparse four-dimensional tensor, typically representing a
discretised partia differential operator

Tensor Matri x A tensor-matrix equation; a discretised version of a partial

differential equation

Auxiliary classes

rectgrid Rectangular, uniform grid — auxiliary class for compgrid, rarely
interfaced directly

scal arfiel d “Abstract” class representing a scalar field, not used directly




U.H. Thygesen, T. Kigrboe/ Marine Models 2 (2000) 35-56 49
>> hel p conpgrid
or
>> met hods conpgrid

The classes can be divided into three groups: those that involve the graphical user
interface; those that represent mathematical objects; and finally, auxillary classes,
which the user does not interface. The classes in the first group all begin with GUI ,
e.g. QU gri d, which is the graphical user interface for specification of the compu-
tational grid.

5.2. Working from the command line

A user who is experienced with Matlab may in some situations prefer to work
from the command line rather than using the graphical user interface. Reasons to
prefer the command line are

® The ability to make macros, or scripts, which perform computations on a list
of scenarios.

¢ The ability to combine the computations made within the environment with other
operations, defined by the user.

When working from the command line, the Matlab search path must include the
Snow bi n directory.

For instance, the following code extract assigns the default computational grid to
variable cg, the anaytical Stokes solution to psi , lets ff be the fluid flow field
corresponding to this stream function evaluated on the computational grid cg, and
finaly plots the flow field in the default style.

>> cg =conpgrid

>> psi =streanfct(“stokes”)
>> ff =flowfiel d(psi, cQ)
>>plot(ff)

It is straightforward to combine the graphical user interface with work from the
command line. For instance, if one has specified a fluid flow field in the graphical
user interface and wishes to investigate this field from the command line, or use it
in some other computation, then it may be retrieved with the command

>>ff =flowfiel d( GUI flow)

For more information about how to extract information from GUI componenents,
look at the methods for those components (e.g. >> net hods(“ GUl con”)).
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5.3. Program validation

The numerical Navier—Stokes solver was validated by comparing the results to
those published in Dennis and Walker (1971) and Chang and Maxey (1994) and
Chang & Maxey (1994). We have found that contour plots of the vorticity are the
most useful for comparison.

The solver for the concentration fields was first validated by solving for a Peclet
number of zero (pure diffusion), where an analytical solution is available for com-
parison. Subsequently, we validated the concentration fields obtained from Stokes
flow and small or large Peclet numbers against the approximate analytical solutions
in Acrivos and Taylor (1962) and Acrivos and Goddard (1965).

At higher Reynolds and Peclet numbers the solution was evaluated by comparing
both concentration fields and Sherwood numbers with those obtained from previous
numerical solutions, summarised in Clift, Grace, and Weber (1978).

Based on this validation we believe the results to be accurate, but we cannot
guarantee its suitability for use outside the tested parameter ranges.

6. An application

The model was developed with marine snow in mind. Marine snow is milimetre
to centimetre sized aggregates formed from smaller primary particles by coagulation
and other processes. Marine snow aggregates sink at velocities of up to 100 m or
more per day, and are thus characterised by Reynolds numbers up to about 20.
Marine snow is believed to be the main vehicle for vertical material transport in the
ocean, and is a site of elevated biological activity (“hot spots’). Microorganisms
residing on or comprising the aggregate exchange solutes with the ambient water
and make particulate material soluble. As aresult, various solutes (oxygen, dissolved
organics, inorganic nutrients) are released and/or taken up by the sinking aggregate.
The hydrodynamic disturbance generated by the sinking aggregate, and the chemical
trail painted by leaking solutes in its wake, may provide cues to small zooplankters
that colonise and feed on aggregates. We have used the model to explore these
various processes in Kigrboe, Ploug, and Thygesen (2001) and Kigrboe and Thyg-
esen (2001). We provide a few examples below and refer to these papers for further
details and references to the literature.

6.1. Solute exchange

The exchange of solutes between a marine snow aggregate and the ambient water
may be limited by the rate at which the solute is consumed or produced by the
aggregate, or by the rate at which it is being transported by diffusion and advection
towards the aggregate. These two situations correspond to a Neumann and a Dirichlet
boundary condition, respectively. In the latter situation, solute flow may be enhanced
by advection. The Sherwood number quantifies this enhancement, and is the ratio
of solute flow in the presence and absence of advection. The Sherwood number has
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been used in the past to evaluate the effect of advection (swimming, sinking) on
nutrient and oxygen uptake in marine organisms and is, hence, a useful property in
biological oceanography. Semianalytical estimates of Sherwood numbers are avail-
able in the literature for small (=0) Reynolds numbers and numerica results are
available for large ( > 100) Reynolds numbers, see Clift et al. (1978). However, to
our knowledge there are no data available for intermediate Reynolds numbers (0—
20) and diffusion coefficients characteristic of small biological molecules in water
(107° m2s™1). Our software environment allows estimation of Sherwood numbers in
this range, using the following procedure.

First, choose the appropriate flow field in window 2 (Stokes flow or a numerical
solution). Then, in window 3, choose the relevant Peclet number, consider only mol-
ecular diffusion by setting A = 1, chose a Dirichlet boundary condition, and normal-
ise the results by the boundary condition. Window 4 will provide the estimate of
the dimensionless solute flow F'. The corresponding dimensional flow is, according
to Table 1

Fre = c@?UF’ = F' PeD(C,—C.).
This flow should be compared with the flow in pure diffusion, which can be shown
to be

Fo = 4nD(C,—C.).
The Sherwood number is then the solute flow at the specified Re and Pe divided by
the solute flow for pure diffusion:
Fpe _ F'Pe

Sh:F0 ar

As a sidestep, this method can also be used to assess the accuracy of the numerical
discretisation. To this end, notice that if the Peclet humber is low, the procedure
above should result in a Sherwood number of 1. However, the discretisation intro-
duces some numerical diffusion, leading to higher observed Sherwood numbers. For
instance, applying the procedure to a uniform 40-by-39 grid extending 20 radii (not
a very large grid) leads to an estimated Sherwood number of 1.05, whenever the
Peclet number is smaller than 1076,

6.2. The chemical trail

For Reynolds numbers typical of many marine snows, the plume of elevated or
depleted solute concentration is long and slender, as in Fig. 5. Zooplankters may be
able to follow such chemical trails, and bacteria may enjoy the elevated concen-
trations of organic solutes in the wake of a sinking marine snow aggregate. For
realistic estimates of e.g. amino acid |leakage rates from aggregates, the length of
the plume with concentrations significantly exceeding ambient may be substantial,
up to the order of 100 radii.

The model estimates the steady state distribution of solutes. One may ask how
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Fig. 5. The chemical trail after marine snow of different sizes. The plot shows lines of constant concen-
tration for Re = 0.01 (left) and Re = 5 (right), corresponding to particle sizes of 35 pm and 5 mm, respect-
ively.

representative steady state is, i.e., what is the time scale of solute transport. At Peclet
numbers much less than 1, solute transport is governed by diffusion. The diffusion
time scale is L?/6D, where L is the length scale. Thus, the time to diffuse, eg., 20
radii away from a 0.5 cm radius non-sinking aggregate is of the order
(5 cm)?/(6-10~° cm?s 1)=20 days. This is much longer than the likely lifetime of
an aggregate. At Peclet numbers much greater than 1, advection governs solute trans-
port, and here the time scale is rather given by L/U, where U is the aggregate sinking
velocity. Thus, the time required to establish the concentration field within 20 radii
of a 0.5 cm aggregate sinking at 0.1 cm st is only 100 s. Thus, steady state is not
a bad assumption (in a non-turbulent environment).

6.3. Hydrodynamic disturbance

Many zooplankters may perceive and respond to fluid disturbances, specifically
fluid deformation A. Thus, the fluid deformation generated by a sinking aggregate
may potentially allow zooplankters to remotely detect and colonise aggregates. The
deformation field generated by a typica marine snow aggregate of 0.5 cm radius
sinking at 0.1 cm st (Re = 5) is seen in Fig. 6. For a small (1 mm) copepod it
takes a deformation rate of at least 0.1 s to €licit a behavioural response. Using
Table 1, this corresponds to a dimensionless deformation of 0.5. Thus, the 0.5 contour
line in Fig. 6 indicates where a small copepod may detect a sinking aggregate. Evi-
dently, in this case the sinking aggregate is detected less than a radius away.
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Deformation field for Re=5
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Fig. 6. Contour plot of the fluid deformation around marine snow of radius 0.5 cm, corresponding to a
Reynolds number of 5.
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Appendix A. Installation and startup

The environment is distributed in one archive. To instal it, ssimply extract this
archive (using unzi p on Unix, W nZi p on Microsoft Windows, or your favourite
archiving tool depending on your operating system) to a directory of your choice.

To start the environment, start Matlab and change directory to that directory, then
issue the command Snow. This brings up a little startup window. Clicking OK then
brings up the four windows in Figs. 1-4.
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Appendix B. System requirements

The environment should run on any platform which has Matlab version 5.2, 5.3
or 6.0 installed. We have not tested the environment on earlier versions. We have
tested the environment on PCs running Windows NT, Windows 98, and Linux, as
well as on an HP running HP-UX. We will be pleased to hear of experiences with
running the environment on other platforms.

There are no absolute minimum hardware requirements in the sense that it is
possible to run the environment with moderate resources, if one is satisfied with
small grids and low Reynolds numbers. As an example of the computational burden,
the figures in this report were generated on a PC with a 266 MHz processor and 64
MB RAM running Windows NT. Computing the fluid flow displayed in Fig. 2 (for
a Reynolds number of 20) took 6 minutes; the grid was 40-by-40. Computing the
concentration field was done on a 70-by-70 grid and took 20 seconds.

Appendix C. Parameter recommendations

This section contains recommendations with regard to the valid input ranges of
parameters used in the environment.

C.1. Physical parameters

Parameter Symbol Range

Reynolds number Re 0-20

Peclet number Pe 0-20,000 (often
~1000°Re)

Relative molecular A 0-1

diffusivity

The environment should be applicable to higher Reynolds and Peclet numbers as
well, as long as the flow is steady. When we list Re = 20 as an upper limit, it means
that we have not validated solutions above this number.

C.2. Grid sizes

The most suitable grid depends on both the physical parameters and the purpose
of the calculation. High Peclet numbers require fine resolution near the sphere. If
one is interested in the extent of the tail, this requires a larger grid than if one only
wants the variation near the sphere. Another consideration is that for high Peclet
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numbers, the upstream influence is small, so the computational domain need not
extend far beyond the region of interest.

In general, we recommend beginning with small grids, perhaps 30-by-30,
extending 10 radii or even less, and then extending and refining gradually.

We recommend using uniform grids (i.e., ¥y = 0) for computation of flows, at least
up to Reynolds numbers around 20. For computation of concentration fields, we
recommend increasing the downstream resolution as the Peclet number increases,
ranging from y = O for a Peclet number of O up to y = 0.7 for a Peclet number
of 20,000.

The approximation of the outer boundary condition in Section 4 results in some
underestimation of the concentration field near the outer boundary, in particular when
the computational grid does not extend very far. As a result, the size of the plume
is also underestimated. If, however, the transport is dominated by advection, the
error does not propagate upstream and so does not affect fluxes and concentrations
near the surface. It is easy to identify potential problems by inspecting a plot of the
concentraton field along the axis of symmetry (a so-called polar plot). If this plot
shows a steady decline followed by a sharp drop to O at the outer boundary, then
the computational grid does not cover the entire plume.

C.3. Discretisation method

We recommend the third/fourth order upwind scheme for final computations. The
central second order scheme is around twice as fast and exposes numerical problems
more clearly, so it may be used in an early exploratory phase. The reasoning behind
this statement is that the main numerical weakness of the second order central scheme
is unboundedness, which leads to very visible ripples in the solution, whereas the
main numerical problem with the third/fourth order upwind scheme is numerical
diffusion, which can be harder to identify.
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