SMS-618, Particle Dynamics, Fall 2003 (E. Boss)

Assignments 3 (use Hill and McCave, 2001, and attached m-file):

Taylor and Dyer (1977) derive a solution for both velocity and sediment based on the stability parameter (denoting by $A = \beta z/L$, with $\beta = 5.2$) and Rouse number, $R_n = w_{sn}/\kappa u_*$ and for small roughness length scale z_0 :

$$\ln\left(\frac{C(z)}{C_{0}}\right) = -R_{n}\left[\ln\frac{z}{z_{0}} + \frac{1}{R_{n}}\ln\left\{1 + \frac{AR_{n}}{(1-R_{n})}\left[\left(\frac{z}{z_{0}}\right)^{1-R_{n}} - 1\right]\right\}\right]$$
$$u(z) = \frac{u_{*}}{\kappa}\left(\ln\frac{z}{z_{0}} + \frac{1}{R_{n}}\ln\left\{1 + \frac{AR_{n}}{(1-R_{n})}\left[\left(\frac{z}{z_{0}}\right)^{1-R_{n}} - 1\right]\right\}\right)$$

1. Using Taylor and Dyer (1977) formulas, compute the velocity and suspended sediment profiles (for C/C₀, u/u* and κ Cu/(C₀u*), as function of 10000>z/z₀>1) for the following 4 cases:

- 1. Moderate flow with fine sand (200 μ m) over a rippled sand or sandy gravel bed. u*=4cm s⁻¹, w_s=2.25 cm s⁻¹, z₀=1cm and c₀=0.1. \rightarrow R_n=1.4 and A=5.0.
- 2. For the same parameters but with $u = 10 \text{ cm s}^{-1} \rightarrow R_n = 0.56$ and A = 0.32.
- 3. For coarse silt (60µm) with u*=4cm s⁻¹, w_s=0.32 cm s⁻¹, z_0 =0.1cm and c_0 =0.14. \rightarrow R_n=0.2 and A=0.1.
- 4. For values similar to case 3, apart from $z_0=0.001$ cm, $R_n=0.2$ and A=0.001.

2. How are the profiles different (look in real space as well as in log space)? Which transport the most material? Which the least? Is it consistent with the value of u*, and or the value of the Rouse number (remember, the smaller the Rouse number the smaller is the ratio of sinking to resuspension)?

- 3. Where do these examples fall within Fig. 4.5 of Hill and McCave (2001)?
- 4. What happens when $A = (1-R_n)/R_n$? When z/L=0.03? When $R_n > 3$?
- 5. 5. How do the sediments profile compare (qualitatively) with other solutions discussed in class such as:

$$\frac{\overline{C}(z)}{\overline{C}(z_0)} = \left(\frac{z}{z_0}\right)^{-R/\alpha} \text{ or } \frac{\overline{C}(z)}{\overline{C}(z_0)} = \exp\left\{-\frac{R(z-z_0)}{\alpha H_{BBL}}\right\}$$