
SMS-618, Particle Dynamics, Fall 2003 (E. Boss) 
 
Calculus of Particle Size distributions  
 
For sediments, grain size is typically distributed according to a power (or Φ) scale (Table 
1). Φ=-log2(D) or D=2-Φ, where D is the particle diameter in mm. It is based on the idea 
that since particles span several orders of magnitude, a power scale will provide a better 
description of all scales. It is also consistent with the observation, that, in general, the 
volume (or mass) per logarithmic bin is approximately equal across all bins (this is often 
called the Junge distribution). This is, off course, a gross simplification to a complex 
reality. It has, however, been the starting point for much good science. 
Using sequential weighing of material going through sieves of different sizes, a 
histogram of % mass as function of size is generated (e.g. Fig. 1). For large material dry 
sieving is performed while for clays (which when dried up will clump to large 
aggregates) are sieved when wet in suspension with a deflocculating agent (e.g. Calgon). 
 
 

 
Figure 1. A frequency histogram (left) and the associated cumulative frequency 
historgram (based on Figure 2.2. in Allen, 2001) . 
 



The boundaries of each bar in the histogram are the nominal size of the filter (sieve). By 
summing the histograms from the smallest size up, the cumulative distribution is 
generated (Fig. 1 right panel). It describes the percent mass below a given size. 
 
Mathematically, the % mass distribution can be written, for the sieving example above, as 
follows: 
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while the cumulative distribution is: 













<<

<<+<<=
<<=

∞<<

<<
<<

=

∑ −
N

jj DDDf

DDDDDD
DDD

DD

DDD
DDD

DF

)(

)f()f(
)f(

        

%100

%23
%8

)(

1

211min

1min

max

21

1min

MMM
. 

 
In the example above f(D) is the particulate (mass) size distribution (PDF) while F(D) is 
the cumulative size distribution. For the sake of comparison the PDF is described by its 
statistical (parametric or nonparametric) properties (e.g. mean size, median size, mode 
size, standard deviation, percentiles, kurtosis, skewness, etc’). Note that the errors of 
these statistics can be quite large and depends on how fine the scale is and how many 
particles we have in each bin. 
 
The frequency distribution provides us with: 
Median particle size, d50, which is the size at which 50% by weight is finer. 
Mean particle size, dm=∑(piDi)/100, where pi=percentage by weight of grain of size Di. 
Standard deviation, σ=0.5(D84+D16), where subscript denotes the position of the 
percentile. In terms of the Φ values (Finite bins): 
Mean: Φ m=∑(pi Φ i)/100, where pi=percentage by weight of grain of size Φ i 
Standard deviation: σ Φ =0.5(Φ 84+ Φ 16) 
Skewness: α=(Φ m+ Φ 50)/σΦ 

Kurtosis: β=0.5(Φ 95+ Φ 5-σΦ)/σΦ 
 
An analytic function with a few parameters is often fit to the size distribution. The most 
often used PSDs are the normal, log-normal and hyperbolic distributions (see appendix). 
How to fit a function to the data is not a trivial matter and is often done without the 
necessary care. We never know f(D) at a specific D. F(D), however, is known, within the 
(aggregated) measurement uncertainties, at the boundaries between each size bin. Thus, it 
is F(D) that should be fit to an analytical function using its values at Dj. Lets assume we 
want to fit the analytical function G(D) to our N observations F(Dj) each of which has an 
uncertainty of ±δF(Dj). We derive a cost function (in the least-squares sense): 
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We then find the parameters of the analytical function G(D) that minimize this cost 
function.  
 
Once G(D) has been derived, we can obtain the fitting function of the PSD 
f(D)=dG(D)/dD. We often have to translate from a mass (or volume distribution, 
assuming all particles have the same density, most often ρ=2.65gr/cm3) to an area or 
number concentration. Assuming the particles are spherical, the number concentration is 
obtained from the volume concentration distribution by dividing with the volume: 
  N(D)=g(D)/{4πD3/3}. 
 
Once a fitting function has been derived it is important to quantify how well it fits the 
data. This could be done using the average, worst, median difference between the data 
and fit {i.e. the statistics of the residual G(D)-F(D), taking into account δF(Dj)}. The 
shape of the residual as function of D will indicate the shortcoming of the fitting function 
if it does not look random. Since F(D) is (or is proportional to) a cumulative distribution 
function the Kolmogorov-Smirnov test can be used to evaluate the likelihood that G(D) is 
indeed the underlying distribution (e.g. Press et al.’s Numerial Recipes). This test is 
based on max{|G(D)-F(D)|}.  
An analytical function with more fit parameters is very likely to provide a better fit to the 
data than one that has less. It is important to remember, however, that an important 
reason to do analytical fits is to provide the maximal informational content of the data 
with a minimum set of parameters. 
 
An important point we need to remember throughout this analysis is that each size filter 
has its own biases. Those biases are easy to deal with when the particles are all perfect 
spheres but are hard to deal with when we deal with elongated particles. For example, 
when we deal with long and skinny particles, depending on which 2-D projection is 
presented to the sieve, the particles will or will not make it through. 
 
Another important point is that each particle sizing technique measures a different 
property of the particle. Some measure a proxy of the volume of each particle (e.g. 
Coulter Counter), some the cross-sectional area of all particles of approximately the same 
size (LISST), some the volume of all particles of approximately the same size (acoustic 
and optics in the Rayleigh limit, when wavelength >> D). Comparing distribution 
generated by different techniques require making assumption regarding shape (e.g. to 
convert from cross-sectional area to volume). In this respect sphere are not an ideal shape 
but rather an extreme shape; a sphere has the smallest surface are to volume ratio of all 3-
D shapes. 
 
 
 



 
Table 1. The Φ chart. Converts between size (mm or micron) and Φ value. Conversion is 
based on D[mm]=2-Φ. 
 
 



 
Appendix 
Analytical functions that are often applied to cumulative particles size distributions.  
 
I. Hyperbolic size distribution (two fit parameters, A and α, and two boundaries Dmin & 
Dmax,often determined by sampling method): 
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for α≠1.  
 
II. Normal size distribution: 
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where D  and σ are the two parameters of this distribution, the mean and standard 
deviation respectively: 
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III Log-Normal size distribution: 
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It is logD not D that is normally distributed so: 
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In this case, the median equals the geometric mean: Dg= D =(D1D2D3…Dn)1/n. 
σg is the standard deviation of logD, the geometric mean standard deviation. 
The mode (where the peak of the distribution is), median and mean are related to the 
geometric mean by: 
 log(DMode)=log(Dg)-σg

2 
 log(Dmean)=log(Dg) 
 log(<D>)=log(Dg)+0.5σg

2 
 
For such a distribution the cumulative distribution is a straight line on a log(G(D))-logD 
plot. 
 
 
 



 
 
IV zeroth order logarithmic distribution (ZOLD)  
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Which is a two parameter (DMode, σ0) distribution. 
The relationship between mean and mode is given by: 
 logDMean=logDMode+1.5σ0

2, 
and the standard deviation is given by: 
 σ=DMode[exp(4 σ0

2)-exp(3σ0
2)]1/2. 

 
 
More can be found in: 
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Dyer, K. E., 1986. Coastal and Estuarine Sediment Dynamics, Wiley. 
Kerker M., 1969. The Scattering of light and other EM radiation, Academic Press. 
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