
SMS-618, Particle Dynamics, Fall 2003 (E. Boss, last updated: 10/2/2003) 
Particle settling in a fluid 

 

Low Re # settling: 

The process of settling is governed by a balance between three forces; gravity, buoyancy, 
and drag.  

Newton's 2nd law: mdv/dt=Fgravity-Fbuoyancy-Fdrag 

A settling particle will accelerate under gravity until it reaches a constant speed. At that 
point in time, dv/dt=0 and Fgravity=Fbuoyacy+Fdrag. 

What is likely to affect the settling velocity of a particle? 

a. The particle's excess density to the fluid (ρparticle-ρfluid)g [Kg/m3 m/sec2] 

b. The fluid's viscosity, µ [kg/m/sec] 

c. The particle's cross sectional area, A=πD2/4~D2 [m2] 

to a lesser degree: 

d. The particles shape 

e. proximity to other particles 

From dimensional analysis alone we find that:  

Vsettling α (ρparticle-ρfluid)gD2/µ [m/sec]. 

Additionally, a function of a non-dimensional variable may also be represented in the 
equation. The only non-dimensional parameter in this problem is the Reynolds number, 
Re=ρfluidDVsettling/µ.  

So: Vsettling α func(Re) (ρparticle-ρfluid)gD2/µ.  

It turns out that for spheres with Re <1: Vsettling=(ρparticle-ρfluid)gD2/18µ. 

This equation was derived by Stokes in the middle of the 19th century. It implies that the 
drag force on a sphere at low Re # is: FD=3πµDV, linearly proportional to velocity (V 
and D), unlike the V2 dependence at large Re #. 

The agreement with experimental evidence is testimony that the theory of fluid flows at 
low Re # is exact. 



High Re # settling: 

 

 
Figure 1. The flow pattern around a circular cylinder at different Re #. From Middleton 
and Southard, 1984, Mechanics of sediment movement, SEPM 
 
At low Re # (Re<6) the flow is steady and symmetric with respect to the cylinder. The 
flow accelerate at the middle point (streamlines are closer together) and thus the pressure 
there is maximal.  
As we increase the Re number (~40) fore-aft symmetry is broken and  flow separation 
occurs. Fluid from the boundary layer separates away from the body. There are two 
counter-rotating attached vortices on the lee side of the cylinder.  
At higher Re number (~100) these vortices periodically break away from the cylinder and 
are shed down stream (known as 'Von Karman trail').  
At higher Re numbers (~1000) a turbulent (non-coherent, non-periodic, disorganized) 
wake exists at the back of the body with a laminar wake (where fluid is trapped) closer to 
the body. 
At higher Re numbers (~100000) the turbulent wake occupies a large portion of the back 
of the body.  
Increasing the Re number (~1000000) decreases the area of the turbulent wake 



  
The Re # when the transition to turbulence occurs for a given body depends on the shape 
of the body and how stable is the flow. 
Flow separation can occur in both laminar and turbulent flows. When the fluid in the 
boundary layer (the layer affected by viscosity) has exhausted its kinetic energy along the 
boundary (due to dissipation) it detaches and continues along with the free flow. 

Drag force on a body: 

Two forces act on bodies in flow. Skin friction, the stress parallel to the body, where the 
no-slip condition applies and a form drag, the force due to the pressure (or normal 
stresses) on the body. The sum of both is the drag, the force that needs to be applied to 
keep the body moving at a constant speed. 

It is convenient to define a drag coefficient, CD, which is defined the ratio of the drag 
force to half the inertial force: CD=FD/{0.5ρU2A}. A is the cross-sectional area of the 
body. 

For spheres the following regressions were found (see Fig. 2): 

For low Re<0.5:  CD=24/Re. 

For 0.5<Re<1000: CD=24/Re{1+0.15Re0.687) 

For 1000<Re<Re_crictical: CD=0.44 

At Re_critical (~2.5*105) a sharp drop in CD is observed (termed drag ‘crisis’) and from 
there on CD increases. 



 

 

Figure 2. The drag coefficient of different shaped particles as function of the Re #. From 
www.wm.edu/geology/geo304/ Lecture20/sld002.htm. 

Hindered settling (based on Allen, 2001): 
When an ensemble of particles settles, the concentration of particles affects the settling of 
the individual grains. This can be explained by invoking the continuity equation: the 
particles are falling down relative to the fluid but the fluid needs to replace the volume 
occupied by the particles. Denoting by C the relative volume of particles within the fluid, 
 
Vrel(1-C)=V 
 
Where Vrel is the flow relative to the fluid and V the velocity relative to the ground. 
 
V has been compared with the solitary particle settling velocity Vo and it has been found 
that V/Vo=(1-C)n with 2.3<n<4.65 (decreasing monotonically with Re #), and that the 
drag coefficient is higher for a suspension with: CD/CD,o=(1-C)2-2n. 
 
Another approach to treat hindered settling is through the change of the apparent 
viscosity of the fluid: 

µsuspension=µ*f(C),   



at low concentration, for hard spheres, f(C)=1+2.5*C + O(C2) (based on Einstein’s 
work). 
 
Dietrich (1982):  
(modified from: 
http://www.ocean.washington.edu/people/faculty/parsons/OCEAN542/settle-
lect.htm)  
See:http://woodshole.er.usgs.gov/staffpages/csherwood/sedx_equations/RunSedCalc
s.html for a web applet. 
 Dietrich (1982) was interested in an empirical expression that would express the settling 
velocity as an explicit function of particle characteristics.   
Used dimensionless quantities – 
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Where ws is the settling velocity, ν is the kinematic viscosity and Dn is the nominal 
diameter of the largest projected area. 
  
He broke up the effects of shape and its production of a turbulent wake into three 
coefficients in the equation – 
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where R1 represents the effects of ‘density’, R2 represents the effects of shape, and R3 
encompasses angularity (roundness).  
  

( ) ( )
( ) ( )4

*
3

*

2
**1

log00056.0log00575.0

log09815.0log92944.176715.3

DD

DDR

+−

−+−=
 (5a) 

 



( )

( )( ) ( )6.4log15.03.0

6.4logtanh)1(
85.0

11log

*
0.2

*
3.2

2

−−−

+−−−













 −

−=

DCSFCSF

DCSFCSFR
 (5b) 

  

( )
( )( )5.25.31

*3 6.4logtanh
83.2

65.0
P

DCSFR
−+













 −−=  (5c) 

  
where CSF is the Corey shape factor defined by  
  

ab
cCSF =  

  
where a is the largest length scale associated with the particle, b is an intermediate length 
and c is the minimum length.  P is Powers value of roundness, which is a qualitative 
measure of roundness described by Powers (1953).  Basically P is smaller for more 
angular material.  Perfectly round material has P = 6 (for which R3 becomes equal to 
one).   Highly angular material (crushed silica, for instance) generally has P ~ 2-3.  
  
Dietrich (1982) is particularly good for fluvial and aeolian sands. Oceanic flocs require a 
different treatment. 
 
Not only concentration hinders motion. Particles in the vicinity of a side walls or a slow 
compared to freely settling particles. 
 

Settling of aggregates: 

Aggregates are particles composed of primary particles or molecules bound to each other 
with interstitial waters in between them. Their settling is influenced by the amount of 
water within them which reduces the aggregate’s density (thus decreasing fall speed) and 
increases their size (thus increasing their fall speed). Passage of water within the pores of 
the particle reduces drag compares to an impermeable particle (by reducing the need for 
the water to flow around the particle, and thus the resistance on the falling particle). Since 
these effects are contradictory it is not obvious, a priori, whether 1. Does aggregation 
increases settling speed of material? and 2. Does an aggregate sinks faster/slower the 
more loosely packaged it is?  

Johnson et al., 1996, derive the settling speed of an aggregate under the assumption that 
Re<<1: 
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Where P is the particles porosity (the relative ratio of fluid volume to aggregate volume).  
Assuming this formula to hold, we are now in a position to answer the second question: 
Usettling∝1/Daggregate: collapsing an aggregate results in increasing settling velocity. 
 
While the above settling velocity assumes an impermeable particle, a similar result can be 
derived from data of Johnson et al., 1996, who found (their equation 22 and table 3) that: 
CD=aRe-b, where a and b are empirical constants, with b~1. 
Assuming that this drag balances the particles buoyancy we get: 
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Assuming b=1, and equating the last to expression for the drag coefficient we get again 
that Usettling∝1/Daggregate. 
Note: the above discussion is for Re<1. When Re>1 the drag coefficient actually 
increases compared to that predicted from Stokes and thus the above conclusion holds as 
well. 
 
For small Re #, sinking speed is proportional to D2. In the process of aggregation density 
is reduced: ∆ρaggregate--fluid=∆ρprimary-particle--fluid (1-p). For fractal aggregate (1-P) scales like 
Dδ-3, where 1<δ<3 is the fractal dimension. Thus U scales with Dδ-1 which increases with 
size for δ>1. Indeed there is a lot of empirical and scaling evidence showing that 
aggregates sink faster than their primary particles (Johnson et al., 1996). 
The relationship between U and δ, U∝Dδ-1 , has been used to quantify the fractal 
dimension of aggregates. 
 


