
Particle dynamics class, SMS 618, (Emmanuel Boss 11/19/2003) 
Hand out: Basic gravity wave theory (2-D, x-z): 

 
Assume a homogeneous inviscid fluid at rest. The hydrostatic balance implies that the 
pressure due to water at depth z is: 
 
p0(z)=ρgz.        (1) 
 
A wave introduces a perturbation of the free surface, z=η(x,t). Define, 
 
p’(x,z,t)=p-ρgz.       (2) 
 
Non-divergence implies that the velocity field (u,w) obeys:  
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Linearizing the equation of motion in the horizontal and vertical we find: 
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Differentiating the (4a) with repect to x and (4b) wrt z and using (3) we find p’ to obey 
Laplace’s equation: 
 

0''
2

2

2

2

=
∂
∂

+
∂
∂

z
p

x
p .       (5) 

 
The boundary conditions are as follows: 
 

1. w=0 @ z=-H (no flow into the bottom). 
2. At the surface, tw ∂∂= η  @ z=η. 

 
In addition the pressure must vanish at the free surface, i.e. 

3.   p=p0+p’=0  p’=-ρgη @ z=η. 
 
Since we are assuming linear (and thus small) solutions, we can replace z=η by z=0 for 
the BCs.  
Assuming simple sinusoidal wave solutions, η=η0cos(κx-ωt), with phase speed c=ω/κ. 
ω=2π/T is the frequency, and ω=2π/λ is the wavenumber. Assuming that p’ is 
proportional to η (basically that it is also periodic in x and t), we substitute into (5): 
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The solution of this equation that satisfies the BCs is: 
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where: sinh(y)=(ey-e-y)/2, cosh(y)=(ey+e-y)/2 (see appendix). 
Note that u(z=-H) is not equal to zero. That is because our equations neglected friction.  
In order to satisfy the 3rd condition, the wavenumber and frequency have to satisfy the 
dispersion relation: 
 

( )Hg κκω tanh2 = .      (8) 
 
Near the bottom friction dominates and we have to match the above solution with one 
where u 0 as z -H. That region where friction is important is the wave boundary layer. 
A solution due to Stokes is: 
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This solution not only decays to the bottom but is out of phase with the fluid above (as 
observed in wave tanks). 
The phase of the wave, φ=κx-ωt, represents a wave traveling towards increasing x in time 
with speed c. Similarly,  φ=κx+ωt represents a wave traveling towards increasing x in 
time with speed c. Superposition (e.g. addition) of a left and right traveling waves result 
in a standing wave, ( ) ( ) ( ) ( )txtxtx ωκηωκηωκηη coscos2coscos 000 =++−= . 
 
Now, let’s fit a gravity wave in a tank. The lateral BC’s of the tank are that u=0 at the 
sides (or u=u(paddle) at the paddle position if there is a wave maker, as we had in the 
previous lab). Assume the length of the tank is L. A solution for a standing wave in a tank 
with u=0 at the sides, must have λ=2π/κ=L/{0.5,1 …. N-0.5,N}. When u=u(paddle) the 
solution is more complex but could fit if λ=2π/κ=L/{0.25,0.75 …. N-0.25,N+0.25}. The 
frequency that will match it will be given as the solution of (8). 
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Appendix: graph of hyperbolic functions (from http://www.ping.be/~ping1339/hypf.gif) 

 


