Particle dynamics class, SMS 618, (Emmanuel Boss 11/19/2003)
Hand out: Basic gravity wave theory (2-D, x-z):

Assume a homogeneous inviscid fluid at rest. The hydrostatic balance implies that the
pressure due to water at depth z is:

Po(z)=pgz. (1)
A wave introduces a perturbation of the free surface, z=n(x,t). Define,
p’(x,z,t)=p-pgz. ()
Non-divergence implies that the velocity field (u,w) obeys:
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Linearizing the equation of motion in the horizontal and vertical we find:
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Differentiating the (4a) with repect to x and (4b) wrt z and using (3) we find p’ to obey
Laplace’s equation:
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The boundary conditions are as follows:

1. w=0 @ z=-H (no flow into the bottom).
2. At the surface, w=0n/0t @ z=n.

In addition the pressure must vanish at the free surface, i.e.
3. p=putp=0 P p’=-pgn @ z=n.

Since we are assuming linear (and thus small) solutions, we can replace z=n by z=0 for
the BCs.

Assuming simple sinusoidal wave solutions, n=nycos(kx-mt), with phase speed c=w/x.
o=27/T is the frequency, and ®=27/A is the wavenumber. Assuming that p’ is
proportional to 1 (basically that it is also periodic in x and t), we substitute into (5):
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The solution of this equation that satisfies the BCs is:
i %&)cosh(lc(z + H))oos(x — )
w= M?TT?)KH)Sinh(K(Z + H))sin(rx — oot ) )
u= mo’(gTiﬁcH)cosh(K(z + H ))cos(rx — ot )

where: sinh(y)=(e’-€”)/2, cosh(y)=(e’+e™)/2 (see appendix).

Note that u(z=-H) is not equal to zero. That is because our equations neglected friction.
In order to satisfy the 3™ condition, the wavenumber and frequency have to satisfy the
dispersion relation:

w* = kg tanh(xH ). (8)

Near the bottom friction dominates and we have to match the above solution with one
where u=>0 as z=>-H. That region where friction is important is the wave boundary layer.
A solution due to Stokes is:
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This solution not only decays to the bottom but is out of phase with the fluid above (as
observed in wave tanks).
The phase of the wave, ¢=kx-mt, represents a wave traveling towards increasing X in time
with speed c. Similarly, ¢=xx+mt represents a wave traveling towards increasing X in
time with speed c¢. Superposition (e.g. addition) of a left and right traveling waves result
in a standing wave, 1 = 1, cos(xx — @t )+ 1, cos(xx + wt) = 217, cos(xx)cos(wt ).

Now, let’s fit a gravity wave in a tank. The lateral BC’s of the tank are that u=0 at the
sides (or u=u(paddle) at the paddle position if there is a wave maker, as we had in the
previous lab). Assume the length of the tank is L. A solution for a standing wave in a tank
with u=0 at the sides, must have A=2n/x=L/{0.5,1 .... N-0.5,N}. When u=u(paddle) the
solution is more complex but could fit if A=21/x=L/{0.25,0.75 .... N-0.25,N+0.25}. The
frequency that will match it will be given as the solution of (8).
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Appendix: graph of hyperbolic functions (from http://www.ping.be/~ping1339/hypf.gif)
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