Particle dynamics class, SMS 618, (Emmanuel Boss 11/19/2003)

Hand out: Basic gravity wave theory (2-D, x-z):
Assume a homogeneous inviscid fluid at rest. The hydrostatic balance implies that the pressure due to water at depth z is:

$$
\begin{equation*}
\mathrm{p}_{0}(\mathrm{z})=\rho \mathrm{gz} . \tag{1}
\end{equation*}
$$

A wave introduces a perturbation of the free surface, $\mathrm{z}=\mathrm{\eta}(\mathrm{x}, \mathrm{t})$. Define,
$p^{\prime}(x, z, t)=p-\rho g z$.
Non-divergence implies that the velocity field (u,w) obeys:

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial w}{\partial z}=0 . \tag{3}
\end{equation*}
$$

Linearizing the equation of motion in the horizontal and vertical we find:
$\rho \frac{\partial u}{\partial t}=-\frac{\partial p^{\prime}}{\partial x}$
$\rho \frac{\partial w}{\partial t}=-\frac{\partial p^{\prime}}{\partial z}{ }^{.}$
Differentiating the (4a) with repect to x and (4b) wrt z and using (3) we find p ' to obey Laplace's equation:

$$
\begin{equation*}
\frac{\partial^{2} p^{\prime}}{\partial x^{2}}+\frac{\partial^{2} p^{\prime}}{\partial z^{2}}=0 \tag{5}
\end{equation*}
$$

The boundary conditions are as follows:

1. $\mathrm{w}=0$ @ $\mathrm{z}=-\mathrm{H}$ (no flow into the bottom).
2. At the surface, $w=\partial \eta / \partial t @ z=\eta$.

In addition the pressure must vanish at the free surface, i.e.
3. $\mathrm{p}=\mathrm{p}_{0}+\mathrm{p}^{\prime}=0 \rightarrow \mathrm{p}{ }^{\prime}=-\rho g \eta$ @ $\mathrm{z}=\eta$.

Since we are assuming linear (and thus small) solutions, we can replace $z=\eta$ by $z=0$ for the BCs.
Assuming simple sinusoidal wave solutions, $\eta=\eta_{0} \cos (\kappa x-\omega t)$, with phase speed $c=\omega / \kappa$. $\omega=2 \pi / \mathrm{T}$ is the frequency, and $\omega=2 \pi / \lambda$ is the wavenumber. Assuming that p^{\prime} is proportional to η (basically that it is also periodic in x and t), we substitute into (5):

$$
\begin{equation*}
\frac{\partial^{2} p^{\prime}}{\partial z^{2}}-\kappa^{2} p^{\prime}=0 \tag{6}
\end{equation*}
$$

The solution of this equation that satisfies the BCs is:

$$
\begin{align*}
& p^{\prime}=\frac{\rho g \eta_{0}}{\cosh (\kappa H)} \cosh (\kappa(z+H)) \cos (\kappa x-\omega t) \\
& w=\frac{\kappa g \eta_{0}}{\omega \cosh (\kappa H)} \sinh (\kappa(z+H)) \sin (\kappa x-\omega t) \tag{7}\\
& u=\frac{\kappa g \eta_{0}}{\omega \cosh (\kappa H)} \cosh (\kappa(z+H)) \cos (\kappa x-\omega t)
\end{align*}
$$

where: $\sinh (y)=\left(e^{y}-e^{-y}\right) / 2, \cosh (y)=\left(e^{y}+e^{-y}\right) / 2$ (see appendix).
Note that $u(z=-H)$ is not equal to zero. That is because our equations neglected friction. In order to satisfy the $3^{\text {rd }}$ condition, the wavenumber and frequency have to satisfy the dispersion relation:

$$
\begin{equation*}
\omega^{2}=\kappa g \tanh (\kappa H) \tag{8}
\end{equation*}
$$

Near the bottom friction dominates and we have to match the above solution with one where $u \rightarrow 0$ as $\mathrm{z} \rightarrow-\mathrm{H}$. That region where friction is important is the wave boundary layer. A solution due to Stokes is:
$u=\frac{\kappa g \eta_{0}}{\omega \cosh (\kappa H)} \cosh (\kappa(z+H)) \cos (\kappa x-\omega t)\{1-\exp (-z \sqrt{\omega / 2 v}) \cos (\sqrt{\omega / 2 v} z)\}$.
This solution not only decays to the bottom but is out of phase with the fluid above (as observed in wave tanks).
The phase of the wave, $\phi=\kappa x-\omega t$, represents a wave traveling towards increasing x in time with speed c. Similarly, $\phi=\kappa x+\omega t$ represents a wave traveling towards increasing x in time with speed c. Superposition (e.g. addition) of a left and right traveling waves result in a standing wave, $\eta=\eta_{0} \cos (\kappa x-\omega t)+\eta_{0} \cos (\kappa x+\omega t)=2 \eta_{0} \cos (\kappa x) \cos (\omega t)$.

Now, let's fit a gravity wave in a tank. The lateral BC's of the tank are that $u=0$ at the sides (or $\mathrm{u}=\mathrm{u}$ (paddle) at the paddle position if there is a wave maker, as we had in the previous lab). Assume the length of the tank is L. A solution for a standing wave in a tank with $\mathrm{u}=0$ at the sides, must have $\lambda=2 \pi / \kappa=\mathrm{L} /\{0.5,1 \ldots \mathrm{~N}-0.5, \mathrm{~N}\}$. When $\mathrm{u}=\mathrm{u}$ (paddle) the solution is more complex but could fit if $\lambda=2 \pi / \kappa=\mathrm{L} /\{0.25,0.75 \ldots \mathrm{~N}-0.25, \mathrm{~N}+0.25\}$. The frequency that will match it will be given as the solution of (8).

References:

Lighthill, J., 1978, Waves in Fluids, Cambridge University Press.
Gill, A. E., 1982, Atmosphere-Ocean Dynamics, Academic Press.

Appendix: graph of hyperbolic functions (from http://www.ping.be/~ping1339/hypf.gif)

