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Abstract 

Slowly sinking particles exchange mass with their liquid environment if dissolution processes 
within the particles maintain a surface concentration excess or deficiency x0 of a soluble substance 
above background. If the exchange is controlled by difIi.tsion in the liquid phase, the total mass 
loss is proportional to x0, diffusivity D, and particle diameter d. If advection associated with the 
sinking of the particle dominates over diffusion, the exchange rate varies as QY,d2 and is weakly 
affected by particle density and fluid viscosity. This is the case for spherical particles of a diameter 
z70 pm. 

The resulting dissolution rate per unit depth of sinking is constant for large particles, but increases 
sharply once the particles are small and slow enough for mass exchange to be controlled by diffusion. 
With oxygen supply supposed the rate-controlling process of particle decomposition, a realistic 
depth of decomposition of order 1 km is calculated for 200~pm-diameter spherical particles. The 
generation of an oxygen minimum at such depths then requires the production near the sea surface 
of sufficiently large organic particles in sufficient numbers. 

Small biogenic particles play an impor- 
tant role in the chemical balance of the 
ocean. Their decomposition produces a lay- 
er of oxygen minimum and layers of max- 
ima of nitrate, phosphate, and silicate. In 
the Sargasso Sea the O2 minimum layer lies 
at about 700-m depth, nutrient maximum 
layers somewhat deeper. In the Slope Sea 
(between the Gulf Stream and the conti- 
nental shelf north of Cape Hatteras) the same 
layers are found some 500 m shallower. In 
a note supporting some ideas of Rossby 
(1936), Redfield (1936) suggested that the 
Slope Sea minimum and maximum layers 
must be maintained by along-isopycnal ad- 
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vection from the Sargasso Sea, rather than 
by in situ decomposition, because the sink- 
ing and decay of particles and mass ex- 
change with the liquid phase must be rough- 
ly the same in the two locations and cannot 
result in such large differences between the 
layer depths in question. One could object 
that the physical properties of the water 
masses are also rather different, with colder 
(and denser and more viscous) layers lying 
at a much shallower depth in the Slope Sea 
than in the Sargasso Sea. This could con- 
ceivably retard the sinking of decomposing 
particles, so that they could exert their oxy- 
gen demand and release their decomposi- 
tion products at a much shallower depth. 
To decide the question conclusively, it is 
necessary to examine the quantitative re- 
lationships between particle sinking rates 
and the supply of oxygen and the removal 
of decomposition products from particles. 

Given the importance of this problem, it 
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is surprising that only a few attempts have 
so far been made to develop a satisfactory 
quantitative theory. Munk and Riley ( 19 5 2) 
discussed the absorption of nutrients by 
small organisms and, in their appendix, 
wrote down most of the equations on sink- 
ing rates and mass transfer necessary for 
dealing with the inverse problem of nutrient 
release. Munk and Riley’s emphasis is on 
empirical relationships for mass transfer 
valid at relatively high Reynolds and Peclet 
numbers: they do not discuss the simpler 
and more illuminating physical relation- 
ships in the diffusion (small size) limit. Al- 
most 20 years after Munk and Riley, Pond 
et al. (197 1) considered the decomposition 
of particles while settling, including the ef- 
fect of mass loss on the settling velocity. 
They again used an empirical mass transfer 
law valid for relatively large particles and 
focused on calcite loss from skeleton fora- 
minifera after decay of organic matter. La1 
andLerman(1973) andLermanet al. (1974) 
discussed the similar problem of calcite-sil- 
icate loss, assuming on the basis of some 
field studies that the rate of decrease of par- 
ticle radius remains constant during the de- 
composition process. They did not relate 
this ad hoc mass transfer law to theory or 
laboratory studies. 

Although Pond et al. (197 1) made some 
illuminating general remarks, none of the 
quoted papers discusses systematically the 
fundamental physical aspects of particle-to- 
liquid-phase mass transfer. In order to judge 
the validity of arguments such as that of 
Redfield (1936), it is necessary to be aware 
what the key control variables are of the 
sinking particle decomposition process. To 
this end, the quantitative relationships ap- 
plying to the problem are reviewed below 
and the interrelationship of the principal 
variables discussed. Following this, a very 
simple model of organic matter decompo- 
sition in settling particles is examined, in 
order to exhibit the physical factors that 
control the depth at which maximum oxy- 
gen demand or maximum nutrient release 
rate occur. 

This article started out as a review of 
oceanic diffusion problems on the micro- 
meter scale and up, on the invitation of Y. 

H. Edmondson. Because it seemed difficult 
to write a general review that would not be 
a series of quotes from textbooks, I chose 
to focus it on the nutrient release problem. 
This is certainly an important problem that 
requires more attention than has been paid 
to it in the past, and it also serves as a good 
vehicle for reviewing small-scale mass 
transfer problems. 

Mass exchange through di#bion 
In the problem of mass exchange between 

a fluid and an individual particle suspended 
in it a permissible idealization is to ignore 
how the exchanged mass, released to the 
fluid in a dissolved state, is ultimately dis- 
posed of (or where it originates from, if the 
exchange is fluid-to-particle). This is so be- 
cause the spatial scale of concentration vari- 
ations attendant upon the exchange is gen- 
erally of the order of particle size, i.e. very 
much less than the scale associated with such 
replacement or removal processes as along- 
isopycnal advection, cross-isopycnal mix- 
ing, or biological uptake and release, the 
latter arising as the aggregate effect of all 
other suspended particles present. From the 
point of view of single particle-fluid mass 
exchange, any released material may be 
thought to escape to a sink at “infinity,” 
while any uptake similarly comes from a 
distant source. Furthermore, only the time- 
independent, steady state exchange rate is 
of practical interest. 

In any exchange problem, the flux F may 
be thought of as the primary variable, with 
properties akin to electrostatic force or fluid 
velocity: a vector, which in the absence of 
sources or sinks is “solenoidal,” i.e. such 
that in the steady state, flux tubes may be 
constructed similar to stream tubes (Fig. 1). 
The axis of a flux tube is parallel to the 
direction of the local flux vector, while its 
cross-section is inversely proportional to the 
latter’s magnitude, because the tube trans- 
ports a constant amount of material: 

IFI dA = IF01 dAo (1) 
where the right-hand side is what comes off 
a surface element d& of the particle, F0 
being perpendicular to particle surface. The 
dimension of flux is mass per unit area per 
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unit time, ML-2 T- I. The total mass leav- 
ing a particle’s surface per unit time is there- 
fore 

E= 
s 

IF’oI d&s (2) 
AO 

The principal aim in the analysis of the par- 
ticle-liquid mass transfer process is to de- 
termine E. 

When the fluid is stagnant, mass flux oc- 
curs through diffusion alone. In this case the 
flux tubes diverge to infinity in all directions 
from the particle, because the diffusion pro- 
cess is isotropic. At a distance large enough 
so that any asymmetries of the release have 
been smoothed over, the flux tubes all be- 
come radial, the flux vector’s magnitude a 
function of radius only (measured from a 
convenient origin within the particle, e.g. 
its center of mass), so that by Eq. 2: 

IFI =-$,$. (3) 

Diffusion in a fluid is “driven” by con- 
centration differences, which play a role akin 
to electrostatic or velocity potential, flux 
pointing “down” the local concentration 
gradient (in a stagnant fluid). Thus along a 
single stream tube: 

IFI = -D$ (4) 

where D is diffusivity, a scalar of dimension 
L2 T-l, x is concentration, with units of M 
Le3, and s is distance along the stream tube. 
Far enough from the particle s z r so that 
combining the last two equations and in- 
tegrating one finds: 

x =Xm+& (5) 

where X~ is the “background” concentra- 
tion far from the particle. Because only con- 
centration differences enter the problem, it 
is convenient to set xoo - 0, in which case 
x becomes the concentration excess over 
background. This will be understood hence- 
forth. 

Fig. 1. Schematic illustration of a flux tube in ma- 
terial diffusion. The transport within the tube (flux x 
area) is everywhere the same, equal to the transport at 
the source, in this cast a surface element of a suspended 
particle. 

If a particle is spherical, no asymmetries 
arise in its near field, and the asymptotic 
results Eq. 3 and 5 remain valid to particle 
radius, r = r,. Concentration and flux are 
then at the particle: 

E 
x0 = - 4nroD 

and (6) 

F. = L 
4aro2 * 

The concentration, x0, of a given diffusing 
substance at the surface of a decomposing 
particle is determined by biochemical pro- 
cesses. In many cases x0 depends only on 
what goes on within the particle, not on the 
diffusion in the liquid. x0 is then an inde- 
pendent datum, and E can be determined 
from the first half of Eq. 6. This will bc 
supposed below. 

In similar problems a mass exchange coef- 
ficient m is often introduced by expressing 
the total transfer E as a product of surface 
area, surface concentration (excess) x0 and 
the coefficient m: 

E = mxoAo. (7) 

The dimension of m is thus of velocity, 
L T- I. By Eq. 6, for a spherical particle in 
the case of diffusion in a stagnant fluid the 
mass transfer coefficient is 

D m=- 
r. 

(8) 
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showing that the mass transfer coefficient 
increases with decreasing particle size. 

Rewriting Eq. 3 and 5 in terms of x0 from 
Eq. 6 one has 

x=x0: 

and (9) 

Dr0 
J;=xo7. 

These results illustrate that the “scale” of 
the concentration field is particle radius r,, 
in the sense that the excess concentration x 
becomes vanishingly small at large r/ro. 
Similarly, the scale of x is x0, that of F is 
xoDro- 1, in the sense that concentration and 
flux are nowhere greater than their scales. 

For arbitrary particle shape, the pattern 
of flux tubes near a particle may be found 
by solving Eq. 1 and 4. Written in standard 
mathematical form these equations are 

and 
AF = 0 

w 
F = -D Ax. 

Elimination of F yields 

A2 x=0 (11) 

which is Laplace’s equation. Equation 9 is 
a solution of this, with the boundary con- 
ditions: 

and 

X = x0 (r = ro) 

(12) 
x=0 (r -+ 00). 

As noted above, these boundary condi- 
tions represent the case where biochemical 
processes within the particle maintain a fixed 
concentration excess or deficiency x0 (and 
hence flux F. = Dxolro) at the particle sur- 
face, e.g. a saturation value x0 = xs, or the 
negative of the background concentration, 
i.e. zero in absolute terms. Note, however, 
that the mass transfer velocity m is fixed 
(Eq. 8) and cannot be specified indepen- 
dently of D and r,. 

Eflect of advection 
The above relationships are considerably 

modified when the fluid is in motion. Be- 
cause everything has to be referred to the 
suspended particle, it is the relative motion 
of fluid and particle that matters. The most 
important part of this relative motion is the 
settling of the particle through the fluid. For 
the small particles of interest in the present 
context, the settling velocity may be taken 
to be constant or varying slowly as the par- 
ticle loses mass and encounters colder and 
therefore denser and more viscous fluid. Ex- 
cept for the relative motion associated with 
settling, the particle follows the regular or 
irregular motion of its immediate fluid en- 
vironment. Some distance from the particle 
the fluid velocity may be different: the im- 
plied “shear,” or spatial velocity gradient, 
modifies the flux vector. 

In turbulent flow the shortest distance over 
which the fluid velocity varies appreciably 
is the “microscale”: 

(13) 

where u is viscosity, E energy dissipation rate 
per unit mass, which is 

u3 
c=,, (14) 

where u is rms turbulent velocity, Ld a dis- 
sipation (macro-) length scale, comparable 
to the size of the big eddies present. In the 
wind-driven surface shear layer of the sea u 
is of order u*, the friction velocity, or about 
1 cm s-l under a wind of a speed of 7 m 
s-l, and proportional to wind speed. Ld is 
of the order of mixed-layer depth, say typ- 
ically 10 m. Noting that LJ is near 10h6 m2 
s-l, one calculates I 2 1 mm in moderate 
winds near the surface. Much lower values 
of E, and hence larger I, are found below the 
surface mixed layer, where the water is strat- 
ified. Even 1 mm is much larger than the 
typical organic particle size of 1 O-l 00 ym, 
however, so that shear associated with the 
smallest eddies does not distort diffusion 
processes in the immediate neighborhood 
of a particle. Small eddies do contort the 
wake of a settling particle and cause it to 
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Fig. 2. Streamlines (left) and velocity distribution 
relative to a slowly sinking spherical particle. The mo- 
tion is symmetrical about the vertical axis; the velocity 
distribution is shown in the plane perpendicular to the 
flow (see Eq. 23 for the stream function). 

grow in width faster than molecular diffu- 
sion would. 

Ignoring velocity variations on the scale 
of I and larger for the time being, one is left 
with a steady upward motion of the fluid 
relative to the particle. The Reynolds num- 
ber of this motion is low for typical parti- 
cles: data of Hawley (1982) or Small et al. 
(1979) show that naturally occurring organ- 
ic aggregates or fecal pellets have diameters 
d of ten to a few hundred micrometers, set- 
tling velocities w, of 1O-4-1O-2 m s-l, giv- 
ing a range of Reynolds numbers Re = 
dw,/u from 1O-3 to order 1. At Re small 
compared to 1 the inertia of the fluid is 
unimportant, and viscosity controls the pat- 
tern of flow. The streamlines and velocity 
distribution of the flow relative to a slowly 
sinking spherical particle are illustrated in 
Fig. 2. At the surface the relative velocity 
is zero (no-slip condition). Along the di- 
ameter perpendicular to the flow the veloc- 
ity increases slowly (within a few particle 
diameters) to the settling velocity. In the 
wake the streamlines close again and the 
velocity becomes nearly uniform. 

Motion of the fluid transports (“advects”) 
whatever material is dissolved in it, so that 

b) 

Fig. 3. Schematic drawing of flux lines (section 
through flux tubes) in a vertical plane through a sinking 
spherical particle: a-diffusion alone; b-diffusion and 
moderately fast advection. 

the flux vector becomes, in place of Eq. 4 
or the second part of 10: 

F = vx - DAx (15) 
where v is the fluid velocity vector, and the 
term containing it describes the effect of fluid 
advection on flux. In the absence of sinks 
and sources the flux vector is still solenoidal 
(Eq. 1 and the first part of Eq. 10 hold), so 
that the differential equation for x becomes, 
with A-v = 0: 

PAX - DA2x = 0. (16) 
In a qualitative way, it is easy enough to 

envisage the effect of advection on the ge- 
ometry of flux tubes (Fig. 3). According to 
Eq. 15, flux is the vector sum of advective 
and diffusive components. Right at the sur- 
face of a sinking spherical particle the rel- 
ative velocity vanishes, so flux is as in the 
diffusion problem and flux tubes come out 
of the particle radially. A little distance away 
they are deflected by the streaming fluid and, 
given a not too small settling velocity, end 
up mostly vertical. In this case the mass 
released by the particle ends up mostly in 
its wake (or, for a depletion problem, the 
deficiency of a substance is confined to the 
wake). 

The relative importance of advection vs. 
diffusion is measured by the ratio of what 
the slipstream can “flush away,” against 
what can escape to infinity through diffusion 
alone. The slipstream may be thought to 
transport away a volume per unit time of 
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w,~w, (for a spherical particle), hence dis- 
solved mass in the amount ~r,-,~w,x,. The 
ratio of this to E from Eq. 6 is, except for 
factors of order, unity, 

w.4 Pe = D (17) 

where d is particle diameter, the nondi- 
mensional combination being known as 
Peclet number, as in the analogous heat 
transfer problem. At high Pe, most of the 
mass exchanged is contained in the narrow 
wake, while at vanishing Pe it is evenly dis- 
tributed in the neighborhood of a particle. 

The Peclet number (for diffusion) may also 
be written as the product 

Pe = ScRe (18) 

where Re = w,d/u is Reynolds number and 
SC = u/D is Schmidt number. For most sub- 
stances of interest in the present context D 
is of order 1O-9 m2 s-l, while u is 10m6 mZ 
s-l, yielding Schmidt numbers of order 1 O3 
and Peclet numbers 3 orders of magnitude 
above Reynolds numbers. The typical range 
of Peclet numbers is correspondingly l-l 03, 
using earlier estimates of w, and d for set- 
tling particles. Typically, therefore, advec- 
tion dominates over diffusion. 

Mass transfer from a settling 
spherical particle 

In order to arrive at relationships equiv- 
alent to Eq. 6 for the case of advection- 
dominated mass transfer it is necessary to 
solve Eq. 16, with boundary conditions as 
stated previously (Eq. 12). The mathemat- 
ical difficulties of this problem are consid- 
erable and analytical solutions can only be 
found for simple particle shapes, and then 
only for the large Pe limit, in which case 
there is a diffusive boundary layer at the 
surface of the particle. One should remem- 
ber that low Re and high Pe are simulta- 
neously possible for high enough SC, and 
that this is precisely the range of Re and Pe 
characteristic of small biogenic particles. 

The solution of the advection-diffusion 
equation at high Peclet number for a spher- 
ical particle is given in detail by Levich 
(1962). The concentration distribution is 

x0-x= l 15 e l’ exp( --$q3) dq (19) 

where q = y/S, with y = r - r. the distance 
above the surface of the spherical particle 
6, a diffusive boundary layer thickness: 

6 r(3 j.i”-y)‘. (20) 

= o gPe sin 0 

Here 6 is the angular distance from the stag- 
nation point at the bottom of the settling 
particle. At distances above the particle sur- 
face large compared to 6, the concentration 
differs negligibly from x0. The flux at the 
surface of the particle is 

= 
‘h 

Dxo 

=1.156. 

sin 0 

(” _ sin22flr 

The function of the angle 0 contained in 
this expression is unity at 8 = 0 (the front 
stagnation point), 0.86 at 8 = r/2 (at the 
diameter perpendicular to the flow), and zero 
at 8 = 7r (the rear stagnation point). Thus 
the flux is highest at the point of incidence, 
decreases with increasing 0, and becomes 
zero at the rear stagnation point. The total 
mass transfer is 

E = 6.33xoDroPe”. (22) 

The presence of Pe” in this result has the 
consequence that the total mass transferred 
is not directly proportional to D (but to D”). 
The physical reason is, as Levich (1962) 
pointed out, that advection compensates to 
some extent for a smaller or larger value of 
the diffusivity. This is reflected by the thick- 
ness of the diffusive boundary layer: the sur- 
face concentration gradient varies as x0/6, 
hence as Pe”, which is why this factor occurs 
in Eq. 22. In faster flow, the boundary layer 
becomes thinner, and more mass is ex- 
changed than in a slower moving fluid. 

Levich’s analysis is based on the approx- 
imation that the thickness of the boundary 
layer, 6, is small compared to particle radius 
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r,. He approximated the stream function 
derived by Stokes for viscous flow around 
a sphere at small Reynolds numbers as fol- 
lows: 

tc/ 
= -1 sin26 

( 3 . r2 - -r,r + 
2 

k$ 
) - * 

3 
z -z w,y2sinX8. (23) 

In an ingenious mathematical approach, 
he then transformed the advection-diffu- 
sion equation to (+,B) coordinates and found 
the explicit solution given above. The pres- 
ence of Pe-” in the result has the unfortu- 
nate effect that the approximations are 
strictly only valid for Pe > 10). A more 
accurate formula should not, however, dif- 
fer more than by a factor of order 1. 

In comparing the result of Eq. 22 with the 
diffusion limit, Eq. 6, one finds that the fac- 
tor 4~ has been replaced by 6.33Pe”. The 
two are equal for Pe = 8, characteristic of 
rather small organic particles. Expressed in 
terms of a nondimensional mass transfer 
coefficient (known in the analogous heat 
transfer problem as a Nusselt number) one 
has 

md 
Nu = D 

E. d s-- 
4?rro2xo D 

and 

= 2 

Nu = Pe” 

(Pe 4 0) 

(Pe + 00). 

(24) 

hydrodynamic forces,” but has not shown 
that such forces are in fact present in the 
sea. His terminology of “drag reduction” 
hints vaguely at another known phenome- 
non, the reduction of viscous drag in a tur- 
bulent boundary layer by the introduction 
of a dilute polymer solution, the so-called 
Toms effect (Virk 197 1). A third plausible 
explanation for Chase’s result is that his par- 
ticle density estimates were too low by 3- 
5%, about the supposed density excess of 
his particles: doubling the excess density, 
the settling velocity is doubled. 

The Nusselt number at low Pe approaches First the Toms effect. As Virk (197 1) and 
a constant, because m varies as d-l (see Eq. others have shown, this effect consists of a 
8 above). These results are in good accord thickening of the laminar sublayer below a 
with experimental data quoted by Spalding 
(1963), obtained at somewhat higher Reyn- 

turbulent boundary layer and can materially 
reduce the drag of a large, streamlined ob- 

olds numbers than supposed in Levich’s ject such as a submarine. However, natural 
analysis. Although some interpolation for- particles present in substantial numbers are 
mula should strictly speaking be used for neither streamlined, nor large enough to al- 
1 < Pe < 1 03, in the following the two lim- low the development of a turbulent bound- 

iting results will be used, as an approxi- 
mation, for the ranges Pe >( 8. 

Particle settling 
Supposing low Reynolds number flow as 

before, the settling velocity of a spherical 
particle is given by Stokes’ formula (which 
can be obtained from Eq. 23 above): 

w, = 2g(PS - p) 
9up r” 

2 ~ B,. 2 
0 (25) 

where ps is the density of the particle, p that 
of the surrounding water. The quantity B is 
introduced for convenience in writing down 
subsequent results and is defined by the 
above equation (dimension L- l T- l). 

The validity of Stokes’ formula for par- 
ticles suspended in the sea has been ques- 
tioned by Chase (1979). In presenting ex- 
perimental data on the settling velocity of 
particles collected from Buzzards Bay and 
Lake Michigan, he claimed that such par- 
ticles fall much faster (typically by a factor 
of two) than Stokes’ Law (Eq. 25 above) 
predicts. This implies much reduced vis- 
cous drag or a systematic force aiding grav- 
ity, comparable to the latter in magnitude. 
Chase attributed the phenomenon to “elec- 
tric forces,” “ of the same magnitude as the 
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ary layer on their surface. Drag is mainly 
by the molecular viscosity of the surround- 
ing liquid, the flow of which is already as 
laminar as it can get, certainly so in the 
model on which Stokes’ Law is based (any 
turbulence reduces particle speed further). 

Second, forces on a charged particle. If a 
vertical electric field pulled particles down- 
ward, their velocity would increase in the 
ratio 

_ = mg + Eq v2 

Vl mg 

where E is electric field strength, V m-l, 
and q is electric particle charge, Q (cou- 
lombs). This formula is used in Millikan’s 
method of determining charge, for example. 
Von Am (1962) gave the strength of the 
electric field in the ocean as no more than 
1 OA4 V m- l. The mass of a 100~pm particle 
is about 4 x 10B9 kg, hence its weight mg 
is 4 x low8 newtons. To generate an elec- 
trostatic force of the same magnitude re- 
quires a particle charge of at least 4 x 1 O-4 
Q. That is 2.5 x 1 015 times the electronic 
charge, e, or grossly in excess of what one 
encounters on deliberately charged oil-fog 
particles (order lo3 e, e.g. see Green and 
Lane 1964). It also implies a vertical current 
of density 

J = Nw,q (A mp2) 

where N is particle number density, number 
of particles per m3. A typical mass concen- 
tration of 0.1 mg liter-l ( 10e4 kg m-3) of 
lOO-pm particles has a number density of 
2.5 x lo4 m-3, so that J = 2.2 x 1O-2 A 
m-2. According to Fleagle and Businger 
(1963) the current density flowing down- 
ward from the ionosphere to the earth is 
4 x lo-l2 A mB2, 10 orders of magnitude 
less than the charges on suspended particles 
would carry from the surface layer of the 
sea downward, if their charges were large 
enough to double their fall velocities. 

The quantitative discrepancy is gross 
enough to reject any appeal to significant 
electric forces on particles, systematically 
acting vertically downward. What is left is 
that Chase’s densities were wrong: settling 
velocity observations are indeed often used 

to determine unknown density, 
size of a particle are known. 

if shape and 

Particle dissolution in the 
course of settling 

Consider next the mass loss from a spher- 
ical particle to the liquid phase and the effect 
it has on settling velocity. 

In their discussion of this problem, La1 
and Lerman (197 3) supposed that an outer 
layer of the particle dissolves, reducing its 
radius and that the mass loss of the particle 
is equal to the mass E transferred to the 
liquid phase. A slightly more general for- 
mulation is more convenient: let arE be the 
mass loss of the particle, to allow for the 
release of other substances, or the case when 
E represents oxygen supply, which controls 
the rate of dissolution: 

-aE. (26) 

Take first the case of the low Pe limit, 
substituting Eq. 6 into 26: 

dro 
rodt = -D+o (27) 

where 4. = axo/ps is a “diffusion potential,” 
given by the factor cy times surface concen- 
tration normalized with particle density. 
This equation integrates to 

ro2 = ri2 - 2mot (28) 

where ri is the initial particle radius. The 
result is typical of diffusion problems, the 
square of the radius changing linearly in 
time. The particle disappears (r. 4 0) at 
time 

r02 
td=w- (2% 

Of greater practical interest is the depth 
reached by the particle at dissolution. This 
can be calculated from the settling velocity: 

(30) 

Combining this expression with Eq. 27: 
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dro W. -- To35 = B , 

which integrates to 
4060 

r0 
4 - rid 

= BZJ 

so that the depth of dissolution is 

(32) 

The same calculations can be carried out 
in the high Peclet number limit. Substitut- 
ing the settling velocity for Eq. 25, the Peclet 
number becomes 

Pe Bro3 =- 
D ’ 

Equations 22 and 26 now yield 

dro - = -O.~C$~D’~B”~ = constant 
dt 

(35) 

where 4. is again axo/ps. A constant rate of 
decrease of radius (“dissolution rate”) was 
assumed in La1 and Lerman’s (1973) anal- 
ysis on an empirical basis. Here it is seen 
to conform to the analytical result at high 
Peclet number. It may also be noted that 
the mass transfer coefficient is proportional 
to dr,ldt and hence also constant in this 
limit: 

E m=-- 
4rro2xo 

= 0.5B’/‘.D” 

Upon integrating Eq. 35 one finds 

r. = ri - 0.5~,B’~D”v (37) 

and therefore 

(38) 

Similarly, from Eq. 35 and 30 one has 

2dro 
r” dz 

- = ()5~oD2/~B-” (3% 

and 
ro3 - ri3 = 1 .5~oD2’3B-“z, (40) 

hence 

(41) 

Of course the high Peclet limit ceases to 
apply at some small enough radius. If this 
is sufficiently below ri, the result On zd is 
essentially unaffected: given the high power 
of radius occurring in this formula, the depth 
at which rI << ri is reached is much the same 
as zd. 

The particle dissolution model just dis- 
cussed is clearly oversimplified, and yet it 
yields one very clear conclusion: the pri- 
mary variable determining the depth of dis- 
solution is initial particle size. Doubling the 
initial radius increases the depth of disso- 
lution by about an order of magnitude. By 
contrast, realistic variations of material 
properties- density excess, viscosity, dif- 
fusivity- result in much less drastic changes 
in zd. The only other factor of real impor- 
tance is tie = axo/ps, which can vary within 
a wider range than the material properties. 

Sink and source strength 
Although the mass released by a particle 

could legitimately be regarded as escaping 
to infinity, on the very small scale of a par- 
ticle’s immediate environment, from the 
point of view of large-scale processes each 
decomposing particle is a tiny mass source 
of nutrients and a sink of oxygen. The ag- 
gregate effect of many such particles can be 
described by distributed sources or sinks of 
strength c (mass per unit volume and unit 
time, M Le3 T- *). It is of interest to relate 
this source/sink strength to particle prop- 
erties. 

Let the number of particles (of fixed size 
and other characteristics) falling through a 
given level be n (number per unit area, per 
unit time, L-2 T-l). The vertical mass flux 
is then nM, with M the particle mass. The 
rate of change of this flux is the mass lost 
by particles falling, equal to the mass gained 
by the liquid phase, i.e. the desired source 
strength: 
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For spherical particles of the same radius 
r,, this becomes above their level of dis- 
solution, where n remains constant: 

dM dro 

@=‘dz 
- = 4nnp,ro2 z . (43) 

In the high Peclet number limit one may 
substitute from Eq. 39, also noting that 
P&o = ax01 

g = 27rncxxoDY’B-“. (44) 

A notable feature of this result is the ab- 
sence of particle size: the source strength 
remains the same in the course of settling 
and decomposition, except for variations in 
material properties and the diffusion poten- 
tial cxxo/ps. 

At low Peclet numbers this is no longer 
true: with Eq. 3 1 one has 

This has a sharp peak at z = -z& One 
notes that the total mass released remains, 
of course, finite: 

s 

0 

Q dz = nMi (46) 
-=d 

where Mi is initial particle mass. 
A cloud of large particles released at the 

surface thus releases its mass at a constant 
rate per unit depth until particle size be- 
comes small enough and settling velocity 
low enough for the diffusion limit to set in. 
At that point the rate of decomposition 
speeds up, as the particles sink only a small 
extra distance before complete dissolution. 

As mentioned earlier, the source/sink ef- 
fect of decomposing particles must be coun- 
teracted by some other large-scale process, 
such as advection of nutrient-poor and oxy- 
gen-rich water. This process was considered 
in some detail by Riley (195 1) for the North 
Atlantic. 

Quantitative estimates 
Larger biogenic particles, as pointed out 

by McCave (1975), Hawley (1982), and oth- 
ers, have a density excess only of order 
(p, - p)lp = 0.1. In warm near-surface waters 
the viscosity of seawater is near u = lO+j 
m2 s- *, hence the combined variable B of 
Eq. 25 is typically 

B = 2(P, - Pk 

9UP 

21 2 x lo5 m-l s-l. 

The diffusivity of substances like O2 or 
N03- in water is close to D = 2 X 10h9 m2 
s-l, so that at the Peclet number separating 
“high” and “low” Pe (Pe = 8) 

2Bro3 8 
pe=D= , 

from which one calculates r, = r, = 34 pm, 
or d = 68 pm. It is interesting that this size 
coincides with the conventional limit of 
particles considered “fine.” 

As a crude model of the dissolution pro- 
cess, it will be supposed controlled by the 
availability of oxygen, supplied to the sur- 
face of a particle by diffusion. Bacterial ac- 
tivity will be supposed to establish an oxy- 
gen deficiency of xo/pS = 1 O-6 ( 1 mg kg- ‘) 
at the particle surface. Oxygen supply is cho- 
sen as the rate-limiting process because the 
available diffusion potential for this sub- 
stance is smaller than for nutrients. A more 
complete model would also take into ac- 
count the oxygen utilization process within 
the particle itself, perhaps as Pasciak and 
Gavis (1974, 1975) have done for nutrient 
uptake. In terms of their work, the approach 
here corresponds to the diffusion-controlled 
limit, P << 1 (P: Pasciak and Gavis 1974, 
equation 11). 

Mass loss from the particle will be taken 
to be due to reactions typified by 

COH, + O2 = CO2 + H20 

to which the oxygen has to be supplied at 
about the rate of mass loss, hence a! r 1 
and 40 = axolps 2 lO+j. 

Let a particle of initial size r, = lop4 m 
(d = 200 pm) be released at the sea surface. 



Mass loss from particles 247 

It will decompose to a size corresponding 
to the Pe = 8 limit, r, = 34 pm, in a period 
(Eq. 38): 

t/ = 
ri - r, 

0.5+oB’hi? 

= 14.4 X 105 s 

(or about 15 days) by which time it reaches 
a depth of Eq. 4 1: 

-zI (r? - r3)Rh =-- 
l.5$oD2h 

= 1,380 m. 

Subsequently, it sinks further only by (Eq. 
32): 

Br,4 
zI - zd = - = 34 m. 

4060 

If the diffusion potential tie is twice as 
large as supposed, the dissolution depth is 
halved to about 700 m. Figure 4 shows par- 
ticle size vs. depth for this case. On the other 
hand, a particle only half as large has a dis- 
solution depth ‘/8 of that calculated, i.e. 
<200 m. 

Discussion 
The particle dissolution model discussed 

here is clearly overidealized and no quan- 
titative accuracy can be expected from it. In 
order of magnitude, it yields a realistic dis- 
solution depth for large organic particles. 
While irregular particle shape and other 
complications clearly affect the actual depth 
of decomposition, the theoretical result re- 
garding the dominant importance of parti- 
cle size should be reliable. Similarly, the 
linear dependence of the mass exchanged 
on the diffusion potential $. is a fundamen- 
tal property valid under a wide variety of 
circumstances. The material properties dif- 
fusivity and viscosity are intrinsically less 
important, and because they vary only with- 
in narrow limits in the sea (the diffusivity 
at least for 02, N03-, and similar ions) they 
should have little effect on zd. 

The net conclusion is that the develop- 
ment of an oxygen minimum, and nutrient 
maxima, at depths of order 1 km depends 

d,/fm G III -1. L- J 
0 1 2 3 4 5 6 7 8 

-2, 7‘02m 

Fig. 4. Reduction of particle size with depth, for a 
spherical particle of initial size d = 200 pm, given a 
diffusion potential &, = 2 x 1O-6 and typical material 
properties. Note sudden collapse of particle just above 
the dissolution depth of about 700 m. 

critically on the production of sufficiently 
large organic aggregates or fecal pellets in 
sufficient numbers. 

Another result of the theoretical model is 
that large particles release their mass at about 
a constant rate down to almost their dis- 
solution depth. Thus the appearance of an 
O2 maximum layer also requires that in situ 
production or more efficient advection 
should counteract oxygen loss above the 
level of the minimum (and conversely for 
nutrients). This has been assumed in pre- 
vious discussions of the problem (e.g. see 
Riley 195 1). 
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