Phytoplankton absorption from ac-9 measurements

Julia Uitz

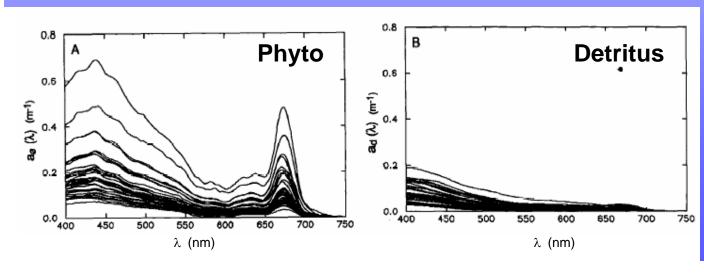
Objective

- Study phytoplankton "eco-physiology", by using a(λ)_φ as a proxy
- ac-9 $a(\lambda)_p$ data to derive $a(\lambda)_{\phi}$
- Model developed by Roesler et al.,L&O (1989)
 a(λ)_{φ =} a(λ)_p a(λ)_{NAP}

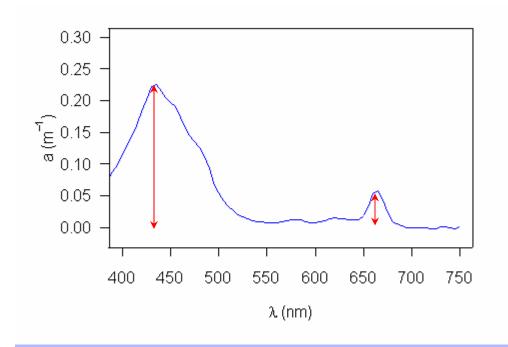
Data & Method

 ac-9 data from Cruise 1 data: station 1 (shallow waters), and station 2 ~ dock (reference) + spec data from dock and Cruise 2

- Raw data from ac-9 and spec measurements are calibrated before being used
- Particulate absorption calculated from:


$$a(\lambda)_{p} = a(\lambda)_{whole \ sample} - a(\lambda)_{sample \ filtered \ over \ 0.2\mu m}$$

Model: Knowledge and Assumption


• $a(\lambda)_{NAP}$ variations restricted to blue region of the absorption spectrum, usually modeled as

$$a(\lambda)_{NAP} = a(\lambda_o)_{NAP} \exp\{-S(\lambda - \lambda_o)\}$$

- S varies in a small range (~ 0.009 0.0178, from Babin et al., JGR, 2003)
- Need to find a λ_o for which a_{NAP} can be identified

From Roesler et al., L&O (1989)

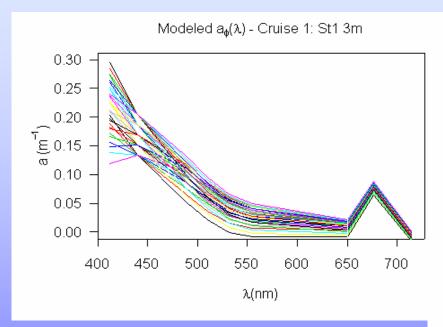
Model: Knowledge and Assumption

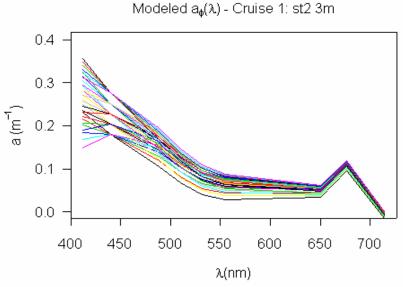
- a(λ)_φ is highly variable (magnitude and shape)
- All pigments absorption is comprised in a(676)_p
- Only pigments absorption contributes to $a(676)_p$ $a(676)_p \sim a(676)_\phi$
- The $\phi_{440:676}$ ratio is well known or can be estimated (varies ~ 1.1-2.1)

Model: Knowledge and Assumption

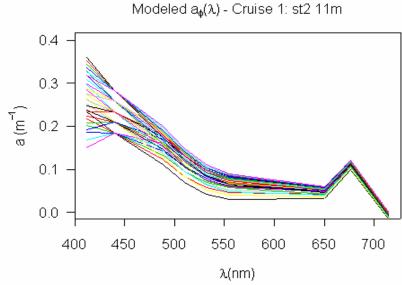
• $a(440)_{\phi}$ is known: $a(676)_{\phi} * \phi_{440:676}$

• $a(440)_{NAP} = a(440)_p - a(440)_\phi$

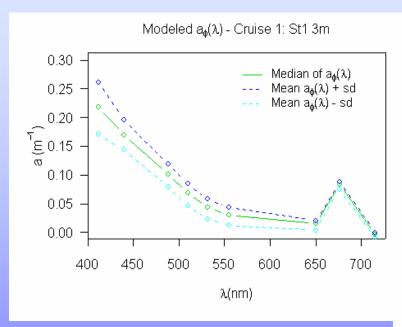

a(λ)_{NAP} can be computed

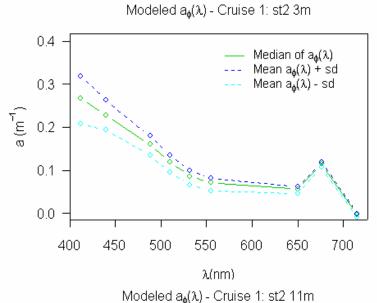

• Finally: $a(\lambda)_{\phi} = a(\lambda)_{p} - a(440)_{NAP} * exp{-S (\lambda - \lambda_{o})}$

Application to ac-9 data

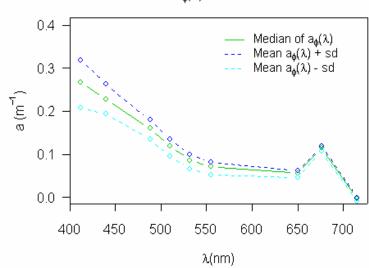

- Wide range of values of $\phi_{440:676}$ and S were tested (plausible values and out of range)
- $\phi_{440:676}$: 1.5, 1.7, 1.9, 2.1, 2.3
- S: 0.0089, 0.011, 0.013, 0.015, 0.017, 0.019
- $\phi_{440:676}$ = 1.5 and S = 0.011 are the parameters calculated from spectrophotometer measurements (Dock)

Range of $a(\lambda)_{\phi}$ values

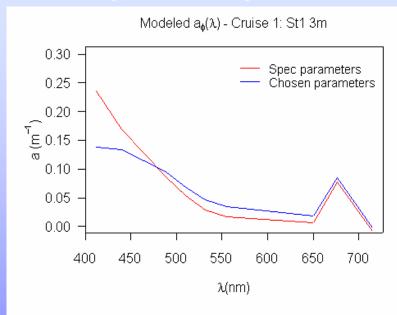


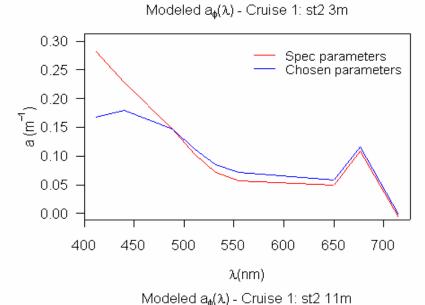


- Shape expected with spec parameters not obtained
- More "typical shapes" for S steeper than expected

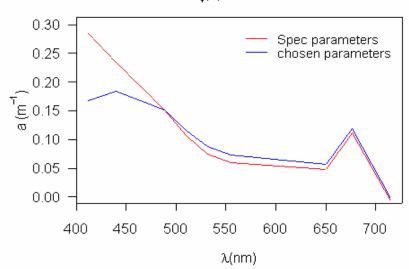


Average $a(\lambda)_{\phi}$ values

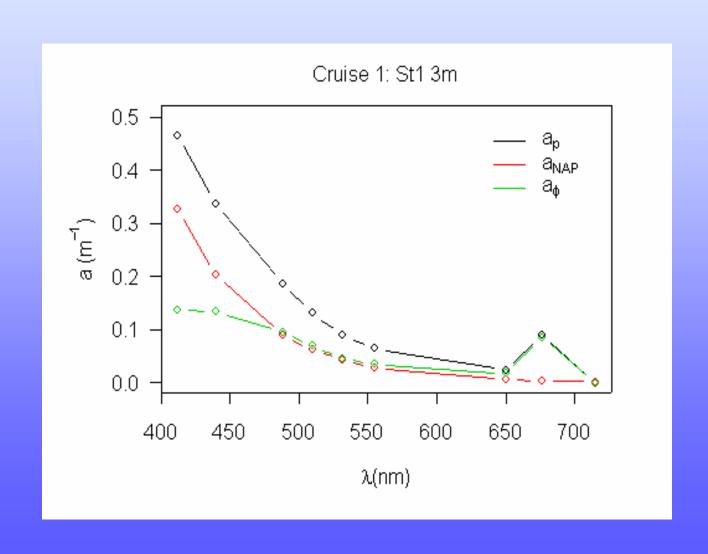


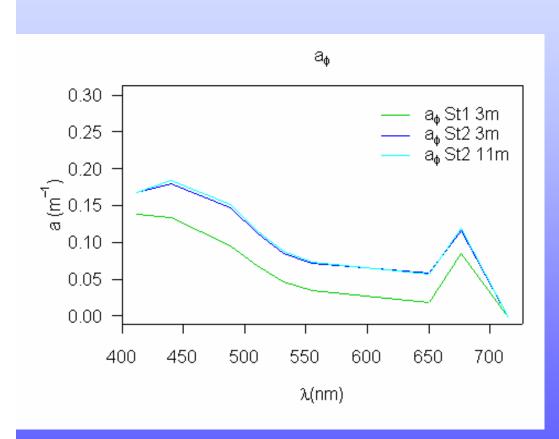


- Shape is not what was expected
- Chlorophyll peaks?
- Use extreme values

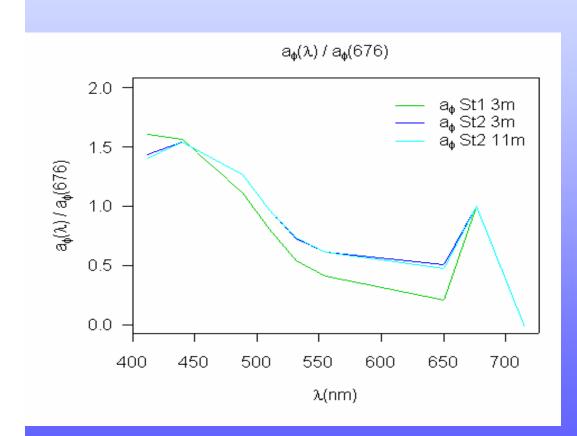


Extreme parameters vs Spectrophotometer parameters

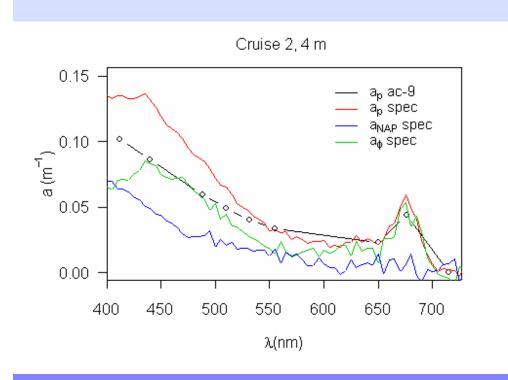



- Spec (dock sample): φ_{440:676} ~
 1.9 and S ~ 0.011 / Chosen: φ_{440:676} = 1.5 and S = 0.017
- Slope >> than given by spec
- In the range of published values, but extreme values!
- Shapes of st2 reliable?

Different a(λ) spectra derived from ac-9 measurements

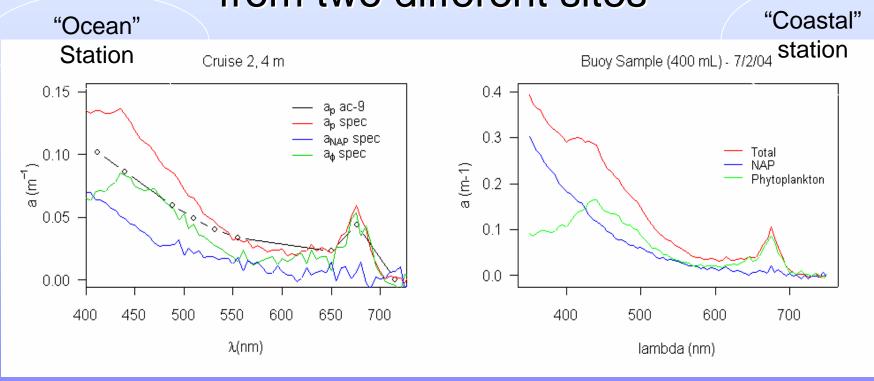


What can we learn from these spectra?


- St2 ~ homogeneous
- a_φ higher at st2 which may suggest more biomass
- Consistent with our knowledge of the sites

What else can we learn from these spectra?

- Compare shapes: normalized to red absorption
- At both stations: accessory pigments
- More PPC at st2?
- Are these spectra reliable enough?


Comparison ac-9 vs spectrophotometer data for Cruise 2

- Different scattering correction: spectral for ac-9 vs flat for spec
- Are spec data less accurate?

- a_o from ac-9 are questionable
- a_p spectra need to be compared to independent measurements (spec)
- Disagreement between
 a_D from spec and ac-9
- May be due to different filters (0.2 μm for ac-9 vs 0.7 μm for spec)

Comparison of spectrophotometer data from two different sites

- Cruise 2 (4 m): high contribution of phytoplankton
- Buoy sample (surface): contribution of NAP >> phytoplankton
- High concentration of NAP > 0.7 μm contributing to the spec a_{NAP} , and to the ac-9 a_p
- May explain the steep slope of a(λ)_{NAP}

Using a(676)_b to estimate Chla concentration

Station	Mean	sd
St1 3 m	5.8 mg m ⁻³	0.5
St2 3 m	8.0 mg m ⁻³	0.4
St2 11 m	8.3 mg m ⁻³	0.4

- a(676)_{\(\phi\)} / a_{Chl} * = [Chl]
 Average a_{Chl} * ~ 0.014 m² mg^{-1}
- a_{Chl}* from other proxy (fluo) ~ 0.015 m² mg⁻¹
- St1 3m seems ~ consistent
- St2 3m and 11m: higher values than expected from other proxies
- a(676) ∮ is reliable
- [Chl] more sensitive to a_{Chl}

Conclusions

Choice of the proxies

- $a(\lambda)_{\phi}$ for phyto: not really evaluated through this work
- a(676)_φ for [Chla]: must be relatively reliable, but sensitive to a_{Chl}*

Method

- The model is robust
- If analysis shows too high sensitivity to the parameters, then something may be wrong in the data
- Useful indicator of the quality of the dataset
- If applied to a good dataset, an "in situ" $a(\lambda)_{\phi}$ can be estimated (high vertical resolution, quick measurements, ...)

Improvement

- Need to be compared to other proxies
- More data!