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ABSTRACT

It is shown that tidal perturbations of a geopotential height in an inviscid, barot~opic atmos~here can tum a
purely inertial, predictable trajectory of a Lagrangian particle chaotic. Hamiltoman formulation of both ~he

free, inertial, and the tidally forced problems permitted the application o~ the twi~t and~M t.heor~ms,which
predicts the existence of chaotic trajectories in the latter case. The chaotic behaVIOr mamfests l:self In extreme
sensitivity of both the trajectory and the energy spectra to initial con~itions and to the precl~ value of ~he
perturbation's amplitude. In some cases dispersion of initi~lyclose p~~cl~s c:an be very fast, WIth ~n e-fol~ng

time of the rms particle separation as high as one day. A vigorous mIXIng IS mduced by the chaotiC advection
associated with the tidal forcing through the stretching and folding of material surfaces.

1. Introduction

Purely inertial trajectories on a geopotential of the
atmosphere or the ocean ofa rotating earth have been
shown by PaIdor and Killworth (1988) to consist of
entirely predictable oscillations relative to a fixed point
on earth. Two conservation laws, for kinetic energy
and angular momentum, greatly reduce the dimension
ofthe system's dynamics so that only periodic solutions
are possible. A Lagrangian particle flowing along one
of these possible trajectories can end up either eastward
or westward of the longitude of origin and can either
cross the equator or remain in one hemisphere, all de­
pending on the initial velocity and the latitude oforigin
only. As in many other dynamical systems, the different
possible trajectories are separated by the so-called sep­
aratrices. The scale for the frequency for all inertial
oscillation is twice that of the earth's revolution about
its own axis.

A Hamiltonian formulation of a free (i.e., without
forcing) dynamical system is of utmost importance in
detecting the behavior ofthe system under the influence
of a small-amplitude, time-dependent forcing (Lich­
tenberg and Lieberman 1983; Wiggins 1988). This
Hamiltonian formulation becomes tractable when
conservation laws, such as those found by Paldor and
Killworth (1988), can be derived. The Hamiltonian
formulation ofthe free system, along with an analogous
one for the forced system, enables the application of
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the Kolmogorov-Arnold-Moser (KAM) theorem to
predict the existence of chaos when some external
forcing is applied to the otherwise inertial flow.

Many periodic pressure fluctuations perturb any
given geopotential surface from its average spherical
shape. Of these, two have typical frequencies of the
order of the inertial one: the diurnal solar heating and
the planetary pressure tide. The solar heating is very
well approximated (to an accuracy of a few percent)
by a zonally traveling wavenumber 1 and with once­
and twice-daily frequencies. The largest components
(neady all the energy) of the planetary pressure tide
have zonal wavenumbers one and two and frequencies
of once and twice daily, respectively. All these pertur­
bations are called tides because oftheir frequency range
and because it is impractical to try to separate the ther­
mal from the planetary causes ofthe geopotential height
variations. The amplitudes of these tides are latitude
dependent but their variation near the equator is very
small since they vary as a low power of the cosine of
the latitude. The observations (and theories) sum­
marized in Chapman and Lindzen (1970) (see also
Haurwitz 1965) and various numerical models (Hsu
and Hoskins 1989; Zwiers and Hamilton 1986) give a
scale of about I mb for the amplitude of these com­
ponents of the atmospheric surface tide. These tides
perturb any given geopotential surface and will act
as body forces on all Lagrangian particles flowing
along it.

In dynamical systems theory (Wiggins 1988), ample
cases exist of linear and nonlinear oscillatory systems
that become chaotic when perturbed by some, even
minute, time-dependent forcing. This chaotic behavior
occurs mostly (but not exclusively) near the separa­
trices of the free system (e.g., Chernikov et al. 1987,
1988) and is manifested in extreme sensitivity to both
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2. The inertial problem revisited

The inertial problem-that is, the 2D motion on a
geopotential when pressure or viscous forces can be
neglected has been studied in the past in connection
with trajectories of Lagrangian floats observed in the
ocean and as a basic problem in geophysical fluid dy­
namics (GFD) (e.g., Haltiner and Martin 1957; Von
Arx 1962; Cushman-Roisin 1982; Paldor and Killworth
1988). We start off by formulating the problem in the
traditional GFD approach but then change to canonical
coordinates for a Hamiltonian formulation.

of the geopotential determines the amplitude of the
tidal forcing so that at higher altitudes the same tidal
forcing is expected to result in a wider range ofchaotic
behavior.

The paper is organized as follows. In section 2 we
revisit the free problem by formulating it in a Hamil­
tonian formulation. In section 3 we present the forcing,
and in section 4 the forced problem is cast in a Ham­
iltonian formulation and we find numerically chaotic
trajectories anticipated by the KAM theorem. In sec­
tion 5 we apply the theory to calculate the dispersion
and mixing that are encountered as a result of the cha­
otic advection. We discuss the applicability of our
findings to atmospheric ob,servations and summarize
the paper in section 6.

a. Review ofprevious formulation ofthe problem

For completeness of presentation we briefly review
in this subsection the traditional formulation of the
governing equation. More details of the derivations can
be found in textbooks such as Gill ( 1982). The purely
inertial (i.e., free), Lagrangian, horizontal equations
of motion parallel to a spherical geopotential surface
are characterized by the absence of pressure gradient
forces and the negligence ofviscosity. Buoyancy forces
mutually cancel so the shape ofthe geopotential surface
can be assumed to be fixed at all times. When the vari­
ation of the Coriolis parameter with latitude and the
geometric correction due to the convergence of lon­
gitudes are taken into account, one obtains the non­
dimensional Lagrangian momentum equations for the
(eastward and northward) velocity components (see
Paldor and Killworth 1988)

Ut = v sincjl· (1 + u/coscjl), (1)

V t = -u sincjl·(1 + u/coscjl), (2)

where subscripts (other than zero) denote differentia­
tion. These momentum equations are supplemented
by two equations relating the u and v velocity com­
ponents to the rate of change of the longitude, A, and
the latitude, cjl, respectively:

initial conditions and parameter values. A straightfor­
ward, in most cases necessary (but never sufficient)
tool for detecting the possible existence of chaotic re­
gimes is a direct numerical integration of the system's
equations, starting from very close initial conditions
or for slightly different values of the parameter; in a
chaotic system close trajectories will diverge exponen­
tially. The various time series (and phase plane por­
traits) that result from these integrations are then an­
alyzed and compared using such tools as power spectra
and Poincare maps. These numerical findings have to
be supplemented by analytical tools based on the
Hamiltonian formulation of both the free and the
forced systems. When the systems' Hamiltonians are
found the KAM and twist theorems (Ottino 1990)
provide conditions under which chaotic behavior is
bound to be encountered in the forced system.

The most direct observation on the dispersal of La­
grangian particles in the atmosphere comes from
tracking high-altitude weather balloons. In one such
field experiment-the EOL Experiment-Morel and
Larcheveque ( 1974) tracked a set of close to 500 bal­
loons released from the ground in several clusters to
fly at the 200-mb height. Their main finding was that
during the first few days of the balloons' flight their
rms separation grew exponentially with an e-folding
time of over two days. The balloons' dispersal is due,
ofcourse, to very many factors, for example, horizontal
and vertical shear of the wind at the balloons' altitude
and pressure fluctuations other than tides, but the
proposition that a great deal of the dispersion is caused
by tides has never been considered before. Another
such experiment is the TWERL Experiment reported
in the TWERLE Team ( 1977), for which dispersal of
balloons was calculated by Er-El and Peskin (1981),
who found dispersion rates similar to those found in
the EOLE. In addition to the dispersion rates the
TWERLE data indicate a nonmonotonic dispersal of
the balloons rather than the monotonic dispersal found
in the EOL Experiment. The dispersal was heuristically
attributed to mechanisms such as Rossby waves, ver­
tical and horizontal shears, and the prevailing winds.
Similar observations of the dispersal of submerged
floats in the ocean did not yield confident enough dis­
persion rates due to the sparsity of the data.

We propose an additional mechanism for the ob­
served dispersal that is of wide-range applicability (e.g.,
satellite and other passive tracers). This mechanism is
the dispersion due to chaotic advection of Lagrangian
particles flowing on a geopotential when its shape is
perturbed by a tidal forcing that induces body forces
on the particles. The significance of this mechanism
for a given observation should be determined separately
since for any original latitude it varies greatly with the
initial velocity. Only the combination of these two­
original latitude and initial velocity-determines how
close the resulting trajectory is to the separatrix. In
addition the altitude of the balloon or the mean height At = u/coscjl.

(3)

(4)
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where

¢; = 2E - u 2

= 2E - D 2I( 4 cos 2¢) + DI2 - cos 2¢/4, (7)

(8)¢u + V(¢)", = 0,

The low dimensionality of the problem and the nu­
merical results showing oscillatory motion only suggest
that the system is merely an example ofa classical non­
linear oscillator (e.g., Tabor 1989; Lichtenberg and
Lieberman 1983). An equivalent equation to Eq. (7)
in a more straightforward form can be easily obtained
[e.g., by differentiating Eq. (7) with respect to time
and dividing through by ¢[, assuming, of course, it
does not vanish identically]:

and this equation is entirely equivalent to the whole
system (1 )-(4) since once ¢(t) is calculated from Eq.
(7), v(t) is given by Eq. (3), u(t) by Eq. (5), and ;\(t)
by Eq. (4). The actual solution for ¢(t) from Eq. (7)
for given initial value ¢(O) and particular values of the
parameters E and D [determined by the initial values
¢(O), u(O) and v(O)] involves elliptic integrals and
can be easily obtained numerically. The particular case
of the separatrix shown in Fig. Ib (v( 0) = 0, D
= cos¢(0), E = ( I - COS¢)218) can be solved explicitly
for ¢(t) (see Boss 1991):

sin¢ = 2 sin¢(O) exp(-atI2)/(l + exp(-at»

These two integrals of motion, E and D, along with
the independence of the system (l )-( 4) on A, imply
that the dimension of the system is only 1. Indeed, the
conservation laws (5) and (6 ) for E and D can be sub­
stituted for u and v to derive (after some tedious but
trivial mathematical manipulation) the single, first-or­
der equation:

(5)

In deriving these nondimensional equations the
length scale was taken to be R-the earth's radius­
and the time scale to be I dayI( 411") (i.e., the frequency
scale is twice the frequency ofthe earth's rotation about
its own axis). The resulting scale for the velocity com­
ponents turns out to be 411"RI24 h, which is unphysi­
cally large-only slightly less than I km S-I . We there­
fore use in all subsequent integrations a nondimen­
sional initial speed of O.Ol-a comfortable 10 m S-1

dimensional speed.
The absence of A from the rhs of the system (1)­

(4) implies that u, v, and ¢ evolve, with time, irre­
spective of A(t), while the latter is determined by the
others. The resulting geophysical trajectories (i.e., rel­
ative to a fixed point on earth) A(t), ¢(t) were shown
by Paldor and Killworth ( 1988) to consist of several
types ofoscillations separated by separatrices. One such
trajectory, separating equator-crossing oscillations from
those wholly contained in one hemisphere, is shown
in Fig. 1.

b. Integrals ofmotion and the system's dimension

Two integrals ofmotion were derived for the system
( 1)- (4 ) by Paldor and Killworth ( 1988 ): The energy
integral is obtained by multiplying Eq. (1) by u and
Eq. (2) by v and then adding the resulting equations.
One then obtains the integral of motion:

which merely expresses the conservation of the kinetic
energy E.

The second integral is derived by dividing Eq. (l)
through by Eq. (3) and solving for u( ¢). The result is

D[ "" [cos¢·(cos¢ + 2uH = 0, (6)

which expresses the conservation of angular momen­
tumD.

16 (a) (b)
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FIG. I. The inertial (free) trajectories in geopotential coordinates (A, ¢) for u( 0) = 0.0 I, v( 0)
= 0.0 and A(O) = 0.0 for three values of initial latitude ¢(O): (a) 0.190 rad, (b) cos' '( I
- 2u(0» "" 0.20033 rad, and (c) -0.210 rad. The separatrix in (b) separates equator-crossing
trajectories from those contained in the hemisphere of origin at all times.
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where the nonlinear potential, V ( c/> ), is defined by

V(c/» = D 2 /(8 cos 2c/» - D/4 + cos 2c/>/8. (9)

The dynamics of this inertial oscillator is determined
by the potential, V ( c/> ), which depends on the value of
(the constant) D as shown in Fig. 2. It is clear from
this figure that for given initial conditions c/>( 0), c/>t( 0)
the time evolution of c/>(t) is qualitatively different for
different values of D. Whereas for D = 1.5, only one
equilibrium point exists about which the system can
oscillate; in the case when D = 0.5 there are three such
points. This qualitative change in the system's dynam­
ics due to a change in the value ofD is better illustrated
in the bifurcation diagram shown in Fig. 3. The tran­
sition from three equilibrium points (two of which are
elliptic and the third being hyperbolic) to one (elliptic)
equilibrium point occurs when (the absolute value of)
D passes through the value of 1. The system thus un­
dergoes a pitchfork bifurcation at D = 1.0 (e.g., particles
crossing the equator with zero zonal velocity). For neg­
ative values of D the bifurcation diagram is a mirror
image of that shown in Fig. 3 since even though V ( c/> )
(and Hodefined later) contains a linear term in D, this
linear term is time independent and does not alter the
nature of the equilibrium points and the dynamics.
This term appears in the expression for V (and that of
H o) only due to the choice of reference level of zero
kinetic energy.

The rest of this study focuses on trajectories with D
< 1, that is, those near the separatrix shown as curve
c in Fig. 3 (duplicated in geophysical space in Fig. 1b).
The dynamical implication of the bifurcation point at
ID I = 1 is beyond the scope of the present study and
is left for future work.

c. Hamiltonian formulation ofthe problem

The conservation ofenergy, Eq. (5), and the analogy
to a nonlinear oscillator imply that the energy is the
system's Hamiltonian when u is replaced by D and c/>
[by virtue ofEq. (6)] for canonical representation. The
Hamiltonian of the system is thus taken to be:

Ho = v2 /2 + D2 (8 cos 2c/» - D/4 + cos 2c/>/8, (10)

where v equals c/>t and D [defined in Eq. (6)] is a con­
stant [determined by the initial conditions u(0), c/>( 0)].
The coordinates v, c/> are indeed canonical and it can
be trivially verified that they satisfy:

(11a,b)

The set (11) for a given value of D and with Ho
defined by Eq. ( 10) is entirely equivalent to the system
(1)-(3).

The fact that the system is Hamiltonian justifies the
application of twist and KAM theorems to anticipate
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FIG. 2. The nonlinear potential well, V (<p), governing the dynamics of the free system and the corresponding phase
curves (<p, v) for values of (a) D = 1.5 and (b) D = 0.5. The transition from a quadratic-looking potential, (a), to a
quartic-looking one, (b), takes place at IDI = 1.0.
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FIG. 3. The pitchfork bifurcation at D = 1.0 in (</>, v, D) space.
The various phase space trajectories (a)-(g) shown here are analogous
to the geophysical trajectories shown in Figs. I and 2 of Paldor and
Killworth (1988) with the qualitative correspondence: (a) - la (re­
produced here in Fig. la); (b) - Ic, Id, Ie, 2d; (c) - If(Fig. Ib
here); (d) - Ig (Fig. Ic here); (e) - 2c (but for D < 0); (f) - 2b;
(g) - 2a. The geophysical trajectory shown in Fig. Ib of PaIdor and
Killworth ( 1988) corresponds to a D = I circle not shown here.
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o ofsolar heating followed by night cooling, which causes
the geopotential to deflect from its mean height, is made
up of zonal wavenumber k = 1.0 and nearly 95% of
the energy is contained in the daily and twice-daily
bands. Observations (e.g., Haurwitz 1965; Chapman
and Lindzen 1970) as well as numerical models (e.g.,
Hsu and Hoskins 1989; Zwiers and Hamilton 1986)
all indicate the significant role these tidal components
play in determining the time series of the geopotential
height.

The amplitude of the observed tidal forcing at the
surface is nearly 0.6 mb for the daily component and
about 1.2 mb for the twice-daily one. The altitude de­
pendence of these amplitudes is such that the diurnal
pressure one is slightly increasing with altitude while
that of the twice-daily one remains nearly uniform with
altitude (Hsu and Hoskins 1989).

The latitude dependence of the observed tidal am­
plitude, a( ¢ ), is more complex but to a very good ap­
proximation is given for both components by the cosine
oflatitude raised to a low (two or three) power (Chap­
man and Lindzen 1970; Hsu and Hoskins 1989).

When the tidal forcing is introduced into the rhs of
the momentum equations, Eqs. (1) and (2), we get
(e.g., Gill 1982):

UI = v sin¢(l + u/cos¢) - leA cos(k;\ - ut)/cos¢,

(13a)

VI = -2u sin¢( 1 + u/cos¢) - Aq, sin(k;\ - ut),

(13b)

that the addition ofa time-dependent forcing will turn
some ofthe free system's oscillatory trajectories chaotic.
The extent ofchaotic regime is determined by the am­
plitude ofthe applied external forcing (Lichtenberg and
Lieberman 1983). That same fact also implies that the
system is not dissipative and hence that volume in
phase space is conserved.

3. Tidal forcing

When the geopotential surface along which the La­
grangian particle flows is perturbed by some time-de­
pendent forcing, additional terms have to be added to
the rhs of Eqs. (1 )-(2). The general form of the di­
mensional tidal pressure forcing, P, is

p(¢, ;\, t) = a(¢) sin(k;\ - ut), (12)

which represents a zonally traveling wave with a fre­
quency u, zonal wavenumber k, and latitude-depen­
dent amplitude a( ¢ ).

Several types of forcing with frequencies near the
inertial one come to mind. The main components of
the planetary tidal potential are the lunar and solar
ones with wavenumbers k = 1 and 2 and frequencies
u = 0.5 (daily) and 1.0 (twice daily). The diurnal cycle

while Eqs. (3) and (4) remain unchanged. Here the
nondimensional amplitude, A ( ¢ ), is defined as the di­
mensional pressure amplitude, a(¢), divided by the
density and scaled on (flR) 2. Thus, a dimensional
pressure amplitude of 1 mb ( 100 Pa) at sea level (den­
sity of 1 kg m-3 ) corresponds to A = 10-4 •

Although the tidal amplitude varies only slightly with
height, a main contribution to the variation ofA with
altitude stems from the density decrease. Therefore,
we anticipate that, since A is given by the pressure am­
plitude divided by the density, its value above sea level
should be higher than its sea level value of 10 -4 .

4. The forced model

As was already pointed out at the end of section 2,
the addition of even a small-amplitude forcing [e.g.,
Eqs. ( 13)] is expected, by the twist and KAM theorems
(e.g.,Ottino 1990), to turn some ofthe oscillatory tra­
jectories of the inertial system chaotic. Before turning
to the numerical search for these chaotic trajectories,
we look at the Hamiltonian of the forced system and
derive some important conclusions on its dynam­
ics. In the Hamiltonian formulation of the forced
systerp we will address both time-dependent and
time-independent forcing terms having an arbitrary
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The forced Hamiltonian, ( 16) can be written as the
sum:

zonal wavenumber, k, and an arbitrary latitude depen­
dence, A(¢).

For definiteness we choose in the numerical inte­
grations that follow the form given by Eq. ( 13) with k
= 1.0 and (J = 0.5 so that the particular forcing under
study is a zonally traveling wave of wavenumber 1 and
with a daily frequency. The amplitude of the forcing
was taken to be latitude-independent A (¢) = const,
which makes the calculations somewhat simpler and
produces only a negligible error in the 15° band around
the equator where the subsequent integrations are car­
ried out.

The region, near the separatrix of the free problem,
has been shown in other oscillators to turn chaotic un­
der the application of some time-dependent forcing
(Lichtenberg and Lieberman 1983; Chernikov et al.
1987, 1988) and we therefore focus on this region in
the search for chaotic trajectories.

For an initial velocity of u(O) = 0.01 and v(O)
= 0.0 (a dimensional speed slightly less than 10m s-1 )

the separatrix is located at <1>(0) of 11.478°N (0.2003
rad N)-close enough to the equator so that the neg­
ligence of the meridional variation of the tidal forcing
is justified. The actual original latitude was taken a
mere 0.057° (0.001 rad) south of the separatrix and
we therefore expect all trajectories to move westward
of the original longitude. The original longitude is 0°,
which merely sets the phase of the forcing in Eq. ( 13 )
to zero at time t = O.

Starting from these initial values [u(O) = 0.01, v(O)
= 0.0, <1>(0) = 11.421°,8(0) = 0.0] and for our par­
ticular choice of the forcing wavenumber (k = l) and
frequency «(J = 0.5), very different trajectories were
found for two very close values of the forcing ampli­
tude. The first set of integrations had a forcing ampli­
tude ofA = 26 . 10-5 (the Cease), while in the second
A was set equal to 27.10-5 (the P case); both ampli­
tude values are well within the observed range, as dis­
cussed in section 3.

The geophysical Lagrangian trajectories [ACt), ¢(t)]
for the two values of the forcing amplitude are shown
in Fig. 4 and the projection of the trajectory onto the
(<I>, v) plane is shown in Fig. 5. In both figures it is
evident that whereas the P trajectory has a very regular
periodic appearance, the C case looks very irregular
with several cycles not crossing the equator at all.

The difference in the degree of regularity is best ad­
dressed by the kinetic energy spectra shown in Fig. 6.
Here the difference between the P and the C spectra
stands out in a qualitative way: the former consists of
isolated sharp peaks at the forcing frequency and its
subharmonics, while the latter has only one significant

b. Numerical results

our problem, the Hamiltonian of the forced system,
Eq. ( 18), satisfies this general form since D itself [the
second term on the rhs of Eq. (18)] is made up of a
constant term and a time-dependent term that is pro­
portional to A by virtue of Eq. ( 15c).

(17)

(14 )

(15a)

VI = sin(2<1>)( 1 - D 2 /cos4 <1> )/8 - At/> sin(2k8),
(15b)

(15c)

( 15d)
D I = -2kA cos(2k8),

81 = D/(4cos 2¢)-(2u/k+ 1)/4,

which is equivalent to the system (3), (4), (13a), (13b).
The angular momentum, D, is not conserved anymore
and the time dependence of the forcing introduces an
additional dynamical coordinate, 8. The Hamiltonian
of the system ( 15) is

v 2 D 2 D(2u/k+1)
H = - + - ---'-----.e:.--_--'-

2 (8 cos 2¢) 4

cos(2¢) .
+ 16 + A sm(2k8). (16)

H = Ho - Du/(2k) + A sin(2k8), (18)

where Ho is the Hamiltonian of the free system defined
in Eq. ( 10). As could be anticipated, when the forcing
amplitude, A = A (<I> ), is set equal to zero H is equal
to H oup to a constant-Du /(2k) [D being a constant
when A equals zero by Eq. ( 15c)]. We also note that
this same Hamiltonian is applicable to time-indepen­
dent forcing by setting u equal to zero in Eqs. (14),
(15d), and (16).

The application of KAM and twist theorems to the
forced system is justified provided that the Hamiltonian
of the latter equals the sum of the Hamiltonian of the
free system (up to a constant) and a small, time-de­
pendent term (Lichtenberg and Lieberman 1983). In

This Hamiltonian being an integral of the flow im­
plies that the system (15) is actually of dimension 3
only despite its deceiving appearance. The additional
pair ofcanonical coordinates (i.e., in addition to ¢ and
V discussed in section 2) are, of course, D and 8, which
can be shown to satisfy

¢I = v,

8 = [A - (0) k)t]/2,

we get the following system:

a. Hamiltonianformulation ofthe forced system

The dimension of the forced system written in the
(u, v, A, ¢, t) is 5. We first reduce the dimension of
the system to 4 by noting that both Aand t appear only
in a linear combination in the expression for the phase
of the forcing. Defining a new coordinate,
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FIG. 4. The geophysical trajectory (A, <p) of the forced system for
forcing amplitude of: top panel-A = 26 X 10-5

; lower panel-A
= 27 X 10 -5. The trajectory shown in the lower panel (the P case)
looks like free oscillation of the type shown in Fig. la with very close
values for the extreme latitudes since the forcing is weak.

peak at the forcing frequency and the rest ofthe energy
is spread over a wide frequency band.

An additional numerical tool that is often used to
prove the existence ofchaotic behavior in a dynamical
Hamiltonian system is the Poincare map. The Poincare
T map acts like a stroboscope that takes a snapshot of
the trajectory at a fixed value of the forcing's phase (in
our study we chose a forcing phase, 2k8 = 0). The
advantage of using the map is in that it reduces the
dimension ofthe space necessary for an entirely equiv­
alent description of the dynamics by 1. Thus, in our
system, which has a dimension 3 (see section 3), the
dimension of the map is only 2. In Fig. 7 we show that
the map of the P trajectory is a simple line, while the
map of the C case is a complex surface of no simple
geometry, the former being typical ofa periodic system
while the latter is typical of chaotic behavior.

All the indications shown in Figs. 4 to 7 point to the
P case being quasi-periodic and the C case being cha­
otic; that is, not only is it nonperiodic but a complete
description of the motion is impractical. This transition
from periodic to chaotic trajectories is brought about,
for these particular initial conditions, by a minute
change-1O-5 only-in the amplitude of the forcing

I
I I /

II

126-6

O+l--~~~~~~-t-~~~~~~__H

-0.Q1 +--.-''"''''''~~-~-+-~~~---'''''----,--~

0.01

(corresponding to a relative change of4% only). These
numerical results are merely a demonstration of the
chaotic behavior anticipated by the twist and KAM
theorems.

We should stress that these numerical results dem­
onstrate only the difference in the appearance of these
two cases for the particular length of integration used,
O( 10 2

) days, and when the integration is continued
for longer times the P case is expected to look more
like the C case. Thus, the difference between the two
cases should be interpreted as an indication ofthe sen­
sitivity of the system's evolution over any given finite
time interval to the parameter values and not ofa fun­
damental qualitative difference between the two cases.
In fact, had we carried out the integrations over a
shorter interval, say only up to one third of the length
used in Figs. 4-7, then the C time series would have
appeared to be as regular as the P series. For sufficiently
longer time, on the other hand, the P series can certainly
have the irregular appearance of the Cease.

0++------IJ))}[{{t--------tl

FIG. 5. Same as Fig. 4 but the projection onto the (<p, v) plane.
The forcing amplitude in both cases is small enough for the maximal
velocity to be nearly equal the initial speed. Yet, the slight change in
the value of the amplitude causes the oscillatory trajectories in the P
case (lower panel) to turn disordered in the C case (top panel) .

5. Chaotic dispersion and mixing

A straightforward implication ofthe chaotic behavior
ofa dynamical system is its extreme sensitivity to initial
conditions even for fixed values ofthe system's param­
eters. The results obtained for the dispersion of trajec­
tories emanating from very close initial conditions can
thus be compared with observations on the dispersion
of passive tracers such as constant pressure weather
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$ Forcing

One such atmospheric observation is the EOL Ex­
periment reported in Morel (1970) and Morel and
Larcheveque ( 1974), where high-altitude weather bal­
loons flying in the middle to high latitudes of the
Southern Hemisphere were tracked for about two
weeks. The 483 balloons were designed to fly at the
200-mb level and during the initial (5 days) phase of
the flight their rms separation increased exponentially
with an e-folding time of2.7 days. This dispersion has
been attributed to several factors, such as the horizontal
shear of the prevailing winds and high-frequency fluc­
tuations of the geopotential height. Similar dispersion

CD -80,-----------------------, rates and similarly heuristic reasoning (e.g., Rossby
e. waves) were also suggested for observations during the
~l/l -100 TWERL Experiment (reported by the TWERLE Team
c: 1977) by Er-El and Peskin ( 1981 ).
~ / Forcing Our theory on inertial trajectories turning chaotic
Q) -120 by tidal perturbations of the geopotential height pro-
~ vides an additional such mechanism. From the outset
0. it is clear that in the real atmosphere many other per-
e>-140 turbations exist that cause dispersion. Nevertheless, it
~ is instructive to focus on a single such perturbation,
w -160'--~~.---~~~~~~~~~~~~-' never before considered significant in this respect, and

o 0.04 0.08 0.12 0.16 calculate its contribution to the overall dispersion. In
Frequency calculating the dispersion caused by tidal perturbations
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FIG. 7. The (</>,v) Poincare T map for the P (lower panel) and C
(top panel) cases. The maps show the 3D dynamics in the 2D space
obtained for zero values of the forcing phase, Ii.

FIG. 6. The spectra of the P case (lower panel) and the Cease
(top panel). In the C case, no frequency other than the forcing one
stands out in the spectrum. By comparison, in the Pease subhar­
monies of the forcing frequency with the inertial one stand out in
the spectrum.

balloons in the atmosphere or floats in the ocean. The
latter, however, involves too sparse data for a quanti­
tative comparison with our model; therefore we com­
pare, in subsection 5a, our results only with atmo­
spheric observations on the dispersion ofconstant-level
weather balloons.

Another point that can be addressed on the basis of
our model is the meridional mixing associated with the
stretching and folding of tori in phase space or of ma­
terial surfaces in geophysical space in the course of
evolution of a chaotic dynamical system. This intense
mixing owes its origin entirely to the forcing, and purely
inertial dynamics will not result in any mixing what­
soever. In subsection 5b we quantify this mixing.

a. Dispersion ofweather balloons

Typically, atmospheric weather balloons (and the
oceanic floats) are released from the ground/ sea surface
in clusters designed to fly on a specified geopotential
surface. During their several-kilometer flight to the
designated surface the balloons/floats disperse hori­
zontally so that when the cluster arrives at the desired
geopotential height the balloons/floats are located
slightly apart from each other (and we ignore their
having somewhat different initial velocities, which adds
to the dispersion).
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at a rate of nearly 1.5 km day-I. The rapid dispersion
of the forced trajectories in our theory does not nec­
essarily imply that passive tracers on a geopotential
always disperse at that rate, but merely that they can
disperse at this high rate given the appropriate com­
bination of original location and initial velocity.

In order to better compare the model with obser­
vations, we applied it to initial conditions and tidal
forcing more pertinent to the EOL Experiment. The
latitude-dependent tidal forcing introduced into the
momentum equations in this case had the observed
form and values (Haurwitz 1965; Hsu and Hoskins
1989). The initial conditions were u(O) = 0.025, v(O)
= 0.00 (i.e., the free system's separatrix originates at
18.19°), while the initial longitudes and latitudes were
randomly chosen from an 80-km long box centered
around A = 0.00, cP = 18.33° (trajectories emanating
from both sides of the separatrix) in the first run and
A= 0.00, cP = 19.48° (all trajectories emanating north
of the separatrix) in the second. The dispersion curves
shown in Fig. 9 were obtained for the two runs and,
as expected, it is evident that when the trajectories em­
anate from both sides of the separatrix the dispersion
is faster, while in the other case the oscillatory over­
shooting is more pronounced. This oscillatory over­
shooting following an initial monotonic increase was

FIG. 9. Model dispersion encountered for trajectories randomly
chosen to emanate from an 80-km square centered at X(O) = 0.0
and at </>(0) = 0.32 rad-top panel; </>(0) = 0.34 rad-Iower panel.
The free-system separatrix originates at </> = 0.318 rad for the initial
velocity ofu(O) =0.025 and v(O) =0.00. Model results are compared
with EOLE observations on the dispersion of weather balloons at the
200-mb level. The oscillatory overshooting increase in the model's
dispersion was also encountered in the TWERL Experiment.

60
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FIG. 8. Root-mean-square separation of model trajectories obtained
for slightly (less than 10-4 rad, i.e., 0.6 km) different initial latitudes
and longitudes. Initial conditions are u(O) = 0.01, v(O) = 0.00, and
southwest corner of square of (X, </» initial values is at (0.00, 0.1993).
The results for the dispersion of the forced system (crosses) best fit
an exponential increase with an e-folding time of 1.0 day (shown by
the solid line), while those for the free system (open squares) best
fit a linear increase at a rate of 1.46 km day-l (r = 0.94). An ex­
ponential best fit of the free system has an e-folding time of 0.000
day. For periods other than that used here (60 nondimensional time
units) these rates will surely be very different for both the free and
the forced cases.

only, there is no implication that various causes ofdis­
persion in the atmosphere or the ocean simply add up
linearly. On the contrary, the system is highly nonlinear
and the exact way in which the various factors add up
is extremely complicated and beyond the scope of this
work.

In order to assess the sigI)ificance of tidal mechanism
in dispersing tracers flying along a geopotential surface,
we have calculated the rate of dispersal of pairs of tra­
jectories emanating from very close initial (spatial)
points. In all the trajectories calculated next, the initial
conditions for the meridional and zonal velocity com­
ponents and the values of the forcing's frequency and
wavenumber were the same as those used in the pre­
ceding section [i,e., u(O) = om, v(O) = 0.0, (J

= 0.5, and k = 1]. The amplitude ofthe pressure forcing
was fixed at the 26· 10-5 value used earlier to capture
the chaotic trajectories for these initial conditions. The
original latitudes and longitudes were randomly chosen
from a 10 -4 rad by 10 -4 rad (nearly 0.6 km by 0.6 km)
square extending northward and westward of the
11.421 ON (0.1993 rad N) latitude and 0.0° longitude
point used as the initial point in the preceding section.

Our results for the dispersion of a cluster of 30 in­
ertial pair trajectories forced by our simplified tidal
perturbation [Eq. (13)] are shown in Fig. 8. The rms
separation of the trajectories increases exponentially
during the initial period of nearly 5 days (60 nondi­
mensional time units) with an e-folding time of 1.0
day only. By comparison, the rms separation of the
free system starting from the exact same initial con­
ditions increases only linearly during that same period
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observed in the TWERL Experiment reported in Er­
El and Peskin (1981).

These encouraging comparisons should be taken as
mere indications that the suggested mechanism of tid­
ally forced inertial oscillations might not be negligible
in the real atmosphere. Many other forcings interact
nonlinearly, with the tidal one resulting in an extremely
complicated dispersion.

b. Chaotic mixing

The last geophysical aspect of the chaotic dynamics
discussed in sections 3 and 4 is the effect it has on the
mixing of material surfaces (or lines) in the atmosphere
(or the ocean). This connection between chaotic ad­
vection and fluid mixing has been established in many
other fluid dynamics and atmospheric problems (Ot­
tino 1990; Pierrehumbert 1991). The chaotic advection
of fluid parcels causes efficient stretching and folding
of material surfaces, with the net result being that an
initially smooth surface stretches throughout the space
occupied by the fluid. Another point, besides the rate
at which this mixing happens, is the degree of mixing,
that is, the fraction ofthe surface (line) that will actually
stretch during the course of the dynamic advection.

A partial answer to both questions is attempted in
Figs. 10 and 11, where we calculate the mixing of a
latitudinal material line made up of5760 particles ini­
tially spaced 1/ 16° apart (initial conditions: u (0)
= 0.01, v(O) = 0.00, and rj>(0) is set to 0.1993 rad; i.e.,
10-3 rad south of the separatrix at 0.2003 rad; forcing
amplitude, A, equals 26 X 10-5 ). The stretching and
folding of the material line is clearly seen in both (A,
rj> ), geophysical space-Fig. lO-and in (rj>, v), pro­
jection of the phase space-Fig. 11. The initial con­
ditions are a straight line in geophysical space and a
point in the (rj>, v) projection of the phase space. To
get the mixing rates in units of days, the nondimen­
sional times indicated on the figures have to be divided
by 411". By comparison, the free (inertial) mixing is zero
and the initial line merely oscillates northwards and
southwards between the latitude oforigin and its coun­
terpart in the other hemisphere despite the meridional
and zonal motion of the individual material points.

Two points should be mentioned. The first is that
the material line stretches monotonically and with time
an increasing number of initially close point pairs un­
dergo massive relative displacement. Various pairs of
material points that make up the initial line lose their
correlation at different times-some are already 1°
apart after 90 time units, while others stay highly cor­
related (i.e., closely packed) even after 180 units. The
second point is that even for the small amplitude used
here the material line already occupies the entire lati­
tude band (11.47°N to lIArS) at t = 60 (i.e., less
than 5 days) even before the pair correlation is signif­
icantly altered.

In general, the way we interpret both dispersion and
mixing as resulting from a chaotic stretching and fold­
ing of material surfaces is different from the more tra­
ditional way of resorting to eddy diffusivity (Kao 1974;
Lin 1972) or a modification of that concept (e.g., Ben­
net 1984). The newly advocated chaotic approach not
only provides a well-understood mechanism but, in
addition, enables a quantification of the mixing fluxes
associated with stretching and folding by several simple
numerical algorithms (Swanson and Ottino 1990).
There is a fundamental difference between the two
mixing processes: the evolution of a chaotic mixing
goes from the large scales to the smaller ones, precisely
opposite to that ofthe diffusive mixing (Pierrehumbert
1991; Ottino 1990), which results in a much faster
mixing by the former.

6. Concluding remarks

Using known techniques from the theory ofchaotic
mixing in dynamical systems, we were able to study a
highly idealized GFD problem relevant to atmospheric
Lagrangian dynamics. The crux of this study is that
even the small tidal signal in the upper troposphere
can, but not always will, cause very efficient mixing
and dispersion of an otherwise periodic flow. The ca­
veats and limitations associated with this idealized
model as well as its applicability to observations in the
earth's atmosphere are discussed and summarized in
the following subsections.

a. Discussion

Several points need to be addressed for a complete
exposition of the subject. The first point is that the
nondimensional amplitudes in our model have very
realistic values based on the mean density decreasing
with altitude while the geopotential deflection and the
pressure amplitude associated with the tidal pertur­
bation being nearly constant with altitude. This is also
the reason why the tidal temperature signal (which by
the perfect gas law is proportional to the pressure signal
divided by the density) is actually increasing with al­
titude in theories (Lindzen 1967) and numerical mod­
els (Zwiers and Hamilton 1986) consistent with wind
observations (Wallace and Tadd 1974). The tidal ve­
locity signal, on the other hand, is negligibly small in
the upper troposphere (less than 0.50 m S-l) and in
our model these small velocities appear as the very
small spread of the extrema of the ordinate in Figs. 5
and 7 (i.e., maximal v values) compared with the un­
perturbed value of 0.01.

This brings up the second point that needs clarifi­
cation. The reason why such small additional velocities
are able to induce such a rapid mixing and dispersion
is, ofcourse, the choice we made in locating our initial
conditions (and the subsequent flow) in such close
proximity to the separatrix of the free system. We an­
ticipate that the effect of any given tidal perturbation
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FIG. 10. The change oflocation (X, q,) with time of 5760 Lagrangian particles initially separated by 1/ 16 0 longitude in geophysical space.
The initial conditions are u(O) = 0.01, v(O) = 0.00, and q,(0) = 0.20 rad (10-3 rad south of the separatrix of Fig. Ib), while the forcing's
amplitude is A = 26 X 10-5 • The nondimensional times are (a) - 30, (b) -60, (c) -90, (d) -120, (e) -ISO, and (f) -180. The stretching
and folding mechanism are very clearly evident in the evolution of this material line.

is much less pronounced in other regions ofphase space
farther away from the separatrix. Therefore, the phase
space contains "islands" ofchaotic regimes embedded

in "oceans" of essentially periodic ones. The overall
density of those chaotic "islands" in phase space is
increasing with the tidal amplitude but there are bound
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The stretching and folding are evident here too.

to always exist "seas" of regular flow. Thus, without a
global mapping of the phase space and all possible
combinations of parameter values our results can not
be taken as representative, typical, or average; they
should be considered as extreme possibilities with un­
known probability of occurrence.

The third point is the effect that other forcings, many
of them more potent, that were neglected in our study
might have on the observed Lagrangian mixing and
dispersion in the atmosphere. As in other nonlinear
systems, the mixing and dispersion associated with
various forcings cannot simply be added together, and
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this interaction ofseveral forcings in a nonlinear system
offers a new and challenging problem far beyond the
scope of this paper. The inclusion of an additional
forcing of the inertial oscillation might reinforce the
tidal mixing and dispersion in some parts of the phase
space but eliminate it in others. Thus, our results on
the mixing by tidal perturbation should be considered
as only one piece in a very elaborate puzzle. Mecha­
nistically, however, similar effects are expected to occur
for other zonally traveling waves of different ampli­
tudes, wavenumbers, and frequencies. The background
very rapid mean flow ofthe westerly jet is just one such
wave, provided its temporal and/or spatial variations
are not ignored.

b. Summary

Hamiltonian formulations of both the inertial os­
cillation problem and its tidally forced counterpart en­
able the application of the KAM and twist theorems
to predict the existence of chaos in the latter. These
expectations were actually verified numerically for
small amplitude of the tidal forcing.

Very effective meridional mixing and point disper­
sion can be encountered when even a minute tidal
forcing perturbs the inertial flow. The rates of disper­
sion that can be attained by our model in certain re­
gions of the phase space and for particular values of
the parameters are of the same order as the observed
dispersion of weather balloons in the upper tropo­
sphere. There remain, however, possibly large regions
in phase space (and, of course, geographical space) in
which the dispersion is only slightly affected by the
tidal forcing and the flow is very close to the free one.

These findings should have a significant but quan­
titatively undetermined effect on the interpretation of
data pertaining to dispersion and mixing in the at­
mosphere (and the ocean) as well as on the construc­
tion ofeddy terms in GeMs. We were able to tune our
model to yield the observed rates of dispersion of
weather balloons in the upper troposphere even without
resorting to eddy diffusion terms.

Since no complete mapping of the chaotic versus
regular regions was attempted (asthere are four initial
conditions and three forcing parameters in the prob­
lem) it is difficult to estimate the globally averaged im­
pact of the tidal forcing on otherwise inertial motion
and the role it plays in the earth's atmosphere. Other
atmospheric forcings are expected to interact nonlin­
early with the tidal one to yield a very complicated and
impossible-to-qualify pattern of mixing and dispersion.
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