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ideally as cos?y. Hence N(¥,0) reaches its ideal maximum of
N(0,0) = N at ¢y = 0. In practice, however, N(0,0)< N, and
so T<1l. It is now easy to establish that the practical
counterpart to (7) is:

where ;N and ;N are measured with the same polarizer P as

that used to obtain T in (8) and with the identical disposi-
tion of W as that used for (8), i.e., either W is in the tube

and € = 0, or W is removed entirely.

To summarize, if a radiance tube is fitted with attach
ments to allow the determination of the observable radiance
vector (i1N,2N,3N,«N), then the associated reading N of the
meter without these accouterments 1is generally related to the
vector components by means of (9), with T defined as in (8).
In this way the radiant flux content N of N is established.

On the basis of relation (9) or its suitable generali-
zations, it 1s possible to use tabulated polarized radiance
data to compute all the usual unpolarized radiance, scalar
irradiance and vector irradiance quantities, etc. formulated
in the preceding sections, simply by replacing "'N'" everywhere
in those formulas by "(1N+2N)/T". In this sense then we un-
derstand polarized radiance data to be more general than un-
polarized radiance data, for it includes the latter as a
special case. |

2.11 Examples Illustrating the Radiometric Concepts

In this section, we conclude our discussion of geomet-
rical radiometry and, before going on to the discussion of
photometry, we consider some examples which may serve to il-
lustrate in some depth the various radiometric concepts and
the relations among them. The contents of this section are
intended to serve a multiple purpose. First of all we take
the opportunity of collecting together some worked examples
in geometrical radiometry which illustrate the theory devel-
oped above; secondly, various special topics of only limited
interest to hydrologic optics per se are considered on the
basis of their intrinsic radiometric merits; and finally the
section serves as a repository for certain special radiometric
results needed as a matter of course in the later developments
of this work.

Example 1: Radiance of the Sun and Moon

We 1llustrate the use of the empirical radiance defini-
tion (1) of Sec. 2.5 by using it to compute the empirical
field radiances of the sun and moon. Now in (1) of Sec. 2.5,
S is the area collecting the flux P(S,D) funneling down the
set D of directions from either the sun or the moon. Hence
S may be chosen at will and we fix it in this example as a
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432.000 miles

approximately

93,000,000 miles '/[ ooradion

FIG. 2.28 Approximate éngular subtense of the sun at
the earth. | |

square meter of plane surface just outside the atmosphere and
whose normal when extended goes through the center of the sun
or moon. For the purpose of computing N(S,D) we choose D to
be the solid conical set of directions from any point on the
collecting surface to and within the 1limb of the sun or moon.
See Fig. 2.28. We consider first the case of the sun.

The sun is a nearly spherical body with diameter nearly
864,000 miles and at a distance of about 93,000,000 miles from

the earth. It follows that the half-angle subtense 0 of the
sun at the earth's surface is very nearly:

© = 4.32x10%/9.3x107

= 4.65 x10" % radians
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- Hence, by (12) of Sec. 2.5, the solid angle subtense Q(D) of
the sun is:

Q(D) = wx(4.65)2x10"*
= 6.,78x10"° steradians

Now Table 1 of Sec. 2.4 gives an order of magnitude estimate
of 10® watts/m? of the irradiance P(S,D)/A(S) produced by the
sun's radiation over the whole spectrum and which is incident
through D on a surface S normal to the sun's rays. A more
accurate estimate of this irradiance produced outside the at-
mosphere is 1396 watts/m®; see Ref. [128]. A still more mean-
ingful alternate estimate of H(S,D) can be made for the inter-
val of wavelengths in the visible spectrum (approximately 400
to 700 millimicrons). In this case H(S,D) -estimates vary
from 542 watts/m? to 555 watts/m® (p. 31, Ref. [185]), see al-
so Ref. [128]). Using the first estlmate we obtain*:

N(S,D) = H(S,D)/R(D)
= 5,42 x10%/6.78x 10"%
Errata - 8 x10% watts/m? x steradian (1)

This radiance is the overall average radiance of the sun's.
disk as seen just outside the atmosphere and over the wave-
lengths of the visible spectrum. (Hence the set F of fre-
quencies of Sec. 2 3 now conslsts of all frequencies from ap-
proximately 4 x 10'* to 7x10'%/sec.)

A good rule of thumb for remembering the angular sub-
tense of the sun is that its entire disk subtends an angle of
about 1/100 of a radian. The more exact estimate is given
above. In other words the sun subtends about the same angle
as a disk of a centimeter diameter at a meter's distance.

We turn now to the case of the moon. The geometric
and radiometric principles are the same as in the case of the
sun., And again, the crucial point of the calculation rests in
the estimate of H(S,D). For this case we assume that the ir-
radiance H(S,D) of the sun is on the order of 7 x10° times
that of the full moon over the visible spectrum. (See, e.g.,
Fig. 1.12 and Table 2 of Sec. 2.12.) In other words we assume
that for the case of the moon, H(S,D) = 7.75x 10" watts/m?,
Estimates of this ratio vary considerably. The one just chos-
en is an order of magnitude estimate only for the purposes of
the present example.

- The moon is a nearly spherical body with diameter near-
ly 2100 miles and at a distance of about 240,000 miles. It
follows that the half -angle subtense 6 of the moon at the
earth's surface is very nearly:

6 = (1.05x10%)/(2.4x10%)

= 4,38 x10~? radians.

*At sea level under a clean dry atmosphere, H(S,D) on the or-
der of 472 watts/m®. See also Table 2, Sec. 1l.2.
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Hence, by (12) of Sec. 2.5, the solid angle subtense Q(D) of
the moon 1is:

Q(D) = w(4.38)2x10"°
= 6.00 x10°° steradians .
Using the adopted estimate we obtain:
N(S,D) = H(S,D)/Q(D)
= 7.75%x10°%/6.00 x 10”8
= 13 watts/m?x steradian (2)

This may be used as an overall average radiance of the full
moon's disk as seen at sea level on a clear night and over
the wavelengths of the visible spectrum. An extensive litera-
ture exists with reference to lunar photometry and radiometry.
See, e.g., [8].

In conclusion we note that the rule of thumb adopted
for the angular size of the sun as seen from earth evidently
also holds for the moon. For more detailed radiometric infor-
mation on the radiant energy output of the sun, the reader may
consult, e.g., Sec. 1.1 and Refs. [185] and [128]. Detailed

discussion is made of the estimates of the solar irradiances
in the latter references.

Example 2: Radiant Intensity of the Sun and Moon

The present example illustrates the use of the concept
of radiant intensity as defined in (1) of Sec. 2.9.

We begin by computing the radiant intensity of the
hemisphere S of the sun visible from the earth. Let § be the
unit vector pointing from the center of the sun to the center
of the earth. Then the radiant intensity J(5,&) of S in the
direction & is given by (14) of Sec. 2.9, where N(x,£) 1s the
surface radiance of the sun in the direction £ at a point X
on S. In Example 1 we estimated the field radiance of S for
radiant flux in the wavelength interval from 400 to 700 milli-
microns. Now, by the radiance invariance law (2) of Sec. 2.6,
the estimate of Example 1 may be taken as the surface radiance
of the sun over S, the radiance N(x,f) being sensibly indepen-
dent of x on S. Then if "N'" denotes this fixed surface radi-
ance, (14) of Sec. 2.9 yields:

J(S,8) = N[ £€'(x) dAx)
S

= NA(S')

where A(S') is the area of the projection S' of S on a plane
perpendicular to £. The area A(S') is readily determinable.
From the data in Example 1, we have: ~
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A(S') = 7(4.32)% x10'%(miles)?
= 7(4.32)% x (1.6)2 x10%x 10?? (meters)?
= 1.5%x10!'% (meters)?

Using this estimate of A(S') and the estimate of N(S,D)
for the sun given in Example 1, we have:

J(S,E). = 8§ x10%x 1.5 x10'®
= 1.2><1025 watts/steradian (3)

as the radiant intensity of a hemisphere of the sun facing
the earth and over the visible spectrum.

The sun is radiometrically a point source (Sec. 2.9)
with respect to points on the earth and may thus be imagined
to be compressed to its center x. Furthermore, we may evi-
dently assume that J(S,£) is independent of &. Hence (17) of
Sec. 2.9 1s applicable, and we can estimate the total radiant
flux output of the sun over the visible spectrum to be:

P(x) = 47J(S,¢&)

= 1.5 x102% watts.

Turning now to the case of the moon, we have a slightly
more interesting geometrical situation arising from the pos-
sible phases of the moon. Fig. 2.29 depicts this situation.
If "S'" now denotes the projection of a lunar hemisphere on a
plane normal to the d1rect1on £, then we have by means of (14)

of Sec. 2.9:
J(S,E) = Hiz(i'-l (1 + cos 6)

where N 1s the surface radiance of the lighted hemisphere of
the moon, as estimated®*, e.g., in Example 1, and 6 is the
phase angle of the moon as described in Fig. 2.29. Thus at
full moon, 8 = 0 and J(S,E) is in particular NA(S). To esti-
mate this product we first compute:

A(S') = w(1.05)% x10® (miles)?
= 7(1.05)%2 x (1.6)%2 x 10® x10° (meters)?

= 8,9%x10!'%2 (meters)? .

*The precise analysis of the gradation of the radiance distri-
bution over the sunlit hemisphere of the moon is a delicate
problem. The estimate here is deliberately kept simple in
order to first emphasize the radiometric geometry essentials.
A source reference on radiometry of the moon and planets is

(8].



100 RADIOMETRY AND PHOTOMETRY VOL. II

Sun's rays

SRR TR

FIG., 2.29 Simple phase diagram for the earth-moon system

Using 13 watts/(m? x steradian) for N (justified by means of
the radiance invariance law) we have:

NA(S') = 1.3 x10x8,9x10'?=1,2x10'* watts/steradian

as the radiant intensity of the surface of the full moon over
the visible spectrum. Hence for any phase 6, the correspond-
ing radiant intensity of the lighted surface S of the moon in

direction § (Fig. 2.29) is:
J(S,E) = 0.6 x10'(1 + cos 6) watts/steradian (4)

We conclude this example by computing the total radiant
flux content of the reflected radiant flux from the moon, over
the visible spectrum. Using the radiant intensity estimate
just made, and assuming N to be independent of direction S,
and the moon to be a point source at its center x as seen from
the earth, we then integrate J(x,%) over all directions to ob-
tain the requisite radiant flux, according to (15) of Sec. 2.9,
Thus if "x'" denotes the center of the moon and D' is now E,
Equation (15) of Sec. 2.9 becomes:

P(x) = [ J0x,8) an(e)

2% m . '
= §é§§ll J I (14cos®) sin 6 do d¢ = 2ZaNA(S)
¢=0 ©6=0
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To perform this integration, a ''lunar based" polar coordinate
system was used with 0 measured as shown in Fig. 2.29 and ¢
measured from 0 to 27 around the axis a -a in a plane perpen-
dicular to the page. We might have expected this relation on
intuitive grounds: the radiant flux output of an entire
sphere lighted uniformly all over, should be just twice that
given off by one hemisphere. Thus P(x) is 27 times NA(S) in-
stead of 4 times NA(S'). Hence:

P(x) = 2wx1,2x 10!
= 7,.5x10'" watts

is the radiant flux output of the moon over the visible spec-
trum. '

Example 3: Radiant Flux Incident on Portions of the Earth

In this example, Equations (7) of Sec. 2.4 and (8) of
Sec. 2.5 will be illustrated. Now, from Example 1, we find
that at each point x just outside the atmosphere of the earth
we have H(x,D,t,F) = 542 watts/m? funneling down a narrow
cone D from the disc of the sun and with wavelengths over the
visible spectrum F. Suppose S is some portion of the earth's
surface accessible to the sun's rays, as in Fig. 2.30. To
compute ¢(S,D,t,F), we establish a polar coordinate system as
depicted in the figure. We first deduce that:

T
§

Subsolar
Hemisphere

FIG, 2.30 Geometry for solar irradiation calculations
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H(x,D,t,F) = [ H(x,D,t,v) d1(v) (5)
*

which follows from (5) of Sec. 2.4 by means of a theorem of
elementary calculus. Then by (7) of Sec. 2.4 we have:

¢$(S,D,t,F) = I H(x,D,t,F) dA{x)
S

Next, from (8) of Sec. 2.5:

H(x,D,t,F) = | N(x,6',¢,F)E-E" da(e")
D .

where we now explicitly use the fact that wavelengths are
over the visible spectrum F. Since D is small and the sun's
field radiance is uniform of magnitude N over D we can esti-
mate H(x,D,t,F) fairly accurately by means of the equality:

H(x,D,t,F) = Ng'-£(x)Q(D) ,

where N and Q(D) were estimated for the sun in Example 1.
Furthermore, £(x) is the unit inward normal to the earth's
surface at x, and &' is the direction from the center of the
sun to the center of the earth. Using this representation of
H(x,P,t,F) in the preceding integral for ¢(S,D,t,F), we ar-
rive at the expression:

®(S,D,t,F) = NQ(D) j £1E(x) dA(x)
S
= NA(S')Q(D) (6)

where A(S') is the area of the projection S' of S on a plane
normal to the direction £' of the sun's rays.

As a specific example, we use N and Q(D) as in Example
1, and let S be the sub solar hemisphere of the earth. Then:

A(S') = 1(4)2 x10°% (miles)?
= 1(4)% x (1.6)2x 10€x 10¢
= 1,.3x10'" (meters)?
Hence:
 ®(S,D,t,F) = 8x10%x 1.3 x10*x6.78x 10"

= 7x10'% watts (7)
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over the visible spectrum. The corresponding radiant flux
¢(S,D,t,F) incident on any proper portion S; of the entire
subsolar hemisphere is simply obtained by finding A(S:')/A(S'),
where now S,' is the projection of S, on a Elane normal to

the sun's rays, and then multiplying 7 x10'® by this fraction;
or alternatively, 542 watts/m? by A(S;'). Of course these
estimates are somewhat crude, and serve only to illustrate

the correct mathematical use of the geometric radiometry for-
mulas deduced above. The present estimate of &(S,D,t,F) omits,
e.g., the effect of the atmosphere which at each point subtly
attenuates and augments the solar influx by permitting absorp-
tion, scattering, and interreflections with the earth below.

Example 4: Irradiance Distance-Law for Spheres

In this and several of the examples below we shall ex-

plore some interesting consequences of the irradiance integral
(8) of Sec. 2.5.

We begin the investigations by considering a spherical
surface S of radius a with uniform radiance distribution of
magnitude N at each point. Suppose that S is viewed at a
point x a distance r from the center y of S. The lines of
sight lie in a vacuum and the background radiance of S is
zero. See Fig. 2.31 (a). We ask: what is the irradiance
H(x,£) at point x? Here & 1is the direction from y to x.

Equation (8) of Sec. 2.5 is readily applied to the
present situation. For the present case we may use the radi-
ance 1invariance law to say that N(x,£') = N for every &' in
- the conical set D of directions subtended by S at x. Hence
(8) of Sec. 2.5 becomes:

H(x,£) = N[ £-£' dR(E')
D

27T ¢6
NI I cos 6' sin 8' do' d¢'
0 0

0
= ZHNI cos 8' sin 6' de?
0

= N sin? 9

= tN(a/r)? .
If we write, ad hoe,

”Hr” for H(x,&) ,

then we have found that:
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(a)

FIG. 2.31 Deriving the Irradiance Distance-Law for
spheres and disks

H = AN/:I':2 ’ (8)

where we have written:

At for Tal .

i.e., A is the area of a great circle of S; alternatively A
is the area of projection of S on a plane perpendicular to E£.
From (14) of Sec. 2.9 applied to the present case, we may

write:
, - 2 |
H_ J/r (9)

where we have written:

"Jv  for AN .

It is to be particularly noted that H, varies prectisely
as the inverse square of the distance r, where as<r. Ifr =a,

then:

Ha =q N . . | (10)
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Example 5: Irradiance Distance-Law for Circular
Disks; Criterion for a Point Source

Equation (8) of Sec. 2.5 will now be used to derive
the law governing the irradiance produced by a circular disk
S of uniform radiance. See Fig. 2.31 (b). In that figure is
depicted a circular disk of radius a and of uniform surface
radiance N at each point. The disk is viewed at point x on
the perpendicular through the center y of S at a distance r
from the center. The set D of the lines of sight from x to S
lies in a vacuum and the background radiance of S is zero.

What is the radiance H(x,£) at point x? Here £ is the direc-
tion from y to x.

Equation (8) of Sec. 2.5 can be applied to the present
situation, as in the case of Example 4.  Thus, (8) of Sec.
2.5 becomes:

H(x,£) = N[ £-£' d(E')
D

2w (O
= NI J cos 8' sin 6' de' d¢°
0 0

0 |
o ZnNI cos ' sin 6' de!
0

_.= "N sin?e@
= N a?/(a?+r?) ‘
If we write, ad hoe:
"H.'"  for H(x,§)
and further, we write: '

"A"  for  wal

and: |
nJ for AN .

then we have found that:

H' = AN/(a*¥r’) ' (11)
orY . |
H ' = J/(a?+r?) (12)
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From this we find first of all that Hy', unlike Hy of Example
4, does not vary precisely as the inverse square of r, where
r=0. However, in the special case of r = 0, we have:

Ho' = N . (13)

Further, in the other extreme, i.e., when r is very much lar-
ger than a, Hy' varies very nearly as the inverse square of r.

By examining more closely the difference between Hy
and Hy', we arrive at the basis for the definition of a point
source given in Sec. 2.9. Suppose then we compare Hyr and Hy'
which are, respectively, the irradiances produced by a sphere
of radius a and a circular disk of radius a both of uniform
radiance N. Toward this end we form the difference:

' 1 1
and then form the relative difference:

az,,,rz

- = nl/yr2
- 1 a</r

(Hy - H)/H' = -

This relative-difference expression is the basis for
the following statements: The relative difference between
the irradiance Hy and Hy' is less than 1% whenever r >10a.
More generally: the irradiance produced by a finite object of
uni form radiance decreases a8 the inverse square of the die-
tance from that objeet, within an error of 1 percent, vhen-
ever the distance from the object i8 more than 10 times great-
er than the object's largest transverse linear dimension.
This alternate statement follows readily from the preceding
analysis. Some further study is made in Example 6 of related
questions. Observe that the associated solid angle of the
circular cone of half angle 1/10 radian is very nearly
7(1/10)% = n/100=1/30 steradian, in which lies the origin of
the solid angle number used in the point source criterion of
Sec. 2.9.

Example 6: Irradiance Distance-Law for General Surfaces

We devote this example to the elucidation of the com-
mon denominator of Examples 4 and 5; the net result being the
formula for the irradiance distance-law for a general surface
S of uniform radiance N viewed, as in Fig. 2.32, from an ex-
ternal vantage point x along a set of paths defined by a col-
lection D of directions, each path of which lies in a vacuum,

The derivation of the required H(x,£) begins, as in
Examples 4 and 5, with (8) of Sec. 2.5, but now proceeds as
follows:
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transverse directions

€ longitudinal direction (normal to P)

FIG, 2.32 Der1V1ng the Irradiance Distance-Law for gen-
eral surfaces

E+€' aq(g’)
D

o
IZﬂ IG(¢)

H(x,£) =

a
b

cos O0' sin ©6' do' dé¢

le
-

JZR Je(¢)d(sin 6') d¢

le
-

A ]
I s1n‘6(¢) d¢
Let us write, ad hoe:

"H" | for H(x .E) | .

With this, we have attained the required result:

(14)
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This formula for H reduces to the expressions for Hy and Hy'
when the function 6(¢) is suitably prescribed for all ¢ from
0 to 2n. In particular 6 is a constant function in the pre-
ceding two cases. More importantly, the reader should observe
the remarkable fact that the irradiance H depends only on the
integral over the outline C of S, as may be seen by studying
the central projection of S onto the background plane P (of
Fig. 2.32) which is perpendicular to §&. Hence it is literally
immaterial to H what the longitudinal structure of S is as |
regards the computation of H at a fixed point x, as long as S
has the given outline C on P, and also has uniform radiance N.
Of course the shape of S is important when it 1is decided to
let x vary, and indeed the distance-law for H(x,£&) depends
critically on the longitudinal shape of S and in this context
takes its most general form displayed in the above equation
for H. S

An alternate form of the distance-law for irradiance
" is obtained when we write: |

"Q for J E' dR(E')
D

When the size Q@ of D is small--e.g., when S is a point source
at x, then we have, very nearly: |

Hence:

Q = EQ
and in this special case (15) yields:

H = NQ . (16)

If A is the projected area of S then in this case we
have very nearly:

Q = A/r?

where r is the distance from x to S. In this way we return to
the inverse square law for H in the limit of large r (or small
A). |

Still one more form for H, i.e., H(x,£), 1s obtainable

using the concept of vector irradiance introduced in Sec.Z.8.

Thus we have |

where in the present case we have written:
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"H'"  for I Ng' d(g')
| D

An important and useful special case of (14) occurs when 6(¢)
is independent of ¢. This happens when the surface S is a
surface of revolution about the direction . (See Fig. 2.32).
In such a case (14) becomes:

In particular, if S is an infinite plane, then at all dis-

tances r from S, S subtends a half angle & = w/2, Hence
H = 7N for all r in such a case.

As a corollary we have:

Example 7: Irradiance via Line Integrals

The present example is designed to let us investigate
in greater depth the irradiance integral (14) of Example 6
which showed that the irradiance produced at a fixed point x
by an arbitrary surface of uniform radiance depended only on
the angular outline of S as seen at the point x. Our goal in
this example will be to cast equation (1l4) into explicit 1line
integral form over the curve C which defines the outline of S.

Figure 2.33 (a) is a reconstruction of Figure 2.32
with surface S omitted. What is left is the geometric essence
of the irradiance calculations done in Example 6. Specifi-
cally, we have retained the central projection of S on plane
P through point x. The boundary C of this projection of S on
F is a closed curve characterized by means of the function
- 8(+) which assigns to each ¢, 0‘=¢‘=2n an angle 6(¢), which
determines point y on C as shown in Fig. 2.33. We denote by
""0" the foot of the perpendicular dropped on P from x, Fur-
ther, "r(¢)" will denote the distance from the fixed point Xx
to the variable point y on C.

With these preliminaries established, we can write (14)
in the form:

%
H = EI " Mﬂ tr(¢) sin 9(¢) d¢
ey r(e)

The integral was rewritten this way to make use of the fact
that:

r(¢) sin 6(¢) d¢
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(b)

(c)

FIG., 2.33 Setting for calculating irradiances via line
integrals. |
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is an element of length da along the direction of the unit
vector a in P, normal to Oy, and at point y on C, as shown in
Fig. 2.33 (b), which is a plan view of P. The element of
length da is related to an element of arc length ds along C
at y by a projection, and by definition of ds:

da = cos a ds

where a is the angle between a and the unit tangent vector s
to C at y; hence:

r(¢) sin 0(¢) d¢ = da = a+s ds .

The preceding integral then may be written:

H = EI sin 0(¢ a*s ds .

el r(e)

Next we observe, by means of Fig. 2.33, that:
E'x § = a sin 6(¢)

where £ is the unit outward normal to P (outward relatlve to
£', i.e., such that §' *£>0). Hence:

HaN (E'x E)e-8 ds
. 2IC r(¢)

The triplé box product of vectors in the integrand may be re-
arranged so that we obtain for C (or C'!) in Fig. 2.32:

(19)

(20)

Equation (20) d1splays a line integral representation of Q,
and (19) displays the desired line integral representation of
H.

As an 1llustration of (20), let C' be the boundary of
a spherical lune L of angular opening 6, on a sphere of radius
a, as shown in Fig. 2.33 (¢). Thus L is now a specific in- |
stance of the general surface S of Fig. 2.32, and C may actu-
ally be taken as any outline of S (as, e.g., C' in Fig. 2.32).
Note the present placement of point x and the direction E£.
The contribution to Q over the upper arc A of C is clearly:
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1/ 8%X8 45 = X n(o)
2IA r(4) 2

where n(8) is the unit normal to the plane containing arc A,
and directed such that: -

n(d) = sx¢g' ’

when A is traversed as shown in the figure. Further, r(¢) = a
for all ¢. The contribution to & over the arc B of C is
clearly:

_]:.I'xg' dS‘EE
g T(9) :

The integrals over A and B were evaluated immediately by not-
ing that over A, sxE' is a fixed unit vector, namely n(e),;
and over B, sx £' is the unit vector £, the unit inward nor-
mal to the plane of arc B. The arc lengths of A and B are
each an. Hence for the present case:

Q=2 (E+n(0) .

Observe that if 8 = 0, then, n(6) = -, and @ = 0. If 6 = 7w,
then n(w) = £, and & = nf. If L is of uniform radiance N,
then, by (15) or (19):

H=NEQ = %;-(1 + Eon(8)) .

Example 8: Solid Angle Subtense of Surfaces

The integral form of the solid angle subtense (D) of
a set D of directions, as given in (10) of Sec. 2.5, will now
be recast into a form which arises when the solid angle sub-
tense of specific surfaces (either real or hypothetical) are
under consideration. Thus, consider the surface S depicted
in Fig. 2.34 (a) where S is shown viewed from an external van-
tage point x. Let "D(S,x)" denote the set of all directions
from points of S to x. Our present goal is to derive the ex-
pression for Q(D(S,x)) (or "Q(S,x)" for short) in the form of
-8 surface integral over OS. |

We begin by letting "D" in (10) of Sec. 2.5 be re-
placed by "D(S,x)". The result is:

Q(S,x) = I sin 6 dé d¢
D(S,x)
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section through
sphere determined

by points x,0,y.

r( Y,x) \/

FIG. 2.34 Calculating the solid angle subtense of
'"tangible" surfaces. |
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The conventions for measuring 6 and ¢ are summarized in Fig.
2.34 (a). In particular the details of the integration over
a part of S about a point y on S are depicted in part (b) of
Fig. 2.34. Points y and x determine a direction §(y,x), as
shown. It may be seen from part (b) of Fig. 2.34, that the
relation between a small patch of S of area A(y) about y is
related to its projection's area A' on a plane perpendicular
to £(y,x) by the formula:

A'(y) = A(y)n(y)*&(y,x) (=0, by choice of 5)

where n(y) is the unit outward normal to S at y. Hence the
'solid angle subtense of the patch of S about y is:

A'(y) _n(y)-&e(y,x)A(Y)
r?(y,x) r®(y,x)

The entire solid angle subtense of S at x is obtained by add-
ing up all these solid angle subtenses of the component patches
comprising S:

(21)

It is of interest to observe that the set function Q(-+,x) 1is
non-negative valued, S-additive and S-continuous (compare
these properties with those of the radiometric concepts in
Sec. 2.3). Thus for every x and pair S,, S:; surfaces with
disjoint sets D(x,S;) and D(S2,x) we have:

Q(S1,x) + Q(S2,x) = Q(S51V S2,x)

which is the S-additivity property; further:
If A(S) = 0, then 2(S,x) = 0 .

In other words, the latter statement, the S-continuity prop-
erty for 2(+,x), asserts that #(S,x) >0 only if A(S)> 0.* It
follows from these additivity and continuity properties of
and the calculus that the ratio 2(S,x)/A(S) has a limit as
S+{y}, where y is some point of S. Indeed:

l1im 'h(S,x)/A(S) - B & (Y ,X .
S+{y} r?(y,x)

*The converse clearly does not hold; thus, give a counterex-
ample for: If Q(S,x) = 0, then A(S) = 0.
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Writing "dQ(y,x)/dA(y)'" for the limit operation above, we can
then state that:

dl(y,x) _ n(y)&(y,x) (22)
dA(y) r®(y,x)

Equation (22) yields, for a given point x, the value
of the general area derivative of the solid angle function
8(*,x) at point y of an arbitrary surface, where n(y) is the
unit outward normal to the surface at y, r(y,x) is the dis-
tance from x to y and §(y,x) is the unit vector from y to x
and such that the dot product of §(y,x} and n(y) 1s non-nega-
tive (this fixes the sense of 'outward" for n(y)). As an in-
teresting exercise the reader should show that if x and y in
(22) are on a spherical surface S of diameter d, (see Fig.
2.34 (¢c)) then:

dfl X 1

dA(y) (n(y) *E(y,x)]d?

The representation of Q(S,x) in (21) is of particular
value when the surface S is relatively concrete and has a
specific analytic description, (parts of spheres, walls, and
relatively tangible surfaces in general), whereas (10) of Sec.
2.5 is of greatest use when no surface S is specifiable and
when instead a set D of directions per se is to be assigned a
solid angle value. We close this example with the observation
that all of Euclid's Optics [36] can be placed on a solid mod-
‘ern mathematical foundation using (21) and its various logical
corollaries. (The translation of the first theorem in Euclid's
Optics is given as a motto at the beginning of Volume I of
this work. The theorem thus has several levels of meaning.)

Example 9: Irradiance via Surface Integrals

We return now to the integral for irradiance given in
(8) of Sec. 2.5 and cast it into that form which 1is most use-
ful when one must take into specific account the surface ra-
diance of some surface S producing an irradiance H(x,£) at
some point x outside of S. The geometric setting for the
present example is depicted by Fig. 2.34 (a), where at each
point y of the surface S, there is given a surface radiance
distribution N(y,*). We assume that all directions in D(S,x)
lie in & vacuum, that D(S,x) is less than a hemisphere, and
that the irradiance contributions to H{(x,£) come only from S
so that N(x,£') in (8) of Sec. 2.5 is zero for &' outside of
D(S,x). Hence (8) of Sec. 2.5 may be written:

HEx, ) = | N(x,E')E-E' dQ(E")
D(S,x)

In the present study the dummy variable "&'" is chosen to be
the name of the variable direction &(y,X) used in Example 8.
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Then, in view of the radiance invariance law (2) of Sec. 2.6:

N(y,&') = N(x,§') ,

it is clear that H(x,&) is also represented by the integral:

Hx,8) = [ NO,EDEE" darux) .
S

This may be written in the form:

H(x,E) = [ N(y,£')E-£' 920X gacy)
| S dA(y) -

which, by (22) is reducible to:

Hx,8) = [ NGy, ey x)) SE0LRBOVEDLE) gapy) | (23)
S | - Ty,x)

Equation (23) is the desired surface integral representation
of H(x,£). Suppose we write:

"H(S,x)" for J N(y,E(y,x)) E—(M dA(y)
S r®(y,x)

This is the surface radiance counterpart to the field radiance
definition of H(x) in (2) of Sec. 2.8. Then (23) becomes:

H(x,£) = E<H(S,x) . e

Equation (24) suggests that the condition imposed at the out-
set, namely that D(S,x) be less than a hemisphere, can evi-
dently be relaxed. In that event (24) is generalizable to:

H(x,E) = E+H(S,x) . (25)

the proof of which is left to the reader.

If we assume that the point x is inside a closed sur-
face S, then (23) still holds but with n(y) now being inter-
preted, if desired, as an inward unit normal from y to X. In
that case, H(S,x) of (24) formally reduces to H(x) in (2) of
Sec. 2.8. These observations suggest that the true field ra-
diance counterpart to (25) is:

H(x,&) = E°H(x,D) _ (26)
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where we have written:

"H(x,D)" for [ E'N(x,&') da(g') (27)
D

The connection between H(x,D) and H(x) of Sec. 2.8 is clearly
that: |

H(x) = H(x,E) . (28)

An interesting special case of (23) arises when S is
part of the inside of a spherical surface. In Fig. 2.34 (a)
imagine x and y to be on the same spherical surface of diame-
ter d, and now § in (23) is to be the unit outward normal to
S at x, i.e., £€ = -n(x). Under such conditions (see Fig.
2.34 (c)) it follows that: |

E<E(y,X) = n(y)*E(Y,x)
and
r(y,x) = dn(y)-&(y,x) .

Hence if N(y,t(y,x)) = N, over S, (23) yields:

i(x, ) = 222k

for every x on the sphere, and arbitrary subset S of the
sphere.

Example 10: Radiant Flux Calculations

The irradiance integral (23) may be applied to the fol-
lowing radiometric setting, depicted in Fig. 2.35, which arises
frequently in practice. A surface Y has a prescribed surface
radiance N(y,*) at each point y. Surface X, which is disjoint
from Y, receives an amount P(Y,X) of radiant flux from Y. 1It
1s required to express the amount P(Y,X) in terms of N(y,°*)
and the areas of X and Y, assuming the space between X and Y
is a vacuum. Now from (23) we have for each x and § an ex-
pression for the irradiance H(x,&), so that we can immediately
compute P(Y,X) in terms of H(x,n{x)), using (6) of Sec. 2.4
(in which D is now E(n(x)) ): |

P(Y,X) = J H(x,n(x)) dA(x) ,
) B ¢
where n(x) is the unit inward normal to X at x. Hence

P(Y,X) = [ I N(y,&(y,x)) BEX)8(y,X)&( i).n ) dA(y) dA(x
X Y ' r°(y,x)
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g

X n(x)

FIG. 2.35 A radiant flux calculation for two disjoint
surfaces. -

If we write

n(x)-¢ xX)& X)*n

"K(y,x)" for
r(y,x)

Then, more succinctly,

PLX) = | [ NOLEGLRIRGLX) dAD) dAG) (29)

X Y

Observe that K(+,+) is a symmetric function, i.e., for every
"X and y, '

K(x,y) = K(y,x) .

If the areas A(X) and A(Y) of X and Y are small--say when each
is a point source with respect to any point on the other--then
(29) yields the useful approximate relation:

P(Y,X) = N(Y,X) K(y,x) A(Y) A(X) (30)

where x and y are some fixed points of X and Y, respectively
and "N(Y,X)" denotes the surface radiance of Y in the directim
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E(y,x) of X. Writing, ad hoe:

H(Y,X) for P(Y,X)/A(X)

and |
"J(Y,X)" for N(Y,X)A(Y) ,

Equation (30) becomes:
H(Y,X) = J(Y,X) K(y,x) |, (31)

which is a highly compact formulation of several well-known
radiometric laws, with built-in cosine laws for both irradi-
ance and radiant intensity, and furthermore, with built-in in-

verse square law for irradiance and djrect square law for ra-

diant intensity.,
.

.t

Bxample 11: Intensity Area-law for %eneral Surfaces

: This example serves to illustrate some further facets
in the duality between irradiance and radiant intensity devel-
oped in various earlier sections throughout this chapter. In
particular we now direct attention to the intensity counter-
parts of the relations (15)-(18) in Example 6 of this section.

Thus, starting with (22) of Sec. 2.9 as a conceptual
base, let us write:

"A' for I £'(x) dA(x) . .
S

Then if a surface S has a constant uniform surface radiance N
over the part S(£) defined by a direction & (Sec. 2.9) then

which is the exact intensity-counterpart to (15), and where
we have written:

nJ for J(S,%) .

When the shape of § is nearly planar, e.g., when £'(X) varies
within a solid angle 1/30 steradians over S, then we have,

very nearly:
A = EA

where A is the area of S. In this special case (32) yields
the present counterpart to (16):

J = NA . (33)

If S is a point source with fespect to a point x, a distance
r from S, then the apparent area of :another point source S'
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similar in shape to S is related to that of S by the equation:
A(S') = C1°

where C is a constant and 1 is some given linear dimension of
S. In this way we return to the direct square law for J in
the limit of large r (or small A). That is, using this esti-
mate of A(S') in (33), we obtain the present counterpart to
the inverse square estimate of irradiance; and as it stands
by itself, the preceding equation is the dual to the relation
Q = A/r? used to estimate solid angle subtenses of point
sources.

Still one more form for J, i.e., J(S,E), is obtainable
using the concept of vector area introduced in Sec. 2.9. Thus

we have: |

which is the dual to (17), and where in the present case we
have written: ,

"J"  for NI £'(x) dA(x) .
S

which is the dual to (18).

As a corollary we have:

Example 12: On the Possibility of Inverse nth Power
Irradiance Laws

The cumulative evidence of the preceding examples, be-
ginning with Example 4, shows the predominant role played 1n
radiometry by the inverse square law for irradiance. The law
is evident in various guises in formulas (8) and (9) for
spherical surfaces, in the point-source criterion of Example
5, in the discussion of Example 6, in (21), (22), (29), and
finally, its dual (the direct square law for radiant intensity)
is evident in the discussions of Example 11. All of this evi-
dence appears to lead inexorably to the generalization that
the distance fall-off of irradiance produced by flux from all
real surfaces of uniform radiance must eventually (i.e., for
large enough distance r) assume the inverse-square behavior
with r. This guess is essentially correct. However, the re-
sult of Example 5 shows that for intermediate distances r, the
irradiance decrease with r need not be exactly an inverse
square type of decrease. A question of some interest now a-
rises as to necessary conditions that may govern the rate of
such decrease. For example, can a surface S be found such
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that the irradiance Hy over some 1nterva1 of distances r from
the surface falls cff exactly as C/r®, (where C is a con-
stant)? Or, perhaps S can be found such that Hy behaves ex-
actly as C/r over some interval of r. In general, can a sur-
face S be found such that over some interval of r, Hy is of
the form C/rn, where n is any number? In this example we de-
vote some attention to these questions as they are of intrin-
sic interest and are of the kind which aid in forming a good
intuition about the laws of geometrical radiometry.

Before attempting a systematic search for surfaces of
‘the kind discussed above, let us consider some special cases
which may point the way to an appropriate methodical approach.
Figure 2.36 (a) depicts a sphere S of radius a and uniform
radiance N. The results of Example 4 let us conclude that
the irradiance Hy at distance r from the center of S is given

by:

H, = N(a?/r?%)
Fig. 2.36 (¢) depicts an infinite plane S of uniform radiance
N. The results of Example 6 indicate that:

Hr = 7N
for every r. Further, Fig. 2.36 (b) depicts an infinite con-
ical surface S of half angle 0,. Once again the results of
Example 6 indicate that:

H_ = #N sin? 8,

for every r, i.e., Hy in this case is independent of r but
less than wN by the ¥1xed factor sin? 04 Finally, Fig.

2.36 (d) depicts a general bounded closed smooth surface S of
uniform radiance N which encloses a positive volume of space.
Since S encloses a positive volume of space, there is a point
x in S about which a sphere S, can be drawn such that S; lies
wholly in S. Since S is bounded, there 1is a sphere Sz with
center x, such that S lies wholly in S;. The spheres need
not be tangent to S. It follows that H,, the irradiance pro-
duced by S at any point outside S, a distance r from x, must
obey the following equalities:

N(a;’/rz)_ﬂ HrE N(ap*/r*) ,

where a; and a; are the radii of S; and S, respectively. This
set of inequalities leads us to the following assertion: 1if S
1s any bounded surface enclosing positive volume and with uni-
form surface radiance N, then associated with S 18 an irradi-
ance function Hy whose graph ie bounded by two itnverse square
curves. Thus for sufficiently large r, Hy is arbitrarily
closely described by an inverse square relation in r.

In view of the evidence just reviewed, the first main
observation toward resolving the question before us may be
made: If S is8 a surface with uniform radiance N and the as-
gociated Hy 18 of the form C/r1 with n % 2 for every r=a ,
where a8 18 some nonnegative number, then S 18 either (a) not
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FIG. 2.36 Attempting to generalize the inverse Square
law for irradiance.
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bounded or (b) does not enclose a positive volume.

Let us now attempt to find the actual shape of a sur-
face S with the property that its associated irradiance varies
precisely as C/rn., Two conditions can be fixed at the outset
in order to keep our initial search within reasonable con-
fines. First we assume that n=0. Secondly, we search only
for surfaces S which, like those in (a)-(¢) of Fig. 2.36, are
surfaces of revolution about the direction §. It follows
from (14) that the associated Hy is given by:

H = =N sin? 8(r) ,

where 6(r) is the angle that the tangent to S from the point
of observation, y, makes with the direction -£. (See Fig.
2.37.) Thus by specifying y and knowing S, we can in princi-
ple compute 6(r). Now use the hypothesized property of S to
set up the following two equations:

2_ = H_ = oN sin® 6(r) .

We can evaluate the constant C by observing that: if S is a
smooth surface and r = a, then 6(r) = n/2., This follows in-
tuitively, e.g., from the observation that the surface has
the appearance of an infinite plane for an observer at r = a.
Hence for smooth surfaces: |

EE-= 7N
a

r

FIG. 2.37 Finding the shape of the luminous surface
which has an inverse nth power irradiance law,
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so that:

(36)

a)n/z

is the necessary connection between r and o(r), where a is
some fixed length associated with S. In the case of a spher-
ical surface S and for the case of n = 2, a is simply the ra-
dius of S. In general if the surface S divides all of space
into two separate parts (as, e.g., a plane or a paraboloid of
revolution) then we agree that a is the distance from the ver-
tex v of S to some inside point x, the center of S, where y
is, by agreement, outside of S. ' o

On the basis of relation (36) a graphical construction
procedure can be evolved for the requisite surface S, First
choose n, with n>0 and choose a, with a> 0. Then select a
set of distances ri,r2, ..., Tk, such that as<r; <rz <... <Tg.
Equation (36) may now be used to compute the associated an-
gles 6(r1), 9(rz2), ..., 8(rx). These angles are used in the
following manner. At each point y;j which lies a distance rj
from the center x along the axis of revolution of S, draw
two straight lines making angles *0(rj) with the direction -§,
(see Fig. 2.37). If the r; have been spaced sufficiently
closely together, then one may visually detect the envelope
of the lines just drawn, i.e., the curve which 1is tangent to
each straight line of the family just constructed. This en-
velope is the cross section of the desired surface S; 1i.e.,
by spinning this envelope around the direction £, the requi-
site S is formed.

sin 6(r) = (

Some experimentation with the preceding construction
procedure yields information about how the surfaces S vary in
shape as a function of the power n. Thus let the parameter a
" be fixed. Then for every n in the range 0 <n <2, we find that
the associated surface S(n) is unbounded. The closer n is to
0, the more of a conical shape is exhibited by S(n) about its
vertex. The limiting curve S{0) is a degenerate infinite cone
8. = w/2, of the kind depicted in (b) of Fig. 2.36. The
c?oser n is to 2, the more spherical is the shape of S(n) in
the neighborhood of the vertex. The limiting curve 5(2) is a
sphere of radius a. The constructions of the surfaces S(n)
for n >2 at first present rather puzzling anomalies. By choos-
ing the range of the values r:, ..., Tk sufficiently small
and having the r; closely packed together, one can construct
the surfaces S(3), S(4), ..., within small regions around
their vertices. In each case where n> 2, there is a critical
distance r, from the center x beyond which the envelope con-
struction gegenerates. The larger n is, the smaller is the
corresponding critical distance r,. |

These graphical experiments in constructing the surface
S(n) for which the inverse nth power law for irradiance holds,
especially in the case of n >2, indicate the need for a rela-
tively precise analytical approach to the problem of deter-

mining S(n). We shall now briefly direct some attention to
such an approach.
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Coxy'(x) |
 ' cln)—_
|

FIG. 2.38 Imbedding Fig. 2.37 in a cartesian frame.

mcreosing

Figure 2.38 shows an xy coordinate frame in which the
cross section of surface S(n) is depicted by curve C(n). The
irradiance meter is imagined to be at a point on the y-axis
a distance r from the origin O of the frame. The unit inward
normal £ to the collecting surface of the meter is directed
along the positive direction of the y-axis. The origin of the
frame serves as the center of C(n), and the vertex of C(n) is
a point on the y-axis a distance a from the origin. The curve
C(n) is represented by some function y(*). Our primary goal
1s to obtain the differential equation for the function y(-)
of the curve C(n). The starting point is equation (36) in
the form:

=9 an

sin® O(r) = (;)
which, as we have seen, combines the inverse nth power re-
qu1rement on the irradiance H, with the general formula for
Hy. We now systematically replace r, and 6(r), using the de-
scription of C(n) by y(*). Let us denote the derivative of
y(x) with respect to x by "y'(x)". First of all r is clearly
the algebralc sum of two terms: y(x) and -xy'(x), i.e.,
r = y(x)-xy'(x), as a glance at Fig. 2.38 would show. Sec-

ondly, it is also clear from the figure that:

tah.e(r) = x/xy‘(x)
= 1/y’' (x)
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From this:

1

/1 + (y'(r))? '

sin 0(r) =

Hence:

(r'x))? + 1= [y(x)-xy'(x)]" (1/a") . (37)

We have essentially reached our goal, Equation (37) is the
differential equation for C(n). With an eye toward expediting
the solution of (37) we shall rearrange it into the form:

' y(x) = xy'(x) + a[i*(y'(x))?]l/“

Equation (38), as it stands, has the Gestalt of a Clairaut
equation, an equation which is readily solvable in parametric
form: - |

(38)

(39)
(40)
This equation also has a singular solution of the form
(x) = t. x + ajl+t 211/n (40a)
y() = tgx + afletyf]

which represents straight lines of slope t,. These singular
solutions evidently can yield the degenerate conical case
6o = n/2 depicted in (c¢) of Fig. 2.36.

Setting n = 2 in (39) and (40), and eliminating the
parameter t, we obtain:

x2(t) + y2(t) = a® .

Hence C(2) is a circle with center -at the origin (0,0), and of

radius a, as expected. Setting n =1 in (39) and (40), and
eliminating the explicit appearance of the parameter t, we ob-

tain

y(t) = -x*(t)/4a + a
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In this case S(1) is a paraboloid of revolution with focus at
the origin (0,0), axis of symmetry along the y-axis, vertex
at (0,a), and intercepting the x-axis at x = *2a. The surface
S{(1) is typical, as far as size (unboundedness) and general
orientation is concerned, of all S(n) with 0<n < 2.

For a curve-tracing analysis of a general S(n) we find
from (39) and (40) that:

y(t)/x(t) = (1--‘2-‘-) t-ss

which is helpful in gauging the location of points on the
curve. For example, if n = 2, then:

y(t)/x(t) = ~%

for all t, 0 <t<«, This shows that, as t+», a quadrant of
the circle S(2) is traced out and y(t)/x(t)+0. This tracing
is depicted in (b) of Fig. 2.39, Further, 1£f n = 1, then:

=t L

In this case, as t varies in the range 0 < t <«, one branch of

S(1) is traced out, and y(t)/x(t)++«, The tracing of this

branch of the parabola S(1) is shown in (a) of Fig. 2.39.

Finally, for the general case n> 2, we see that

lim y(t)/x(t) = +-=, indicating that y(t) becomes much larger
R

than x(t) as t»», This in itself is not too informative, but

when coupled with the observation that for large t, -

~2-n
x(t) behaves like - 22 ¢ ™
and 2
y(t) behaves like a(l--lz-l-) t" ’

we gain further insight into the behavior of the curves.
From these observations we cull the following information:
as t+w, -

for 0<n<2: x(t)+ -=, y(t)+ -=
n=2: x(t)+ -a, y(t)= 0
n>2: x(t)+ 0, y(t)» +=
The behavior for the case n>2 continues to present puzzling
features. Thus, when n> 2, x(t)»0 for large t, indicating

that |x(t)| attains a maximum for some t. Examining (39) for
this possibility, we see that for C(n),
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n=2
t=0 to t=00

fo
r (physically unrealizable)
range

FIG. 2.39 Some cross sections of surfaces which produce
irradiance fall-off like 1/r? (see text). |
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n
max [x(t)| occurs at t = —

From this relation, it is at once clear that we obtain observ-
able maxima for n > 2, and no observable (i.e., real) maxima
for 0<n<2, For example, we expect for n = 3, a maximum val-
ue of |x(t)| at t = /3/(3-2) = /3 . However, we expect no
real maximum for n = 1, since t = V1/(1-2) = ¥-1 . Finally,
we inquire if, for the case n>2, S(n) ever intersects the x-
axis as do its lower-n counterparts. Thus in (40) we set
y(t) = 0, and find that:

y(t) = 0 when t = Z%K- .

Hence if n>2, then y(t) # 0 for every real t. This means
that C(n) does not meet the x-axis for n> 2.

Summarizing the behavior of C(n) for n>2: as t varies
from 0 to +«, a branch of C(n) is traced out which is of the
general form shown in (c) of Fig. 2.39. This figure explains
the source of our difficulties in the geometric constructions
based on equation (36). The construction is able to generate
a branch of S(n) from the vertex to the first point of inflec-
tion at point A. Beyond A, the branch of C(n) and S(n) itself
has no conventional physical interpretation. Some interesting
unconventional interpretations can be made; however, we leave
it to the reader's initiative to interpret the meaning of C(n)
beyond point A. The tangent to C(n) at A meets the y-axis
at a point B, which determines the critical range ro for which
the physically realizable inverse nth power law holds. Part
(c) of Fig. 2.39 is drawn from computed data for the case
n = 3, The associated set of parametric coordinates are giv-
en in the table below, which was computed by Mrs. Judith
‘Marshall. |

Table 1

Computed Values for Part (c¢) of Figure 2,39
(The case n = 3) -

y(t) t x(t)

0
0
0
0
0
0
1
1
1
1

2 e o & & & & & @
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Several general concluding comments can now be made on
the problem of the inverse nth power law for irradiance.
First, there is the constantly recurring use of or reference
to the integer 2 throughout the most general of the preceding
discussions. Observe how critically 2 enters into the fol-
lowing tabular classification of our main results:

Table 2
The surface S(n)'inducing Radius of
H = c/r® curvature at Range of
T vertex validity

0 | Curve with half-angle 0 (= 0/2a) ‘r=2a
6o = /2 (Fig 2.36 (c))
1" | Paraboloid of revolution 1/2a r=a
| (Fig. 2.38)
| 2 | Sphere (Fig. 2.38) 1/a (= 2/2a) r=a

3rd order luxoid
(Fig. 2.39 (¢))

3/2a r,=zr=a
n/2a roaraa

In this classification we encounter classical euclidean sur-
faces for all n, 0<n<2, but a definite break occurs at

n = 2, as has been repeatedly evident in the curve-tracing
discussion above. All this is apparently closely related to
the fact that we live in a three dimensional world, or at any
rate, the radiometric laws above are represented most natural-
ly in euclidean frames of dimension 3. The three dimensional
geometric frame has been used implicitly throughout our dis-
cussions. We are thus led to conjecture that radiometry in a
two dimensional world would have a ubiquitous inverse first
power "irradiance' law and radiometry on a line would have

its inverse zero power irradiance law. It is interesting to
speculate on the theory and utility of k-dimensional geometric
radiometry in which very likely the "irradiance" in such a
geometry will obey an inverse k-1 power law, and to contem-
plate the potentially rich multiplicity of irradiances, sca-
lar irradiances, and radiant intensities and their manifold .
interconnections latent in such geometries. Here the dualities
brought out between irradiance and radiant intensity in the
preceding examples are likely to attain their deepest and
broadest meanings. These observations are commensurate with
the conclusions, ‘already brought out in the studies 1in Sec.

99 of Ref., [251], that radiometry and radiative transfer are

nth order luxoid
(Fig. 2.39 (c))
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meaningfully formulable in arbitrarily general spaces. These
interesting matters are left to the reader for further con-

sideration.

Example 13: Irradiance from Elliptical
Radiance Distributions

We shall now illustrate the use of equation (17) of
Sec. 2.5 by computing the irradiance distribution associated
with an important type of theoretical radiance distribution,
namely the elliptical radiance distribution. The elliptical
radiance distribution arises in the study of light patterns
at great depths in oceans, lakes, and other natural hydrosols.
It is a convenient theoretical standard against which to com-
pare the light patterns that actually subsist in nature. The
physical basis for the elliptical radiance distribution will
be considered in Chapter 4. For the present we shall be con-
cerned only with its geometric properties. In particular we
shall investigate its structure with respect to direction, to
variation in eccentricity, and also compute its associated
vector and scalar irradiances.

We begin by setting the geometric stage of the computa-
tion. Figure 2.40 (a) depicts a terrestrial coordinate frame
(Sec. 2.4) and the plane of a radiant flux collector oriented
as usual by its unit inward normal £. Let the associated di-
rection angles of £ be 6 and ¢. Thus if 6= and ¢ = 0, say,
then £ = -k and the collector receives flux from the upper
hemisphere, i.e., receives flux flowing in the directions of
=-. In general, when £ is the unit inward normal to the col-
lecting surface, the incident radiant flux is along the direc-
tions of the hemisphere Z(£), as defined in Sec. 2.4.

Next we define an elliptical radiance distribution at X,
of eccentricity €, 0=se<=1, and magnitude N, to be a radiance
distribution of the form:

N(x,E') = N/(1+e€'*k) (41)

An alternate mode of representation of N(x,£') is by means of
polar and azimuthal angles. Thus (41) may be written

N(x,8',6') = N/(l+c cos 6') . | (42)

The upper diagrams of Fig. 2.41 show four plots of elliptical
radiance distributions N(x,*) of eccentricity € = .25,.50,.75,
.95. For small values of € near 0 the associated distribution
is predominantly spherical. For values of € near 1, the as-
soclated distribution is long and narrow. When 6 = 0, the
flow is upward and smallest; when 6 = 7, the flow is downward
and greatest, thus simulating, at least qualitatively, the
real flows in nature. (We are using surface rather than field
radiance.) The "size' of the distribution is governed by N,
being the radiance in the horizontal directions, i.e., £'s
with angles of the form (w/2,¢). The ratio of downward (zen-
1th) to horizontal radiances in the present model is given by:
&

-,
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unit inward normal— 7
to collector
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—
-

rotated radianc
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FIG. 2.40 Some calculation details for irradiance from
elliptical radiance distributions. |
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k
t | '

FIG. 2.41 Some representative irradiance distributions
H(6) associated with elliptical radiance distributions. The
points are calculated from (48). The solid curves are cir-
cles, showing a possible simplification of (48) for engineer-
ing calculation purposes.

N(x,7,¢')/N(x,n/2,¢') = 1/(1-€)

Thus, the nearer € is to 1, the greater is this ratio. The
ratio of zenith (downward) to nadir (upward) radiance is:

l+e
1-¢

N(x,w,¢')/N(x,0,¢") =
| Turning now to the computation of H(x,9,¢),jwe start
with (17) of Sec. 2.5: |

H(x,0,¢) = I N(x,0',¢') coszf sin6' do' d¢° (43)
£(6,¢)
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where £(0,¢) is the hemisphere E(§), as shown in part (a) of
Fig. 2.40. This range of integration in (43) may be given
explicitly:

oy 2w 0(¢') |
H(x,8,¢) = I N(x,68',¢') cos2/ sin 6' d6' d¢'
$'=0 9'=0 " (44)

where ©(¢') is the angle between k and &', i.e., the variable
direction of integration in the collector's plane which has

azimuth ¢'. ©(¢') may be determined from the functional re-
lation:

O0(¢') = arc cot {-tan @ cos (¢-¢')} . (45)

Thus, e.g., if 6 = 0, ©(¢') = arc cot {0} = %x/2 for every ¢',
0= ¢<2n. Eq. (43) can be put into a more convenient form by
using the fact that, as far as the quantity H(x,0,¢) 1is con-
cerned, it is immaterial whether, on the one hand, the col-
lector is tipped in the frame of reference of the radiance
distribution as in (a) of Fig. 2.40; or on the other hand,
the collector is held still and the radiance distribution is
appropriately tipped in the frame of the collector as in (b)
of Fig. 2.40. The computational merit of the arrangement in
(b) is superior to that in part (a) of Fig. 2.40, and we shall
adopt it in the present illustration. The salient change re-
sulting in this switch of points of view is in the functional
form of N(x,6',¢'). Indeed, a glance at (a) and (b) of Fig.
2.40 shows that the '"vertical' radiance distribution in part
(a) has undergone a rigid rotation to the "tipped" form in
part (b), and rotated about the vertical axis so that k goes
into the unit vector whose angles are (0,7+9).

The details of the transformation of N(x,6',¢') into

its new form N'(x,6',¢') constitute a simple exercise in ana-
lytic geometry and are left for the reader to formulate (re-
call (18) of Sec. 2.5). The resultant form 1is:

N
l + €(-sin © sin 8' cos ¢' + cos 8 cos 6')
(46)

N'(x,0%"') =

in which we have set ¢ = 0 since the desired irradiance
H(x,0,¢) is independent of ¢ for the present radiance distri-
bution, which is assumed symmetrical about the vertical. We
can partially check (46) by letting €' = 6 and ¢' = w. The
resultant radiance is:

N'(x,8,n) = N/(l-_l-e:)
which is precisely the magnitudé of N(x,0,¢), as was to be

expected. Using (46), it is clear from (b) of Fig. 2.40 that
the desired irradiance H(x,9,4¢) is given by:
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N'(x,68',¢') cos 6' sin 6' d6' d¢'

2w ¢m/2
H(x,6,¢) = J

4=0 6'=0 (47)

The integration details of (47) are straightforward and are
therefore omitted. Writing, ad hoe:

"'H(ﬁ)" for H(x,ﬁ,tb)

we then evaluate (47) to obtain:

H(8)= AL l+ecos6-v/1-e2sin% - (cos8)1n —LlIElLlIEEEEl_.]

¢? /1-€¢2sin%6+cos®

(48)

which is the desired functional form of the irradiance dis-
tribution under an elliptical radiance distribution of eccen-
tricity € and magnitude N. The reader should now show how to
use (48), without the need of further computation, for the
case where the axis of the elliptical distribution is origi-
nally tilted at 6, from the vertical, and the angle between
this axis and the unit inward normal to the collecting surface

is AU%. |

Let us study some of the properties'of H(®). First of
all, by setting 6 = n, we obtain the downward irradiance 1in-
duced by the radiance distribution in (41) on the collecting
surface:

H(n) = - z—?f I:e + ln(l-e):l . (49)
The upward irradiance is obtained by setting 6 = 0:
H(0) = -Z-Ef- [e - 1n(1+e)] . (50)

The net downward irradiance is therefore:

H(w) = H(w) - H(0)

- [—25 + In G*z)] (51)

£

which is positive for all €, 0<e<1. H(w) is the magnitude
of the vector irradiance H(x) associated with (41). The di-
rection of H(x) is evidently -k. It may be verified directly
from (48) that:
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H(6) = H(w) cos ¢ ' (52)

where we have written

uﬁ'(e).ﬂ. for H(O) - H(¥)

and | |
uwn for T - 0

Equation (52) is a specific example of (16) of Sec. 2.8.

Observe next that H(6)+%N as e€+0., This 1s to be expec-
ted since the elliptical radiance distribution becomes spher-

ical as €+0, and as we now know, a spherical radiance distri-
bution of magnitude N, induces an irradiance w7N. This fact

about the limit of H(6) as €+0 may be seen relatively readily
for a special case by letting €+0 in (49). Indeed, expanding

In(l-¢) in a power series in &, we have, for very small ¢, as
an approximation:

2
H(ﬂ)=2“N(l+E+E_) .
2 3 4 |

_ 2
H(0) = an(-l- . €, E-)
2 3 4

whence: _
H(w) = 4meN/3

The scalar irradiance induced by the elliptical radi-
ance distribution (41) is also of interest. Using the repre-
sentation (41) in (3) of Sec. 2.7 we have:

(53)

where we have written, ad hoc:

"h(e)" for h(x,t) ,

Note that:

lim h(e) = 47N .
e+0

For small ¢, we have, very neariy:

h(g) = 47N |1 +
.3

Comparing (53) and (51) we see that:



SEC. 2.11 EXAMPLES 137

H(v) = 2 [h(e)-h(0)] : (54)

Thus, the magnitude of the vector irradiance associated with
an elliptical radiance distribution of eccentricity € and
magnitude N is 1/e¢ times the difference between the scalar
irradiance h(eg) associated with the distribution and the sca-
lar irradiance associated with a uniform radiance distribu-
tion of magnitude N.

Finally, we consider the hemispherical scalar irradi-
ances associated with (41) (see (7) of Sec. 2.7), writing ad
hoe:

"h(e,-)" for h(x,-k,t)

"h(e,+)" for h(x,k,t)
we have for an elliptical radiance distribution:

ZﬂN

. In(l-¢) (55)

h(e,-) = -

2N 1n(1+e) (56)

h(e,+) = e

Adding these two and comparing the sum with (53) we have:
h(e,+) + h(e,-) = h(e) ’

which illustrates (9) of Sec. 2.7. In the two-flow theory of
light fields, to be studied in Chapters 8 and 9, the follow-
ing ratios are of interest in that theory (see also (30) of
Sec. 10.7):

h(e,-)/H(®) = ¢ 1n(l-e)/(e+1n(l-€)) (57)

h(e,+)/H(0) =€ 1n(l+e)/(e-1n(1l+e)) (58)

These ratios constitute convenient measures of the "collima-
tedness'" of the elliptical radiance distribution. Thus for
the case € = 0, the distribution is spherical and the very
antithesis of collimatedness. In this case:

‘1lim h(e,~)/H(w) = 2 .
_ ol
A similar limit, namely 2, holds for h(e,+)/H(0). In the
other extreme, i.e., when € is near 1, the elliptical distri-

bution of downward flux is relatively collimated. In this
case:

lim h(e,-)/H(w) = 1 .
e+]l

On the other hand, and somewhat unexpectedly, the upward ra-
diance approaches a certain shape for which:
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1im h(e,+)/H(0) = 1n 2/(1-1n 2) .
e+]

Equation (48) is plotted for the four values of € given in
Fig. 2.41. The plots of 2H(6)/2%N are shown in the lower line
of that figure. | -

Example 14: Irradiance from Polynomial
Radiance Distributions

The present example is assigned the task of developing
a generalization of the elliptical radiance distribution con-
sidered in Example 13, and of developing a formula for the
associated irradiance distribution. The main lesson of this
example is one not of importance to radiometry per se. Rath-
er, it is designed to bring to the reader's attention the fact
that many of the techniques of classical polynomial and power
series theory are available to help obtain analytical repre-
sentations of the radiance distributions measured in nature
and on which, in turn, one can base practical methods of com-
puting the associated irradiance distributions.

Suppose then, that an empirical radiance distribution
N(x,*) can be represented for each 6 and ¢ by the following
polynomial in cos 9: |

n

N(x,0,¢) = Z aijr(cos ) (59)
J=0

where Pj(cos 6) is the Legendre polynomial (in cos 0) of the
first kind and of integral order j. The number n may be fi-
nite or infinite, as required. Here we are assuming that -
N(x,*) is a radiance distribution symmetrical about the ver-
tical but of a form which has a quite general 0-dependence.
As in the case of the elliptical radiance distribution in Ex-
ample 13, we can use the fact that the irradiance produced by
N(x,0,¢) in (59) depends only on the angle 2/ between its axis
of symmetry and the inward normal to the collecting surface.
Therefore we can use the results of this example, without fur-
ther effort, to compute irradiance on any collecting surface
when the angle 2/ between the axis of the symmetrical distri-
bution and the unit inward normal to the collecting surface
is known. Hence the assumption of the form (59) constitutes
no loss of generality in this sense., |

We first observe that the coefficients aj; are readily
determinable from the tabulated data N(x,6,¢). “Indeed, using

the orthogonality properties of Pj(cos 6), we have from (59)
(and cf. (3) of Sec. 6.3):

a, = Lzﬁ%ll.%;f N(x,e',¢')Pk(cos 0') sin 6' de' d¢'

39
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i.e.,
] |
a = LEE%ALI N(x,0',4')P, (cos 8') sin 0' d6'.  (60)
- 0

Hence, if N(x,°) is known, performing the operation on N(x,°)
as defined in (60), yields a;, for every k = 1,...,n. By
writing: |

tutt for cos 6!
and |

"N(uw)"  for N(x,6',¢')

Equation (60) takes the relatively compact form:

+1

[ Noor ) an (61)
-1

Equation (61) can be evaluated by any of several avaliable
numerical quadratures, given the radiance data N(u). Having
obtained the ay in this way, we now can go on to consider the
computation details of H(x,*) associated with N(x,+). With

(17) of Sec. 2.5 as a starting point and using (59) we can
write:

n
H(x,0,¢) = ” | (Z aij (cose'))coszﬂ sin 6' d6' d¢'
2(,4) ' "7 (62)

where -2/ is the angle bétween the directions (6',¢') and (9,9¢).
The preceding integral can be transformed into an alternate

form by adopting the technique used in Example 13. (See Fig.
12.40 (b).) Thus Equation (62) can be written:

27 w/2 | 4
H(x,9,¢)= I J (_ aij(cos-tﬂ')) cosf8' sin6' do' d¢°
¢I=0 g'=() J=0 (63)

and which mﬁy be viewed as the present counterpart of (47),
wherein:

cos 2/' = sin 6 sin 6' cos ¢' + cos 6 cos 6 .
Equation (63) now stands in a form which is readily evaluable.

Toward this end, observe that the sum of Legendre polynomial
terms can be written in the form:
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| | _ 3
a.Pj.(cos an Z bj cos’ 24! (64)

J=0

where the numbers bj_, j= 0, ... , n, are obtained by expanding
each P;(cos /') in”the left side of (64) in powers of cos %’
and coilecting together like powers of cos 2/'. Each "b;"
therefore denotes the coefficient of cosJ2/' so obtained.
Hence from knowledge of the a;, the numbers bj are readily

computed. Tables of Legendrejpclynomials are  available for
the determinations of thelbj.

- Next write, ad hoe:
"x"" for sin 6 sin 8’
"y for cos 6 cos 6

Then for every j, l,..., n

(cosﬂﬁf‘)j = (x cos ¢' + y)j

J
= Z Jci xJ-l yl COSJ-]' ¢‘I R
1=0

where "JC;'" as usual denotes the combinatorial coefficient of
the ith term in the jth power of a binomial. Using this

expansion in (63), with the help of (64), we can rearrange
(63) to read:

H(x,0,¢) =
n 2T /2 ) . . . . . .
= ij | Z:'Cim::'mly:l cos? 1¢' cos 6' sin 6' d6' d¢'
j=0 =0
$'=0 8'=0
n J /2 2m
- ijzicj x) 1y} cos 6 sin® J cos? “1er de'| de' .
j=0i=0 7} b =0 .

Observe that:
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2% .

(=
J cos? ¢! d¢' = 2/7 %15

! i_-_i‘:l)

- T
where
0 if j-1 is odd
Aij = ,

1 if j-i is even

Let ”Iij“_momentarily denote the value of this integral of
cos)"1¢', Then (65) becomes:

H(x,6,9) =

n j _n/Z

= ij Zicjlij[ sinJ“iﬁ sinJ'”le' coslﬁ cos“le' dée!
j=0 1=0

0
n j /2
= Zb.ZiC.I.. sinj_ie cosie sinj_”le' casi+19' dé!
o I 1 (66)
J 1 0
Observe that;
n/2 (. : ) (. )
-1+2 1+2
.. : T l—f—— T 5
sinJ-1+le' c051+19' dg! = l —— N & .
e
0 2

where "I'(z)" once again denotes the value of the gamma func-
tion I' at z. Let us write "Jij" for the product of Iij and
the latter integral. Hence:

(i) o(y)

J. . . A..
1] . P(-+4) 1]
If we write:

J
" L 1 - j""i 1
Cj(ﬂ) for ZO Cj Jij sin’ “0 cos 6
1'
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and
"H(8)" for H(x,0,)
then (66) becomes: '

. (67)

This is the desired formula for the irradiance distribution

associated with the radiance distribution in (59). Observe

that the numbers 1C; Jjj are evaluable once for all, so that
to use (67) with p%rticular radiance distribution N(x,°*) it
is required only to evaluate the ay by means of (61) to the

desired degree of accuracy, and to obtain the by using (64).
It is left as an exercise for the reader to evaluate 1CjJjj
and to obtain explicit formulas for the by in terms of |
the ay for the first few values of k=1, 2,..., n, and to

make a list of them so that the use of (67) is reduced to sim-
ply finding the ax for each new application.

The reader may verify that the scalar irradiance h as-
sociated with a radiance distribution N(x,°*) of the form in
(59) is given by:

. (68)

We close this example by observing two special cases
of the polynomial distributions. First we note that the set
of polynomial radiance distributions discussed above contains
as a special case the elliptical radiance distribution of Ex-

ample 13. To see this, in (64) choose the a; subject to the
condition that:

b = (-€)IN

for every integer j=0, where 0<¢ <1, and where N is a non-
negative number. Then:

N(x,3,¢) = NZ('E COS e)i
j=0 '

= N/(1 + € cos 6} ,
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which is the form of (42). Secondly, an interesting radiance
distribution associated with heavily overcast skies is a spe-
cial case of (59). This is the '"Moon-Spencer Sky" representa-
tion of radiance distributions and takes the following form.

For every 9, w/2=0 =m:
N(x,0,¢) = N(x,n/2,¢)(1-2 cos 8) .

The émpirical details of determining this distribution may be
found in Ref. [186].

Example 15: On the Formal Equivalence of Radiance
"and Irradiance Distributions

The present sequence of illustrations of the radiomet-
ric concepts is concluded with a discussion of the theoreti-
cal possibility of reversing the usual path between radiance
and irradiance distributions. We shall show that, given an
irradiance distribution H(x,*) 2t 128 possible, in principle,
to deduce the associated radiance distribution N(x,°*). This
course of action is the reverse of that taken in the various
Examples above, and in the discussion of Sec. 2.5. The theo-
retical and experimental significance of this reversal of the.
usual computation procedure was touched on briefly in Sec. 2.5
wherein also a practical scheme for obtaining N(x,+) from
H(x,*) was suggested. The main purpose of this example is to
show that this reverse path 1s possible not only on a numeri-
cal level, but also on an exact function-theoretic level.

This is tantamount to showing that (8) of Sec. 2.5, when
viewed as an integral equation with unknown N(x,°*), has a u-
nique solution in terms of the irradiance distribution H(x,*).
We shall discuss this point of view in detail, as it affords
an opportunity to illustrate how the use of advanced vector
space concepts can facilitate the solutions of certain radio-

metric problems.

We can phrase the present problem in precise terms as
follows: Given: the irradiance distribution H(x,+*) at a
point x in an optical medium. Required: the associated radi-
ance distribution N(x,*). Now, for every direction & and
point x we have, by (8) of Sec. 2.5:

Hex,8) = [ NG EnEeg dage) (69)
= (&) -

Let us write:

"C(x)"  for L [ [ 1E-g" da(E') .

Errata (&)

We call C(x) the cosine operator, for obvious reasons. Then
(69) can be written as:



144 " RADIOMETRY AND PHOTOMETRY VOL. II

*—‘%'—'l - N(x,*) C(x) (70)
| n |

where "N(x,°*)C(x)'" means: '"operate on the radiance distribu-
tion N(x,°) by substituting N(x,°*) into the square bracket of
the integral operator C(x)." For example, if at point X,
N(x,*) is a uniform radiance distribution with magnitude N,
then for every ¢&:

N(x,*)C(x) = ;};,—[ NE-E' dR(E’)
=) ‘

=I.H.. o F! r
N gee ancen
(&)

- N
> : (71)

Up to this point in the present example our delibera-
tions have been relatively elementary and were without excep-
tion motivated by physical intuition. But now when we ask:
"Can we determine N(x,*) knowing H(x,*) and C(x)?", we leave
the domain of physical intuition and are asking a purely math-
ematical question. Perhaps even in this general radiometric
setting some reader may see a physical reason for an affirma-
tive answer to the query. For instance, by starting with the
simpler setting in (21) of Sec. 2.5 and by letting the number
of equations of the type considered there increase indefinite-
ly and by being assured at each step along such a course that
N(x,*) is determinable from H(x,*), perhaps by following such
a line of thought one can be convinced of the general deter-
minability of N(x,*) from H(x,*). Indeed, it is most desir-
able that some assurance be generated in such a manner. But
at the present moment we are confronted by a mathematical
question and in view of its important relevance to applica-
tions we prefer to settle it using now the rules of mathemat-
ics.

To begin to answer the preceding question we generate
a mathematical setting in which the question suggests some
'further action toward the present goal. The appropriate set-
ting is obtained by considering the set 7 (x) of all radiance
distributions at point x. Next we observe the interesting
fact that the sum of any two such radiance distributions is
again in the set 7 (x). For example, if N(x,+) and N'(x,*)
are in 7/(x), then the function: -

N(x,*) + N'(x,°)

is in 7/(x) and by definition assigns to each direction § at
x the sum N(x,£) + N'(x,£) of the two radiances_N(x,E) and
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N'(x,£). The sum of two radiances 1s again a radiance®.

That is, if each of N{(x,¢) and N'(x,+) is physically admis-
sible then a lighting arrangement could be conceived so that
N(x,*) + N'(x,*) was realizable. Observe, however, that we
need not introduce the preceding observation as an additional
justification for the assertion about /7 (x) containing the
sum of N(x,*) and N'(x,*) whenever it contains each. That
assertion is simply the result of the present definition of
77((x), and of the general definition of radiance. Next we ob-
serve that if N(x,°*) is in Z (x), so is cN(x,*), where ¢ is
a non negative real number. The physical plausibility of this
assertion is obvious. As a result of these observations we
see that 7(x) is part of the vector space V(x) of all func-
tions f(x,*) at x over the domain %, and with dimensions of
radiance. In fact 77 (x) forms what is referred to in mathe-
matical terminology as a non negative cone of V(x) which, by
definition, is closed under formation of sums, and multipli-
cation by non negative real numbers. (Take all the unit vec-
tors in a subset Z, of £ and form the set of all products cg,
with c 20, and £ in £,. Describe the geometrical appearance
of this set.) |

Now what is the purpose of all this collecting together
of huge families 7 (x) of radiance distributions? Simply
this: by collecting together the members of 7 (x) in the
fashion just exhibited, the operator C(x) defined above takes
on the crucial role of a linear transformation from V(x) to
V(x) and in this setting our original question, ''Can we ob-
tain N(x,°) from H(x,°*)?,"” takes a deeper and mathematically
meaningful cast. |

Before rephrasing the question in the vector space ter-
minology it may be well to include, simply for completeness,
a comment about what it means for C(x) to be a linear transfor-
mation. It means this: If f(x,*) and g(x,*) are any two func-
tions in V(x) and a and b are any two real numbers, then

[af(x,*) + bg(x,*)] C(x) = a{f(x,*)C(x)] + blg(x,*)C(x)]

where f(x,*)C(x) and g(x,*)C(x) are again members of V(x),
being images of f(x,°) and g(x,*) under C(x). Observe that

C(x) acting on a function with dimensions of radiance yields
up once again a function with dimensions of radiance.

We can now ask our question about H(x,*) and N(x,+) as
follows: "Is the linear transformation C(x) from V(x) to V(x)
a one-to-one transformation when restricted to the part 7 (x)
of V(x)?" By C(x) being '"one-to-one', 1s meant that C(x)
-sends exactly one radiance function into each modified irradi-
ance function of the form: H(x,°*)/2n defined in (70). Then,
having given an irradiance distribution H(x,*), we are thereby
assured that there is one and only one radiance function that
it comes from (i.e., is associated with). Hence, whenever

*This may be taken as intuitively obvious at this point of
the exposition. Formally, it is a consequence of the inter-
action principle of Chapter 3.
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C(x) is one-to-one we are encouraged to find that unique radi-
ance distribution N(x,*) which, by (70), yields up H(x,°).

It turns out that the linear transformation C(x) is in-
deed one-to-one when restricted to #(x) and we find its in-
verse C-'(x) as follows. We begin by observing that:

| (ex,83/27) daace) = | (Nex, - Cx)) dace)

-
-

{1

. f%‘] [ N(x,E')E'-E dQ(E')]| dR(E)
=2 | E(E)

#.l." ' ', ' '
= I_N(x,s ) I=(a'§ £ de(g)| da(e")

.1 " dace
L[ Nex,en) ancen

(1]

- 1
> h(x) .

For our present purpose, let us write:

el for [l£(x,©)] da(e) ,

where f(x,*) is in V(x). In particular, if £(x,°) is in 7%(x),
then |f(x,*)| is the scalar irradiance associated with a gen-
~eral radiance distribution f(x,*) at point x. The main thing
the preceding calculation has shown 1s that:

ING, )C) ] = 5 INGx, )] (72)

The significance of this equality for the present discussion
is crucial, and we pause to make this significance clear.

The significance becomes clear when it is pointed out that the
scalar irradiance h(x) acts as the '"length" of the vector
N(x,*) in V(x). Indeed, the bars around "£f(x,°)" in the def-
inition above are there to point up the easily verified fact
that |f(x,+)| is analogous to the absolute value of a number
or vector; and it may be shown that all the essential proper-
ties of length that we carry with us from euclidean space hold
also for the numbers |N(x,:)|. We call IN(x,*)] (i.e., h(x)
in this case) the radiometrie norm of N(x,+), to point up
this similarity between N(x,°*) and the usual concept of norm
or length of a vector. |
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The significance of (72) can now be stated: the linear
transformation C(x) has the property that it maps a radiance
function into one which has exactly half the norm (i.e.,
""length") of the original radiance distribution. In short,
C(x) has the norm contracting property with contracting factor
1/2. The mathematical consequence of this fact is immediate:
we now can use the well known norm-contracting theorem of vec-
tor space theory, as stated, e.g., in Ref. [251] for the radi-
ative transfer context, to assert that the inverse C~!(x) of
C(x) exists, and that, indeed:

clx) = ) (1 - c)d (73)
j=0

where I is the identity transformation, i;e.;
f(x,*)I = £(x,*)

for every f(x,°*) in V(x). This identity transformation can
be written as an integral operator. Thus 1if we write:

A for [ [ 18(&-&') dQ(&E'")
z(¢€)
it may be verified that I is the identity operator on V(x)

whenever 6 is the Dirac delta function (on the space with Q as
measure). Then if we go on to write:

e for A | [ 1(2ms(e-gn) - €gr) dacs)
= (£)

we have the equivalent form for (73), where

D(x) = (I-C(x)}

and

(74)

and

(75)

where, in turn, we have defined DJ(x) recursively by writing:
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"p%(x)" for I ,

and for every positive 1integer j:

Ix)"  for DIl x)D(x) ,

and where, finally,_"DJ 1(x)D(x)" denotes the customary 1inte-
gral operation on DJ-1l(x) as an integrand in D(x). Equation
(74) yields -the requisite inverse of C(x), and the solution
of our present problem is summarized in (75).

Observe that to use the norm-contracting theorem in
Ref. [251] we actually need the fact that 1-C(x) is a norm-
contracting operator. The reader may now easily verify that:

ING, ) (T-ce) | = 5 ING, 9T,

so that I-C(x) is, indeed, norm-contracting with contracting
factor 1/2, and the norm-contracting theorem statement yields

(73) and hence (74) .

Aside from the relatively advanced mathematical objects
involved in (74) (namely, Dirac delta functions, and two-di-
mensional iterated integration) the algebraic essence of (74)
is identical to that of the formula used by every high school
student summing a geometric series of the form:

(1-x) + (1-x)2 + (1-X)% + ...

whose value is clearly 1/x and where x is any number with ab-
solute value less than 1. Now, instead of squaring (1-x), 1i.e.,
multiplying (1-x) by itself, we are required to operate with
I-C(x) on itself. Thus, e.g.,

N(x,*) (I-C(x))? =

] 'z‘li‘I [‘"z}%‘f N(x,E) (zwa(a'-s)-e'-a)dﬂ(iﬂ (2né(g"-€) -g"+£') da(g")

sy =6

To obtain the form for (I-C(x))? itself, simply remove
"N(x,*)" and '"N(x,£)" where they occur in the preceding equal-
ity. Thus, as in the case of computing the "fraction" 1/x by
using solely multiplication, addition and subtraction repeat-
edly, so too can we compute "1/C(x)', 1i.e., C"!'(x) using solely
integration, multiplication, addition and subtraction, repeat-
edly. The norm-contracting theorem states that by continuing
sufficiently far, C-!(x) can be arbitrarily closely approxi-
mated.

The error engendered by stopping'the computation of
C-!'(x) in (74) at the kth term may be readily computed. Thus,
write,
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k
N (g, for L HGx, D ()
j=0 '

so that N(k)(x,-) serves as the kth order approximation to
the desired distribution N(x,°*). Then the radiometric norm
of the difference between N(x,+) and N(K)(x,-) is:

INGx, ) -N (x, )] =

A
j=k+1
= Z MDj(x)
_ 2
j=k+1

1 lH(x .
X [*C2 |

The reader may use as specific cases in (75) the formulas for
H(x,8,¢) in (48) and (67) of Examples 13 and 14 in order to

recover the associated radiance distributions of those exam-
ples. These will afford non trivial examples of (75).

We close this discussion with some general assertions
to which one is naturally led after contemplating the lesson
of the present example. The assertions concern the possibil-
ity of still further equivalences between radiance and other
radiometric concepts which are natural generalizations of the
concept of irradiance. Recall that irradiance was defined
empirically by specifying a small plane surface S onto each
point of which radiant flux could be incident within the set
(&), where £ is the unit inward normal to S. If now we re-
place (&) by any fixed conical set D(E) of directions of pos-
itive solid angle content specified in some way with respect
to £, then the generalized irradiance distribution H(x,D(°)),
as defined in (4) of Sec. 2.4, is equivalent to N{(x,*) in the
same sense that H(x,°*) and N(x,*) were shown to be equivalent
in the present example. This is the first assertion to which
we are led. Its proof is left to the reader. |

The lesson of the present example can be carried still
further than the point reached in the preceding paragraph.
Let "S{x,£)" denote a collecting surface S which is a convex
surface of revolution of fixed shape and size whose location
and orientation in an optical medium X are uniquely specified
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FIG. 2.42 A diagram of a radiometrically adequate collec-
tor. How many of them are there? (See text)

by locating a fixed point x on (or within) S and giving the
‘direction £ of the sensed axis of revolution of S. A typical
surface of the type S(x,£) is pictured in Fig. 2.42., Let S°
be a proper band of latitude circles on S, i.e., such that S’
has positive area and such that to the points x' of each lati-
tude circle C' of S' there is assigned a right circular cone
D(x') of directions whose axis direction §' lies in the plane
of x' and £ and makes a given angle with §, and of common pos-
itive solid angle opening Q(D(x')). We shall require that

the values £°&' and Q(D(x')) are fixed for the points x' on
each latitude circle C' on S' but may vary from circle to cir-
cle on S'. Let X(x) be the spherical region swept out by
S(x,E) as x is held fixed and £ allowed to vary through all of
=. Finally, assume that a general radiance distribution of
fixed structure is defined at each point within X(x). Then
if "P(S(x,£))" denotes the radiant flux collected by S for a
given x and £, we make the following plausible assertion with
the above conditions in mind: For every point X in the opti-
cal medium X, the radiance distribution N(x,°*) ie equivalent
to the radiant flux diestribution P(S(x,°)) in the sense that
there 18 a one-to-one integral operator E(S,X) sueh that:

P(S(x,+)) = N(x,*) E(S,x) (76)
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The preceding assertion clearly contains the irradiance asser-
tions above as special cases. For example, let S be a plane
circular surface of positive area, with unit inward normal £
and center x. Let S' be one side of S such that D(x') = EZ(E)
for every x' in S'. Then under the conditions of the preced-
ing assertion, we have:

P(S(x,8)) = H(x,8) A(S) ,
so that, according to (70) and (76):

E(S,x) = 27C(x) A(S)

where A(S) is the area of the plane circular surface S,

These examples do not exhaust the possibilities 1nher-
ent in (70) and (76); however, they will suffice for the pres-
ent to show that there is an infinite class of radiometric
functions each member of which is equivalent to the radiance
function in the sense of there being a one-to-one linear trans-
formation between the vector spaces of radiance distributions
and radiant flux distributions of such functions. Let us say
that an arbitrary convex surface S is a radiometrically ade-
quate collector in an optical medium X if its associated radi-
ant flux distribution P(S(x,°*)) is equivalent, in the sense
of the present example, to N(x,°) for every point x in X. We
close this example with the following problem directed to in-
terested readers: Characterize the most general class of ra-
diometrically adequate collectors. (In other words: give
the necessary and sufficient conditions that a surface S be a
radiometrically adequate colleetor.) We have shown in the
present example that plane circular surfaces, and more gener-
ally, have conjectured that surfaces of revolution such as
cylinders, spheres, hemispheres, spherical caps, prolate and
oblate spheroids, etc., can be radiometrically adequate col-
lectors. It is certainly clear, at least intuitively, that
the class of radiometrically adequate collectors is quite
large and could, under suitable qualifications, contain sur-
faces not necessarily surfaces of revolution, such as the
Platonic '"solids', rectangular parallelepipeds, convex sur-
faces, and even certain non convex surfaces. However, non
convex surfaces introduce self-interreflection complications
which cannot be handled until the interaction principle (Chap-
ter 3) has been studied, and therefore for the present at any
rate, will be omitted from the problem stated above.

<< Table of Contents << Title Page >> Next Page >>
2.;2 Transition from Radiometry to Photometry

The concepts of classical photometry, to which we turn
our attention in this section, are designed to give quantita-
tive measures of the capability of radiant flux to evoke the
sensation of brightness in human eyes. These measures all
rest in the single concept of the standard luminostty function
the key concept in the science of photometry. Photometry 1is
principally concerned with the precise description of and the
deductions from the relative visibility of monochromatic radi-
ant flux as a function of wavelength and as embodied in the
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