
2.4 Irradiance and Radiant Emittance 
We now turn to the task of defining the radiometric concepts used in radiative transfer in 
general and hydrologic optics in particular, The first two of these are the concepts of 
irradiance and radiant emittance. These concepts describe the flow of radiant energy 
per unit area across a surface. That is, they describe the area-density of radiant flux.
 Irradiance describes the flow onto a unit area; radiant emittance describes the 
flow from a unit area. From a strictly geometric point of view, this is the only distinction 
between the two concepts. However, radiant emittance occasionally has an additional 
physical connotation associated with it, namely that of a flow of radiant flux from a 
unit area of surface which encloses an emitting source of radiant flux, i.e., a region 
manufacturing radiant energy. However, within the operational definitions of these 
concepts, this additional connotation does not exist; the connotation exists only in the 
mind of the experimenter. We now turn to the detailed definitions of these concepts. 
Definition of Irradiance 
We begin with the concept of irradiance. Imagine a radiant flux meter transported to a 
point x in a natural hydrosol, or in the atmosphere. Let the collecting surface S of the 
meter be placed so that x falls within its small expanse, and orient the set D of 
directions of the meter as desired. A filter is fitted on the meter so as to pass 
monochromatic radiant flux of given frequency v. Hence, the meter can be made to read 
P(S,D) directly (with v and t and their units understood). Let "A(S)" denote the area of 
the collecting surface S. Then we shall write: 
"H (S, D) 'f for P(S,D) /A(S) (1) and call H(S,D) the (empirical) irradiance over S 
within D. In full notation for the unpolarized context, we would write: 
"H(S,D,t,F)" for O(S,D,t,F)/A(S) (2) 
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or 
rrH(SjDOt=V)it for P(S,D,t,v)/A(S) (3) 
However, in most discussions of radiative transfer in hydrologic and meteorologic optics 
the light field is steady in time, and is studied frequency by frequency, Hence we shall 
until further notice hold t and v (or F) fixed and so exclude their symbols and units from 
the notation, as in (1). 
Next, we let S become smaller and smaller, such that it always contains the point x 
and such that the flow of radiant energy is onto S along the fixed set D of directions. 
Then we write: 
"H(x,D)" for 1im H(S,D) (4) S-0-f xI 
The existence of this limit is guaranteed by the S-additive and S-continuity properties of 
0 postulated in Sec. 2.3, The irradiance H (x, D) is the ( theoretical ) irradiance 
at x within D. The dimensions of both empirical and theoretical irradiance are radiant 
flux per unit area [per unit frequency interval); convenient units are matte/(meter)} (per 
unit frequency interval), 
I t is of interest to see the meaning of H (x , D) in terms of the radiant flux function 4 of 
Sec-, 2.2. Thus, from (4) and (3) (making v and t explicit for the moment): 
H(x,D, t,v) = lira P(S,D, t,v) /A(S) 5.}( x ) 
From Sec. 2*3 this becomes: 
H(x,D,t,v) lim lim O-(SZDst'u_ S-)-{x} F-o{v } -1(F) A(S) 

 



 
S~W 
It follows from (3) above and a theorem of calculus that: 
P(S,D,t,v) 
f H(x,D,t,v) dA(x) S 
and hence from (4) of Sec. 2.3 that: 
4~(S,D,t,F) = I f H(x,D,t,v) dl(v) dA(x) (7) S F 
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It is easy to see that these integrals can be generalized to the case where D in 
H(x,D,t,v) may vary with x, and we shall understand that (6) and (7) hold in such 
cases* 
In actual practice, the size of the collecting surface S, which serves to accept, diffuse, 
and transmit the incident flux on to the photoelectric element of the meter, ranges 
from the size of a pinhead to that of a dinner plate. These extremes are not intended 
to be precise limits; rather they are representative of the extremes that may be 
encountered in natural radiometric environments under ordinary working conditions. The 
lower limit cited above begins to approach the size where, for very sensitive 
photoelectric elements, effects of diffraction may be noticeable. For example, an 
ordinary household stickpin or a human hair held in a pencil-thin shaft of sunlight will 
cast a shadow with a diffraction pattern clearly discernable by the unaided human eye. 
Hence, a very small radiant-flux meter collecting-surface can pick up such irradiance 
variations over the shadow. The upper limit cited above is dictated by the fact that 
natural lighting variations become noticeable over such relatively large areal extents: 
changes of lighting with depth in ponds or oceans,, shadows cast by leaves or fish, 
edges of dense cloud shadows on the ground or a sea surface, etc. Hence by staying 
within these limits and choosing the size of S accordingly, good empirical estimates of 
irradiance can usually be made using the definition (1). 
The Meaning of 'Irradiance' 
I t is occasionally helpful in both theoretical and experimental considerations to keep in 
mind the various meanings of 'radiant flux' discussed in Sec. 2.2. These may be 
applied directly to the concept of irradiance. Thus H(S,D) may be imagined as 
proportional to the ,number of lines of flux incident per unit area over S and whose 
directions at their points of intersection with S lie within the set D. Further, using the 
Poynting vector interpretation of radiant flux, we see that the dimensions of the vector 
are precisely those of irradiance. Finally, H (S, D) may be viewed as a measure of the 
number of photons per unit area per unit time on S, funneling down onto S along the 
directions of D. In particular, using (2) above and (2) of Sec. 2.2 for a monochromatic 
set of n photons over a small collecting area, and incident within a small set D of 
directions normally on S, we have: 
H(S,D,t, {vl) t S gDgtj,{V} hvvnQ(D) A(S) 
A further insight into the concept of irradiance is obtained by considering some of the 
typical magnitudes of irradiance encountered in natural environments. Table I lists 
some of these values. They are order-of-magnitude estimates and are not to be used 
beyond establishing an intuitive feeling for the meaning of irradiance (see also Sec. 
1.2). 
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TAB LE 1 

ENVIRONMENT TYPICAL ORDER OF 

MAGNITUDE OF IRRADIANCE 

At sea level, on surface S  

normal to sun's rays, clear  

day* 101 watt/m2 

At sea level, slightly overcast  

days, horizontal surfaces 102 watt/m2 

At sea level, heavily over  
cast day, horizontal surface  

S (sunset) 10 watt/m2 

Lighted interiors: walls,  

ceilings, floors 1 watt/m2 

At sea level, clear night, high _ 

full moon, horizontal suface S 10 watt/m2 

At sea level, clear night, flux  
from 1st magnitude (highly vis  
ible) star, on surface S normal  

to star's rays _ 
10 watt/m2 

 
As another base for comparison and also to extend our intuitive feeling 
for irradiance and its connection with the photon picture of light, let us 
calculate the number of photons per unit volume, of wavelength A, required 
to produce 
H watt/m2 at a point of some surface. To fix ideas, suppose a thin pencil of 
photons arrives at each point x of a surface S in the direction of its 
inward normal C, and that each pencil is of the same density comprised of 
photons of a single frequency v. It follows that the photon density 
n(x,C,t,v) has the form 



n (x, &' t , v') # no (x f t) a (~' - 0 a (v' -v) 
where d is the Dirac delta function and where ~ is the inward normal to S, 
and v is the frequency associated with A. When used in (1) of Sec. 2.2, 
this equation yields: 
*According to Moon, Ref. [185], at sea level, for sun zenith, clear dry air, 
the irradiance is nearly 1200 watt/m2. See also [296] for a survey of solar 
irradiation measurements. 
4 RADIOMETRY AND PHOTOMETRY VOL, I I 
hvv no(x,t) 6 (C' -&) 6 (v' -v) dA(x) do(Cl) dl (v' ) D S F 
hvv no(x, t) dA(x) = hvvnoA(S) S 
as the radiant flux crossing S normally at time t. Hence hvvno is the irradiance produced 
by each pencil. Setting 
we have: 
hvvno = H watt/m2 
Hr photons. hvv m3 
or 
n v =  _ j L  photons 
 
by sec x m 2 

or 
n v a Ha photons~ ° by sec x m2 
For example, settini H = 1 watt/m2, A  =  5 5 4  m u ,  a n d  r e c a l l i n g  that h = 6.6 x 
10"3 Joule sec/photon and v = 3 x 108 m/sec, we have 

 
= number of photons of wavelength 550 mu p e r  s e c .  n o r m a l l y  incident per 
square meter which produce one watt 

 
.6 x 10r3"x3 x 10 
= 2.8 x 101° 
From Table 1 we see that the normal irradiance o f  a  first magnitude star is on the 
order of 10'9 watt/m2. I f we assume this flux to be comprised of photons all of 
wavelength a = 550 mu, then the number of associated photons producing this 
irradiance is 2.8 x 101° x 1.0-9 = 2:8 x 109 photons per second normally incident per 
square meter = 2.8 x.105 photons per second normally incident per square centimeter. 
Now a human eye's pupil is on the order of a tenth of a square centimeter in area. 
Hence when our eyes are directed toward a first magnitude star such as the present 
one, about 2.8 x 10 photons per second enter each eye to produce the visual sensa 
tion of brightness in the brain. 
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Terrestrial Coordinate Systems 
Irradiance measurements and other radiometric measurements of 
hydrologic and meteorologic optics during careful experimental 
investigations are usually made with respect to either one of two 
t e r r e s t r i a l l y - b a s e d  f r a m e s  o f  r e f e r e n c e .  Each reference frame 
uses the usual Euclidean three-dimensional coordinate system with its 
familiar xyz-axes. The two terrestrially-based reference frames are 



primarily distinguished by the way they anchor the directions of the x 
and z axes ire each case. See Fig. 2.3. The sun-based frame directs the 
plane determined by the x-axis and z-axis (the xz plane) so as to contain 
the center of the sun. (The north-based frame directs the xz plane so as 
to lie in the plane of the local meridian circle on the earth.) In each frame 
the z-axis is parallel to the local vertical direction, (i.e., the local 
gradient of the gravitational field). In meteorologic optics z is measured 
as increasing in the upward direction, i.e., the unit vector k along the z-
axis. In hydrologic optics it is more convenient to measure z as 
increasing in the downward direction -k, as shown in Fig. 2.3. In 
meteorologic optics, "z" (or other symbols) denotes attitude, in 
hydrologic optics, r'z" (or other symbols) denotes depth, when specific 
reference to terrestrial coordinate frames is made. 
The concept of direction within a reference frame established for-a 
natural optical medium such as the atmosphere or the sea is of central 
importance in hydrologic optics and 
ranks equally in importance with the notion of location. In view of this 
importance it will be well to define with care precisely what is meant by 
"direction", and to develop some of the more frequently occurring 
concepts associated with it. 
Now, to locate an object within a terrestrially-based reference frame, it 
suffices to give the x,y and z coordinates in terms of meters, say. Thus, 
in the hydrologic optics reference frames, the triple of numbers (1, 10, 
100) locates a point in a natural hydrosol by going one meter along the 
direction i from the origin, then In meters along the direction J, and then 
100 meters vertically downward. (Recall that in natural hydrosols, z is 
measured positive in the downward direction, i.e., in the direction _k.) 
Now this point obviously lies in a well defined "direction" from the origin 
of the reference frame, We observe that this "direction", however, has 
nothing to do with the distance of (1, 10, 106) from the origin. Indeed, the 
points (1/2, 5, 50) and (2, 20, 200) which are, respectively, half and twice 
as far from the origin as the original point, all lie in the same "direction" 
from the origin. A convenient measure of this common "direction" of all 
three points then would be established if we chose a point some 
standard fixed distance from the origin and which shares the same 
"direction" as they do. The obvious choice is the point a unit distance 
from the origin. Thus, if (x,y,z) is ~a point in a terrestrial frame of reference, then 
(x,y, z) / (x +y +z) is -a point a unit distance from the origin. We call this latter point the 
direction of (x,y,z) from the origin. 
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meteorologic optics sun--based frame 
gravitation field failing direction is downward direction 
 
 



 
 
hydrologic optics sun-based frame 
FIG. 2.3 Sun-based terrestrial frames of reference for meteorologic optics and 
hydrologic optics. 
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In many of our discussions we shall not need to specify explicitly the 
three coordinates of a point. In such cases we will simply write: 
or 
"x" for (x,y, z) 
'tx" for ( x1  , x2 , x3 )  
where the ordered triplets are the three coordinates of point x. Further we 
shall correspondingly write: 
or 
for (XPy2 ,z ) I ( x2+yz+z2 )  l / 2  
for (X I  , x2 j x3 ) / (X I  +X2  2 +X32 )  a /2  
Hence, throughout this work the letter "x" (in either lightface or boldface 
type, as emphasis requires) is generally to designate a location and the 
letter "~" is generally to 
designate a direction. The denotation of the components of x and t will 
vary so as to permit simplicity and clarity of expression. We have already 
used the three special directions i, j, k, which we have agreed to be the 
points (1,0,0),(0,l,0), and (0,4,1), respectively. 
We will also wish to consider collections of directions in addition to single 
directions. For example, certain sets D were already encountered in our 
discussions above. In particular, let us denote by "_E" the set of all 
directions about the origin. Clearly '= is a sphere of unit radius with origin as 
center. Observe that we use an upper case Creek Xi (the Creek 
counterpart to the English letter "X") to designate the set of all directions. 
There are two more sets of directions of very frequent occurrence in 
practice. First, there is the set of all upward directions, i.e., the set of all 
directions ~ such that ~ and k make an angle of less than ninety degrees. 
We shall designate this set by "=+". Second, there is the set o f all 
downward directions, i.e., the set of all directions ~ such that t and k make an 
angle of greater that ninety degrees. We shall designate this set-by ""-". 
The I'+" and "-" are convenient mnemonics which help distinguish one set 
from the other. The reader may recall from vector analysis at this point 
that if E is in =.+ then t•k > 4, i.e., the dot (or scalar) product of the 
vectors & and k is a positive number; and that if t is in E~,, then t•k is a 
negative number. This is the reason for the plus and minus signs in the 
names ""+" and "'=_". Indeed, it would be well to recall that for every 
direction E, 
~ •k = cos 9 
where 9 is the angle between the lines along which C and k lie. See Fig. 
2.3. For convenience we reproduce below the definition of the dot product 
of two unit vectors ~j and C2. Suppose we have written: 
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It &I It for (aj,br,cj)/(al=+bj2+CI2) I/2 
for (a2 p b, v c2) / (g2 2+b22+C22) 1/z 
Then we write: 
for .a.la&+blbl+ c1c? (a,2+bj2+CI2)1/2(a22+b22+C22)1/2 
From analytic geometry it is known that: 

 
where 0  is the angle between E, and &240 
The representation of a unit vector E as an ordered triple of numbers takes on deeper 
meaning when we observe the following geometric fact. Let "(a,b,c)" denote the 
ordered t r i p l e  r e p r e s e n t a t i o n  o f  C .  Then compute the dot product of C with i, 
j, and k in turn. By the cosine law cited above we have: 

 

 
E•k = cos I`3 
where SP1, V2, and V3 are, respectively, the angles between and the positive x, y and 
z axes. Using the ordered triple representations of ~, i, j, and k, and the definition of the 
dot product, we have: 

 

 
Hence the components a,b,c of the direction t are simply the 
cosines of the angles that C makes with the positive x,y and z axes, i.e.: 
COS 7/' 1 
a  
b = cos 'I1 2 C a COs -03 
This leads to the representation: 
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(cos VI t cos 92, cos -Z`3) 
i cos V i + J cos I-`2 + k cos "lam s  
 
where we have written: 
lfiff ff:~ff ffkfl 

 

 
for (l,o,o) for (o ,l ,o) for (o,fl,l) 
There is an alternate mode of representation of a unit vector t. This 
alternate mode attains its greatest utility in actual calculation. This is the 
representation of t 
by two especially constructed angles 6 and ~, found as follows. By 
studying the schematic representation of in Fig. 2.4 it is clear that 
since each direction of H7 has fixed known length (namely a unit length) it 



suffices to uniquely specify C by the angle it makes with the z-axis and the 
angle the plane determined by ~ and k makes with the xz plane. Suppose 
we designate the former angle by ff6ff, the latter by ff0ff, and agree to set o 
= 4 when k. Further, we agree to have 
6 increase to w .when t -k. Further, we agree to set 4 when g is in the, xz 
plane and to have 0 increase to w/2 as the plane of & and k rotates from 
the xz plane to the yz plane. We let 0 increase in like manner through the 
next three quadrants, and finally have it measure 2n radians after one 
complete turn in this manner. To summarize this alternate mode 

 
 
 
w. w~ . 
FIG. 2.4 Angle and direction definitions 
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of representation of &, we agree to write: 

 
whenever & is in , and whenever (a, b, c) , e.= arc cos c,, and ~ ¢ arc tan 
b/a, and where the quadrant containing ~ is fixed by the signs of a and b.
 The angle e is the polar (or zenith) angle of ~, and ~ the azimuthal 
angle of C. 
Representation of Irradiance in Terrestrial Frames 
Let us return now to apply these geometrical results to the task of specifying 
irradiance in natural optical media such as the atmosphere or the sea. It has 
become clear after much theoretical and experimental work in natural 
aerosols and hydrosols that the type of irradiance which is used most often 
in practice is the irradiance on a ,horizontal surface S at point x with a set D of 
directions which constitutes either the hemisphere + or 2_ of the unit sphere . 
To specify such irradiances, we return to the definition in (4), and replace 
"D" first by "=.+" and then by (or by "+" and "-" Thus H(x, +) (or H(x,+)) is 
the irradiance at point x induced by upward flowing radiant energy in the 
directions of '.a+, and H(x,7„) (or H(x,-)) is the irradiance at point x induced 
by downward-flowing radiant energy in the directions of E._. 
A further specialization in notation can take place when the medium is 
stratified. Now, a natural optical medium (or a light field) with a 
terrestrially-based reference frame (Fig, 2.3) is said to be stratified if and 
only if the optical properties of the medium ( or light field) as functions of 
coordinates x,y,z, are independent of the coordinates x and y. Thus for 
stratified light fields we may, for brevity and without loss of information, 
replace the general point name "x" 
in H(x,.+) by "z", the depth-parameter name. Thus, let us agree henceforth 
in stratified natural optical media to write: 
and 
"H (z,+)  += for H(x,'+) -  (3) 



"H (z.  _) It for , H(x, -=_) (1©) 
We call H(z,+) the upward irradiance and H(z,-) the downward irradiance. 
The next most frequently occurring type of irradiance H(x,D) after the types 
H(z,±), is that for which D is an arbitrarily oriented hemisphere. Thus, let 
us denote by 
that part of consisting of all unit vectors ' such that ' and ~ subtend an 
angle less than ninety degrees. Hence, after adapting definition (4) to the 
case where D is E (~) , we have H(x,"(&)) as the irradiance at point x on a 
collecting surface S with unit inward normal &, such that the irradiance is 
produced by radiant flux incident on S at x along the directions within ( ). 
See Fig. 2.5. Observe that the irradiance H(x,?(k)) is simply H(x,E=+) 
considered earlier, since 
(k) +; and similarly H(x,`4"(-k)) = H(x, E_) . Now a useful fact about such 
sets of directions as ~( ) is that they are 
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FIG. 2.5 Defining the hemisphere W(&) determined by the direction 
uniquely specified by giving the single vector &. We take advantage of this observation 
to shorten the irradiance notation b~ agreeing henceforth in (4), for the case D = [ , to 
write: 
"H (x ,4)" for H(x,.a(&)) (11) 
If we restrict attention to a fixed point x, then the totality of all values H (x, C) as C 
varies over '- is called the irradiance distribution at x. If the light field is stratified we 
further agree to write: 
I t  l i  ( z  ,  ~ ) 1 '  for H (x, E) (12) 
Thus in stratified light fields, one may specify irradiances by giving a depth z and the 
unit inward normal & to a (hypothetical or real) collecting surface at that depth, 
If one prefers to use the mode of representation of by means of polar and azimuthal 
angles e and ~, then it will be agreed to write: 
Whenever wavelength dependence and time dependence is to be shown explicitly we 
would use or "H(x,~%(0,t)" or "H (x , (t) , t , X) " as the case may be, and in 
contracted notation, as desired, 
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"H (x,e,0)" for H(x,E) (13) 
or 

 
when the light field is stratified. It should be re-emphasized that the direction E(and 
hence (0,~)) refers to the unit inward normal to the collecting surface S in the 
operational definition of (13) and that the flow o f photons is onto S at x along the 
directions of This is the convention we shall adopt when discussing irradiance 
measurements by collecting surfaces on a theoretical level; for the transport equations 
for H(z,±) to be introduced later (Chapter S) are written down in an intuitively natural 
manner if this convention is adopted. The convention may be altered if need be for-

empirical discussions. However, it is perhaps needless to point out that the fewer such 



conventions actually adopted for radiometers, the smaller will be the chance of 
conceptual chaos in practice. 
One final definition, and then we shall be ready for a discussion of the cosine law for 
irradiance. We agree to write: 
"H(x,~)" for H(x,~) - H(x,-&) (14) 
and call H(x,g) the net irradiance at x in the direction ~. 
The Cosine Law for Irradiance 
We now consider the property of irradiance which is its most important and most 
frequently used theoretical property. This is the cosine law for irradiance. The law is 
based on the simple geometric fact that the apparent area of a small plane surface at a 
fixed distance along one's line of sight varies as the cosine of the angle between the line 
of sight and the normal to the surface. If now we direct a swarm of photons along the 
line of sight toward the small surface then, all other things being equal, the area will 
intercept a number of photons proportional to the apparent area, i.e., proportional to the 
cosine of the angle between the direction of the beam of photons and the surface's 
normal. Hence the area density, i.e., the irradiance of the photons on the surface will 
vary as the cosine of this angle. The formal statement of this observation is the cosine 
law for irradiance. We now translate this verbal derivation of the cosine law into 
symbolic form. 
In Fig. 2.6 a small plane surface is denoted by "S". An amount P(S,D) of radiant flux is-
incident on S and arrives at each point of S through a very narrow fixed conical solid 
angle D such that the central direction of D is normal to S. Since the radiant flux is 
limited to a relatively narrow bundle of directions, essentially all the lines of flux are 
confined to a cylindrical volume C in the immediate neighborhood of 5. Let I'S" denote a 
section of C generated by a plane whose normal makes an angle /a with the axis of C 
and such that 
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FIG. 2.6 Geometry of the cosine law for irradiance. 
the plane goes through some point x on S. The area A(S') of S' is clearly related to the 
area A(S) of S by the relation: 
A(St) = A(S) sec 7-P 
Assuming no intervening sources or sinks of radiant flux in the region of C between S 
and S' the flux P(S,D) then also crosses S', Thus we can write: 
P(S,D) = P(S',D) 
By definition, the area density H(S',D) of radiant flux across S' is 
H(S',D) a P(S` ,D)/A(SI ) 
In view of the preceding flux conservation statement and the geometric relation between 
A(S') and A(S) we can write: 
H (S' q D) = P(S,D) / (A(S) sec -0) 
By definition H(S,D) is P(S,D)/A(S) and we therefore arrive at the statement: 
 
(15) 
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This is the empirical form of the cosine law for irradiance: A theoretical form of the law 
is obtained by letting S~{x} (and hence S'-•{x)). The result is: 



 
H (x, E') = H (x., Q ~' E' 
(16) 
Here we have used the fact that D was sufficiently narrow so that in the limit H(S,D) 
goes to H(x,g) as S goes to the set {x) consisting of point x. Further, H (S' , D) goes to 
H (x , g' ) as S goes ,to {x). Of course (16) is to be understood to apply to a set D of 
directions with a small but finite solid angle. The limiting case for D-1-{g} can be 
handled naturally only after the concept of radiance has been introduced. Further we 
have replaced "cos V " by "g • g  " '  i n  g o i n g  f r o m  ( 1 5 )  to (16). After the 
introduction of the concept of vector irradiance (Sec. 2.8), (16) can readily be 
generalized to the case where the set of incident directions D is arbitrary. 
Radiant Emittance 
We close this section with a few comments on the concept of radiant emittance. As 
already noted in the introductory remarks to this section, the concept of radiant 
emittance is nearly identical to that of irradiance, differing from the latter geometrically 
only by the sense of flow of the radiant energy across a surface S. Fig. 2.7 
schematically depicts the geometrical distinction between irradiance and radiant 
 
FIG. 2.7 Conceptual distinction between irradiance and radiant emittance. 
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emittance; a given parcel of radiant energy flowing onto a surface S 
generates irradiance on S: the same parcel flowing from the surface S 
generates radiant emittance of S. To emphasize this distinction and to have 
appropriate notation available when needed, we need only write 'IV (S,D)« to 
denote radiant flux onto S and to write "f+ (S , D) " for radiant flux from S. 
Then we extend this notation to radiant flux by means of "P- (S,D)" and 
1"P+(S,D) ". Thus, the definition (1) of empirical irradiance may be written 
as: 
'1H (S,D)11 for P- (S,D) /A(S) (17) 
for emphasis of the "onto" interpretation of the flux; and we now go on to 
write 
"W (S, D) " for P+(S,D)/A(S) (18) 
for contrast of the two notions. We call W(S, D) the (empirical) radiant 
emittance over S within D. From consideration of Fig. 2.7 it is clear-that in the 
context of that figure: 
P+ (S ,, D) = P (S j D) 
 
 

 
so that 
 
W(S,D) = H(SD) 
(20) 
Another distinction between W(S.D) and H(S,D) for a given S and D lies on 
the physical rather than the geometric level. Indeed, it is on this level that 
the concept W(S,D) was originally conceived and arose in connection with 



the derivation of the complete (or Planckian) radiator wherein radiant flux 
is generated within a body and then emitted through its boundary. This 
interpretation will be used in Sec. 2.12 during the transition from radiometry to 
photometry. 
We conclude by observing that every auxiliary geometric definition and 
geometric law considered above for irradiance now holds analogously for 
radiant emittance. We shall henceforth apply the analogous notation for 
W(S,D) (such as W(x,D), W(x,Q, etc.) without further explicit definitions. Thus -

for example we write: ` 
and 
"W (x, D)" for 1im W(S,D) (21) S-*{x} 
"W(x, E)" for W(x,: (~)) (22) 
and so on. 
 


