
2.7 Scalar Irradiance Radiant Energy, and Related Come is The radiometric 
concepts studied in this section are those of scalar Irradiance, radiant energy, and 
related radiometric concepts. The first of these concepts is designed to quantitatively 
describe the volume density of radiant energy in a way which is amenable to operational 
methods of determination. In addition to the notion of scalar Irradiance, we shall develop 
in this section several closely related notions which together with scalar Irradiance 
comprise a set of useful measures of the volume density of radiant energy. The first of 
these is radiant density. 
Radiant Density 
The notion of radiant density is one of several concepts designed to give a measure of 
the radiant energy per unit volume at a point. Consider a steady beam of radiant flux 
normally incident on surface S at .point x at time t, as shown in Fig. 2.16. Let the field 
radiance of the beam at this instant be N, its cross sectional area be A, and its solid 
angle be 0. The amount of radiant flux incident on S at time t is then NASA. An instant t 
later, the flux of the beam will have moved-on a distance r = vt, and the flux will have 
swept out a cylindrical volume of magnitude V = Avt. During this time the beam has 
been steadily pouring an amount of radiant energy into the volume at the rate of NAn 
watts. Hence the radiant energy content of the beam is NAUt, and its average content 
per unit volume is NADt/Avt = NQ/v, 
Suppose that point x were simultaneously irradiated at time t by an arbitrary finite 
number of narrow beams of radiance Ni, i= 1,..., n, and corresponding solid angles ni. 
Then the radiant energy u(x,t) per unit volume at x is given at time t, by means of the D-
additivity of 0 (equation (7), Sec. 2.3) 
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FIG. 2.16 Setting up the connection between radiance and radiant density 
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The transition to the continuous case is immediate. Toward this end, let us continue to 
write "u(x,t)" for the radiant density, i.e., we shall also write: 
flu (x 10 t) if 
for 

 
fN(xt~vt) dil(~) . (2) 
The units of u(x,t) are aoutes/m'. We may use either the field or surface interpretation of 
radiance in this definition. 
Scalar Irradiance 
Let us go on to write: 
"h (x, t)" for N(x, t) dQ(t) (3) V 
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h(x,t) is the scalar irradiance at x and time t. The field radiance interpretation of 
N is most often used in (3), and this interpretation will be in force unless 



specifically noted otherwise. The reason for singling out h(x,t) for special 
consideration will be made clear in a moment. For the present it suffices to 
note that in general: 
u(x,t)v(x,t) = h(x,t) 
By virtue of (3) it follows that in this equation the field interpretation of u(x,t) is 
to be understood , and that while the units of u (x, t) are joules/ma, those of 
h (x, t) are watts/m2 Hence, the term "irradiance" in the name "scalar 
irradiance" is appropriate. The reason for the modifier "scalar" will also become 
clear subsequently after vector irradiance has been defined in (2) of Sec. 2.8. 
A generalization of (3) is obtained by replacing E; by a subset D of E. In that 
case we would write: 
"h(x,D,t)" for fN(x,~,t) dn(E) 
D 
The radiant density associated with h(x,D,t) is u(x,D,t) and (4) holds for these two 
quantities. 
Spherical Irradiance 
We shall now show why scalar irradiance is singled out as an alternate (and an 
actually preferred) description of the radiant density at a point in a radiant flux 
field. Consider the light field at a point x in a natural optical medium at time t. Let N(x,•) 
be the radiance distribution at x. Now imagine a small spherical collecting surface S of 
radius r in the field so that its center is at x. We then ask: what ia the average 
amount of radiant flux incident per unit area over S? 
To answer this question it is useful to conceptually decompose the great 
number of radiant flux streams at x into a discrete set of flows. Two such flows 
are shown in Fig. 2.17. The lines of flux of one of these flows along the 
direction E~-. have been fitted with little direction cones of solid angle 
magnitude Ski. Suppose the radiance at x in the direction &i is Ni. Then the 
irradiance at x on a plane normal to ~i is Nini. If the sphere is small, say the 
size of a ping pong ball, then for most natural light fields in the air and sea, Ni 
will not vary in the region of space taken up by the volume of the sphere. From 
this we see that we can treat the radiance function N as a constant with 
respect to location in the vicinity of the sphere and of value Ni for the direction 
t-. It follows that the amount of radiant flux incident on the sphere contributed 
by the stream of flux in the direction ~i is (niQi)nrz. This estimate is based on 
the 
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FIG. 2.17 Computing the radiant flux intercepted by a spherical collector in a 
general light field 
assumption that the amount of flux of a narrow beam intercepted by a curved 
hemispherical surface is the same as the amount intercepted by the great-circle 
area associated with the hemisphere. The assumption is rigorously defensible for 
transparent media using the concepts of vector analysis and Stokes Theorem. 
For the present the reader's intuition will readily allow this assumption to stand 



even for the case of turbid media as long as r is kept very small; The "line of 
flux" interpretation will help the intuition considerably in this matter. 
The main task in answering the above question has now been dispatched. It 
remains only to add up all the contributions by the various beams of flux, using 
as justification Equation (7) of Sec. 2.3. The result is: 
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The average radiant f lux per unit area of the sphere S is then obtained by 
dividing this quantity by 4wr2. Let us designate this average by writ ing: 
n 
"h (x,t)" for 1 L N.Qi (5) 4 -ff  4 
i=1 
and agree to call i t spherical irradiance. We shall retain this terminology 
and notation for the continuous formulation. That is, we shall write: 
"h (x,t)" for 1 h(x,t) (6) 4n 4 
Definit ion (6) is the basis for an operational determination of scalar 
irradiance using a spherical collecting surface S. For the average radiant 
f lux per unit area on S is readily measurable and this amount differs 
mult iplicatively from u(x,t) by a f ixed numerical factor. Hence, by only 
sl ight changes in optical design, the same photoelectric devices used to 
determine H and N can be directed to obtain scalar irradiance h. 
Therefore it is spherical irradiance or scalar irradiance which is directly 
measurable by photoelectric devices. The concept of radiant density u 
(x, t) is by way of contrast a theoretical concept related to the empirically 
based concept h (x, t) by means of (4) . 
Hemispherical Irradiance 
One of the most useful mathematical models of l ight f ields in-natural 
waters is the exact two-flow model to be considered in detail in Chapter 8. 
A radiometric concept which arises in that theory, and one which also has 
been found of intrinsic interest to experimenters, is the concept of 
hemispherical scalar irradiance. We now discuss this concept. 
Figure 2.18 (a) depicts a small spherical collecting surface S with center x 
which is exposed to f lux from only one hemisphere of ' .  Let N(x,•) be the 
radiance distribution 
at x. Let us say that light is incident on the sphere in the direction of [ ).  We 
ask: what is the average amount of radiant f lux incident per unit area over 
S? Clearly every point of S is in principle exposed to the l ight f ield over 5[ 
). Fig. 2.18 (b) shows how an obliquely incident beam with a direction in 
[E] can come close to i l luminating the "north pole" of the l i t t le spherical 
surface. If we divide up '(E) into pieces analogously to the manner used in 
deriving the expressions above for spherical and scalar irradiance, then it 
becomes clear that the integral of N(x,•) over '(C) yields the appropriate 
scalar or spherical irradiance component, 
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FIG. 2.18 Details for a shielded spherical radiant flux collector 
Thus, using field radiance let us write: 
"h (x,~,t)" for N(x,E',t) dg(El) (7) V 
and analogously, we write: 
t'h4w(x,~,t)" for 
 

 
We call h4 r (x , ~, t) the hemispherical irradiance at x , over the hemisphere W(&), at 
time t. Further, h(x,&,t) is the associated hemispherical scalar irradiance. It is clearly a 
special case of h (x , D, t) defined after (3) above. Methods of measuring 
hemispherical irradiances will be discussed _in Chapter 13. It follows immediately from 
(3) and (7) that 
h(x,t) = h(x, ~, t) + h(x, -E,t) (9) 
An analogous connection to that displayed in (9) also holds between h4.ff (x, ±&, t) and 
h4, (x , t) . The introduction of 
h4,ff (x , ~, t) into the family of radiometric concepts is motivated exactly for the 
empirical reasons that motivated the introduction of its full spherical companion 
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When we are working in stratified light fields (Sec. 2.4) then it is possible to drop without 
loss of generality the "x" and "y" coordinate symbols from the notation and re 
tain only the depth coordinate symbol "z" in the notation. In such contexts we agree to 
write: 
or Irh(z,0,0,t)+' for h(x,g,t) - (10) 
In particular, if E is k or -k, which occurs in the important case of the two-flow theory 
(Sec. 8.3), then we agree further to write: 
"h (z,±,t)" for h(z,±k,t) , (11) 
where we read upper signs together and then lower signs together to obtain two 
separate definitions. As usual; when the light field does not appreciably change in time, 
or when time is understood, we shall drop ' I t "  from the notation. Applications of 
these concepts are taken up in Sec. 13.9. 
Radiant Energy over Space 
The discussion of this section is now continued by officially noting two interpretations of 
the term "radiant energy". The first interpretation centers on the simple connection that 
exists between scalar irradiance and radiant energy. Suppose X is a subset of an 
optical medium over which at time t there is defined a scalar irradiance function h for a 
given frequency v. Let "U(X,t)" denote the radiant energy content of X at time t. That 
is, by the definition of u (x, t), we agree to write: 
i s  U(X, t) I t  for u(x, t) dV(x) (12) 
and from (4) 
U ( X ,  t )  =  f  ( h ( x , t ) / v ( x , t ) )  dV(x) (13) 
X  
where "V" is the volume measure of the optical medium. As a special case, if v(x, t) and 
u(x, t) are independent of x and t then (13) becomes: 
U (X) _ (h/V) V (X) (14) 
where, for this case, we have written: 
"U (X)" for U(X,t) "h" for h(x,t) t'V" for v(x,t) 
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I t is clear from (12) that U ( • , t) is v-additive and v-continuous. That is, 
for every two disjoint parts X} and X2 of an optical medium: 
U(xi,t) + U(X2 ,t) = U(XI U X2 ,t) 9  (15) 
and for every X and t: 
if V(X) 0 
then U(X,t) w  0 It (16) 
Radiant Energy over Time 
There is still one more interpretation that can be made of the term "radiant energy". The 
preceding interpretation of (12) is associated with the energy content of a given region X 
at time t. There is a complementary interpretation of the total energy incident on or 
leaving a surface S over an interval T of time. For this interpretation we write ,e.g.: 
"U- (S,T)" for f f H(x, W (&) , t) dA(x) dt (17) 
T S 
i.e., U"(S,T) is the radiant energy incident on S over the time interval T. The hemisphere 
of incident radiant flux at each x is E(Q , with C normal to S at x, in the inward sense. A 
complementary definition can be made for U+(X,T) using radiant emittance. 
It is worthwhile isolating the important concept, occurring in (17), of radiant flux across a 
genera Z surface S rather than just a collecting surface of the kind encountered in the 
sections above. Thus we write: 
T ! p -  (Sot.) i t  for H(x,H[ ) ~t) dA(x) (18) f 
S 
where C is the unit inward normal to S at x. A similar definition of F+(S,t) can be 
phrased. As usual, the signs "+" and "-" can be dropped whenever no confusion results, 
and also the "t" can be omitted for brevity. 
Scalar Radiant Emittance 
we conclude this section with the definition of the notion of scalar radiant emittance. 
This concept is the surface-counterpart to scalar irradiance h defined in (3). Thus, let us 
write 
, 1 w (x, t) 1 1  for f N+ (x o  g '  i  t )  d Q  ( E ' )  ( 1 9 )  
62 RADIOMETRY AND PHOTOMETRY VOL. II w(x,t) is the scalar radiant 
emittance at x at time t. This concept is useful in describing certain sources of radiant 
flux distributed continuously over some region of an optical medium. The emittance 
counterparts to hemispherical scalar 
irradiance emittance can now, be defined for w(x, t) . These definitions would exactly 
parallel those in (5), (6), (7), (8), (10), (11), and therefore need not be given in detail at 
this time. 
 


