Ocean Optics 2007: Size distribution and VSF inversion to size.
Emmanuel Boss, 19 July 2007

Goals of Laboratory

To experiment with the LISST inversion of near-forward VSF to size and compare it to data from a Coulter Counter and microscopy.

Materials:

LISST-100X B

Coulter Counter

Microscope

4 different phytoplankton cultures (courtesy of Oyster Larvae program).

Dock sample

Beads of known sizes.

Divide into three groups:

Group I: Microscopy

a. Identify the phytoplankton cultures based on their names and look them up on the internet. 

b. Look at the cells in the microscope. Draw pictures of the cells including information about their size(s).

c. Note which of the cells are sphere-like and which are the most different from spheres.

d. Look at the dock samples. Note the type of particles that are present.

Group II: Coulter counter

a. Run calibration beads through the counter and compare the specs on the bottle with those found in the PSD.

b. Run the four phytoplankton samples and obtain its PSD.

c. Run the dock sample and obtain its PSD.

Group III: LISST-100x B

a. Run DI water through the LISST to get your blank (zscat file).

b. Run beads to test the PSD inversion. Note how well the position of the peak agrees with manufacturer specs.

c. Run phytoplankton samples and obtain their PSD

d. Run the dock sample and obtain its PSD.

Homework:

Compare the 3 methods of sizing for the phytoplankton samples and answer the following:

a. Are the methods consistent for the sphere-like cells? 

b. Are there obvious biases between the methods? 

c. Are these biases worst for non-spherical cells?

d. How would you expect the LISST PSD of non-spherical cells to vary from that of the Coulter?

e. Convert the Dock PSD’s of coulter and LISST to a differential PSD (N(D) in # of particles per ml per m). How do they compare? How does the PSD compare to the Power-law distribution (see appendix below)?
Appendix: Calculus of Particle Size distributions (created for a Particle dynamics class taught in 2003 at UMaine)
The details of size distribution of particles are important for predicting chemical (e.g. surface processes) and physical properties (e.g. settling velocity) of the particulate phase. The particulate size distribution of bed sediment provides a record of the hydrological and sedimentary history of the particles in the bed (e.g. Dyer, 1986).

For sediments, grain size is typically distributed according to a power (or ) scale (Table 1). =-log2(D) or D=2-, where D is the particle diameter in mm. It is based on the idea that since particles span several orders of magnitude, a power scale will provide a better description of all scales. It is also consistent with the observation, that, in general, the volume (or mass) per logarithmic bin is approximately equal across all bins (this is often called the Junge distribution). This is, off course, a gross simplification to a complex reality. It has, however, been the starting point for much good science.

Using sequential weighing of material going through sieves of different sizes, a histogram of % mass as function of size is generated (e.g. Fig. 1). For large material dry sieving is performed while for clays (which when dried up will clump to large aggregates) are sieved when wet in suspension with a deflocculating agent (e.g. Calgon).
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Figure 1. A frequency histogram (left) and the associated cumulative frequency historgram (based on Figure 2.2. in Allen, 2001) .

The boundaries of each bar in the histogram are the nominal size of the filter (sieve). By summing the histograms from the smallest size up, the cumulative distribution is generated (Fig. 1 right panel). It describes the percent mass below a given size.

Mathematically, the % mass distribution can be written, for the sieving example above, as follows:
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while the cumulative distribution is:
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In the example above f(D) is the particulate (mass) size distribution (PDF) while F(D) is the cumulative size distribution. For the sake of comparison the PDF is described by its statistical (parametric or nonparametric) properties (e.g. mean size, median size, mode size, standard deviation, percentiles, kurtosis, skewness, etc’). Note that the errors of these statistics can be quite large and depends on how fine the scale is and how many particles we have in each bin.

The frequency distribution provides us with:

Median particle size, d50, which is the size at which 50% by weight is finer.

Mean particle size, dm=((piDi)/100, where pi=percentage by weight of grain of size Di.

Standard deviation, =0.5(D84+D16), where subscript denotes the position of the percentile. In terms of the  values (Finite bins):

Mean:  m=((pi i)/100, where pi=percentage by weight of grain of size  i
Standard deviation:  =0.5( 84+ 16)

Skewness: =( m+ 50)/
Kurtosis: =0.5( 95+ 5-
An analytic function with a few parameters is often fit to the size distribution. The most often used PSDs are the normal, log-normal and hyperbolic distributions (see appendix). How to fit a function to the data is not a trivial matter and is often done without the necessary care. We never know f(D) at a specific D. F(D), however, is known, within the (aggregated) measurement uncertainties, at the boundaries between each size bin. Thus, it is F(D) that should be fit to an analytical function using its values at Dj. Lets assume we want to fit the analytical function G(D) to our N observations F(Dj) each of which has an uncertainty of ±(F(Dj). We derive a cost function (in the least-squares sense):
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We then find the parameters of the analytical function G(D) that minimize this cost function. 

Once G(D) has been derived, we can obtain the fitting function of the PSD f(D)=dG(D)/dD. We often have to translate from a mass (or volume distribution, assuming all particles have the same density, most often =2.65gr/cm3) to an area or number concentration. Assuming the particles are spherical, the number concentration is obtained from the volume concentration distribution by dividing with the volume:

 
N(D)=g(D)/{4D3/3}.

Once a fitting function has been derived it is important to quantify how well it fits the data. This could be done using the average, worst, median difference between the data and fit {i.e. the statistics of the residual G(D)-F(D), taking into account (F(Dj)}. The shape of the residual as function of D will indicate the shortcoming of the fitting function if it does not look random. Since F(D) is (or is proportional to) a cumulative distribution function the Kolmogorov-Smirnov test can be used to evaluate the likelihood that G(D) is indeed the underlying distribution (e.g. Press et al.’s Numerical Recipes). This test is based on max{|G(D)-F(D)|}. 

An analytical function with more fit parameters is very likely to provide a better fit to the data than one that has less. It is important to remember, however, that an important reason to do analytical fits is to provide the maximal informational content of the data with a minimum set of parameters.
An important point we need to remember throughout this analysis is that each size filter has its own biases. Those biases are easy to deal with when the particles are all perfect spheres but are hard to deal with when we deal with elongated particles. For example, when we deal with long and skinny particles, depending on which 2-D projection is presented to the sieve, the particles will or will not make it through.

Another important point is that each particle sizing technique measures a different property of the particle. Some measure a proxy of the volume of each particle (e.g. Coulter Counter), some the cross-sectional area of all particles of approximately the same size (LISST), some the volume of all particles of approximately the same size (acoustic and optics in the Rayleigh limit, when wavelength >> D). Comparing distribution generated by different techniques require making assumption regarding shape (e.g. to convert from cross-sectional area to volume). In this respect sphere are not an ideal shape but rather an extreme shape; a sphere has the smallest surface area to volume ratio of all 3-D shapes.
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Table 1. The  chart. Converts between size (mm or micron) and  value. Conversion is based on D[mm]=2-
Analytical functions that are often applied to cumulative particles size distributions: 

I. Hyperbolic size distribution (two fit parameters, A and and two boundariesDmin & Dmax,often determined by sampling method):
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for (1. 

II. Normal size distribution:
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where 
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 and  are the two parameters of this distribution, the mean and standard deviation respectively:
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III Log-Normal size distribution:
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It is logD not D that is normally distributed so:
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In this case, the median equals the geometric mean: Dg=
[image: image13.wmf]D

=(D1D2D3…Dn)1/n.

g is the standard deviation of logD, the geometric mean standard deviation.

The mode (where the peak of the distribution is), median and mean are related to the geometric mean by:


log(DMode)=log(Dg)-g2

log(Dmean)=log(Dg)


log(<D>)=log(Dg)+0.5g2
For such a distribution the cumulative distribution is a straight line on a log(G(D))-logD plot.

IV zeroth order logarithmic distribution (ZOLD) 
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Which is a two parameter (DMode, 0) distribution.

The relationship between mean and mode is given by:


logDMean=logDMode+1.502,
and the standard deviation is given by:


=DMode[exp(402)-exp(302)]1/2.

More can be found in:

Allen, J. R. L., 2001. Principles of physical sedimentology. Blackburn press.

Dyer, K. E., 1986. Coastal and Estuarine Sediment Dynamics, Wiley.

Kerker M., 1969. The Scattering of light and other EM radiation, Academic Press.
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