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Who Cares About Shallow Waters? 

●  Military needs maps of bathymetry and bottom classification in denied-

access areas for amphibious operations; water clarity maps for optical 

mine finding and diver operations 

 

●  Ecosystem managers need to map and monitor bottom type and water 

quality for management of coral reefs, sea grass beds, kelp forests, 

fisheries, and recreation 

• episodic (hurricane effects, harmful algal blooms, pollution events) 

• long-term (global climate change, anthropogenic changes from 

coastal land usage) 

 

●  Maps needed at 1-10 meter spatial scales (not kilometers), and 

sometimes within ~1 day of image acquisition 



Problems 
We have already seen that… 

 

●  Statistical algorithms often 

fail in optically shallow 

waters (bottom-reflectance 

effects) 

 

 

●   Black-pixel and similar 

open-ocean atmospheric 

correction algorithms also 

fail for shallow water 

(bottom reflectance; 

absorbing aerosols from 

nearby land) 

 

Rrs(490)/Rrs(555)  

= 1.710.01 



Atmospheric Correction 

We need an atmospheric correction technique that  

 

•  does not require zero water-leaving radiance at particular 

wavelengths (no “black pixel” assumption) 

 

•  works for any water body (Case 1 or 2, deep or shallow) 

 

•  works for any atmosphere (including absorbing aerosols, which 

are common in coastal areas) 

 

Two techniques: 

 

• Empirical Line Fit (ELF) 

• Radiative transfer 



Empirical Line Fit (ELF) 

Estimate Lw at the sea surface at a particular location (xo,yo) within the 

image. 

 

The difference in the estimated Lw(xo,yo,) and the measured at-sensor 

radiance looking at that point, Lu(xo,yo,), is the contribution by surface 

reflectance and all atmospheric path radiances:   

Ldiff(xo,yo,) = Lu(xo,yo,) - Lw(xo,yo,)  

 

Assume that the atmosphere, solar illumination, and surface wave 

conditions are the same for every pixel of the entire image. 

 

Subtract the same Ldiff from Lu(sensor) viewing each pixel (x,y) to 

obtain Lw(surface) at each pixel in the image: 

 

Lw(x,y,) = Lu(x,y,) - Ldiff(xo,yo, )        This is the ELF technique  

 



Determining Lw has the problem of above-surface (what is  in the 

Carder method?) or below-surface (what is KLu?) estimation. 

 

The major drawback of this atmospheric correction technique is that it 

requires someone in the field, usually in a small boat, to make the 

needed sea-surface measurements at the time of the overflight. 

 

An ELF based on a single point measurement of Rrs will give a bad 

correction for an image if the atmospheric conditions vary over the 

image (clouds, variable aerosol concentration), or the sea surface 

reflectance varies (wind speed varies) 

 

The ELF can also become inaccurate for large off-nadir viewing angles 

because of different atmospheric path lengths and scattering angles.  

 

Empirical Line Fit (ELF) 



Radiative Transfer Techniques 

If we know (or can estimate) the inherent optical properties of the 

atmosphere, then we can use an atmospheric radiative transfer (RT) 

model to compute the atmospheric path radiance (and surface 

reflectance) contribution to the measured total, and subtract it out to 

obtain the water-leaving radiance. 

 

Example:  the TAFKAA RT model was developed by the US Navy 

for this purpose and is used by several research groups (see the 

TAFKAA references in the papers directory). 

 

TAFKAA has been used to create large look-up tables for various 

wind speeds, sun angles, viewing directions, and atmospheric 

properties (aerosols, surface pressure, humidity, etc).  These 

calculations required ~6 x 107 RT simulations with TAFKAA, taking 

several months of time on a 256 processor SGI supercomputer. 



When correcting an image, 

each pixel in the scene has a 

different viewing geometry, and 

thus gets a different correction. 

 

The main disadvantage of any 

RT method is that it requires 

measurement or estimation of 

the atmospheric properties. 

   

This also requires having 

someone in the the field 

making meteorological 

measurements, or the use of 

atmospheric prediction models.  

Radiative Transfer Techniques 

sensor 



Spectrum Matching and Look-Up-Table Rrs Inversion 
(Mobley et al., 2005. Applied Optics, 44(17), 3576-3592) 

The first step is to create a database of Rrs spectra that correspond 

to all possible combinations of water absorption and scattering 

properties, bottom depths, and bottom reflectances that might be 

found in the area being studied. 

 

I do this with a special version of EcoLight (nadir-viewing Rrs only) 

R
rs
(in air,θ,φ,λ) 

L
w
(in air,θ,φ,λ)

E
d
(in air,λ)

[sr 1] 

Radiative-transfer-based algorithms for hyperspectral sensors 

(~100 wavelengths, ~5 nm bandwidth) have shown great promise 

for coastal and shallow waters 



Rrs Database Creation 

Many different absorption 

spectra, many different scattering 

spectra, and many different 

backscatter spectra.  These 

spectra can be based on 

observations or models. 



Many different bottom 

reflectance spectra (pure 

bottom types and 

mixtures of bottom 

types), with the bottom 

placed at many depths,  

e.g. zb = 0.01, 0.25, 0.50, 

0.75, 1.0, ....,14.75, 15.0, 

15.5, ..., 19.5, 20, 25, 30, 

50 m, and  

The database creation run shown here (for Bahamas waters) used 25 

sets of water properties x 123 bottom reflectances x 83 depths, so 

25 x 123 x 83 ≈ 250,000 EcoLight runs to generate 250,000 Rrs 

spectra from 400 to 750 nm by 5 nm (about a week of computer time 

on a 2 GHz PC) 

Rrs Database Creation 



Each Rrs spectrum in the database corresponds to a known set of 

water properties (a, b and bb spectra), a bottom reflectance spectrum 

(bottom type), and a water depth. 

Rrs Database Creation 



Image Processing 

LUT retrieval: 

Depth 2.75 m 

80% sand, 20%  grass 

IOP set #17 

pixel Rrs 

extraction 

database of Rrs spectra 

database 

search 

spectrum match 

(after atmospheric correction) 



CRISTAL 

The following results were generated using CRISTAL 

 

CRISTAL METH (Comprehensive Reflectance Inversion 

based on Spectrum matching and TAble Lookup, Multi-

Environmental Techniques based on HydroLight) is a 

software package developed by me to handle the creation 

of Rrs databases, retrieval of environmental properties 

(water IOPs, bottom depth, and bottom reflectance or type) 

from hyperspectral imagery, and display of retrieved results. 

 

CRISTAL is currently in beta testing by the U.S. Navy.  The 

code and processing details are still proprietary, but 

publications will be submitted asap and the code will 

eventually be made public. 



Example: Airborne Hyperspectral Image of 

Very Clear Water in the Bahamas 

NRL-DC PHILLS image from ONR CoBOP program, May 2000 

501x899 pixels at ~1.3 m resolution 

Horseshoe Reef ooid sand 

mixed sediment, 

corals, turf algae, 

seagrass 
Lee Stocking 

Island, Bahamas 

dense seagrass 



Bathymetry Retrieval 

Black: NRL acoustic survey for ONR CoBOP program 

Color: CRISTAL depth retrieval 



Depth Retrieval vs. Acoustic Bathymetry 

These retrieval errors also include errors due to latitude-longitude calculations in 

mapping acoustic ping locations to image pixels (horizontal errors of several meters 

or more due to failure of built-in navigation instrument), and due to whitecaps 



Bottom Reflectance 

Rb(488) is what you would need for 

performance evaluation of a 488 nm 

bathymetric lidar 



Bottom Classification 

speckle due to whitecaps, which 

were not removed from the image 

spectra 



kNN Error Analysis 
Being able to place error bars or confidence estimates on retrievals 

is often as important as the retrieved value itself 

 

Can do this statistically from the distribution of retrieved values for 

the k closest matching spectra (k Nearest Neighbors, or kNN) 

the 30 closest matches give a 

histogram of retrieved depths 

the average or median gives a 

better estimate of the depth, plus 

an error estimate 



kNN Error Analysis 

Retrieved depths 

from the mean of the 

closest k = 30 

spectra 

Std dev/mean depth 

for the closest k = 30 

spectra 



The closest and most 

frequently retrieved 

bottom reflectance 

spectrum was 30% 

sand and 70% 

seagrass. 

 

The other bottoms are 

similar mixtures of 

sand and grass, 

sargassum, turf algae, 

and macrophytes. 

 

So we can be fairly 

certain that the bottom 

is dense vegetation, 

probably sea grass 

kNN Error Analysis 



The retrieval is very certain about 

the absorption coefficient 

The retrieval is fairly certain about 

the scattering coefficient 

The retrieval is UNcertain about 

the backscatter coefficient 

kNN Error Analysis 



Does This Make Sense? 

• In these very clear waters, the water absorption determines how much 

light gets to the bottom and back to the surface.  Water-column scattering 

and backscatter contribute less to the water-leaving radiance in shallow 

water than does the bottom reflectance.  

 

• The retrieval was therefore most certain about the absorption coefficient, 

and least certain about backscatter. 

 

• The bottom reflectances all had similar reflectance spectra because it’s 

the reflectance that is important.  The retrieval wasn’t able to distinguish 

between sea grass, turf algae, sargassum, and macrophytes, which all 

have similar reflectances. 

 

• In very shallow (<5 m) clear water, the retrieved bottom reflectance 

becomes very certain and the water scattering and backscatter very 

uncertain (i.e., least important in determining Rrs) 



Comparison with other Algorithms 
preprocessing time / image processing time / pixels per sec 

CRISTAL 

From Dekker et al, Limnol Ocean. Methods, in press, 2011 

(Lee, semi-analytic) 



http://www.bestpicturesof.com/misc/pictures%20of%20bull+kelp/?page=2#Google 

http://www.beachwatchers.wsu.edu/ezidweb/seaweeds/Nereocystis.htm 

Kelp Mapping 

Bull kelp (Nereocystis luetkeana) is very 

important for food, medicines, sheltering 

of fish, and recreational diving.  

Harvesting is strictly managed in the US. 



2002 2004 



Humboldt Bay California 

 Eel Grass Mapping 
Chaeli Judd, MS Thesis, Judd et al., 2006 

HSI determined eel grass 

distributions, previously 

unknown. 



Uniqueness: Not a Problem (yet?) 

Red: infinitely deep water, Chl = 10 mg m-3 

Blue: 2 m deep clear water, sea grass bottom 

normalized Rrs spectra calibrated Rrs spectra 

Having well calibrated Rrs spectra removes the non-uniqueness 

that plagues band-ratio and other techniques that depend only on 

spectral shape.  Both spectral shape and magnitude are critical. 



Remaining Problems: Atmospheric Correction 

As always, good retrievals 

depend on having a good 

atmospheric correction 

atmospheric 

undercorrection by 

0.003 1/sr gives 

bottom depths too 

shallow 



Remaining Problems:  Glint Removal 

I haven’t figured out any way to automate glint and cloud removal (for 

shallow water) using just spectral information for a given pixel  

spectra for glint-contaminated 

deeper water (red), 

uncontaminated deeper water 

(green), and uncontaminated 

shallow-water (blue) 



Remaining Problems:  Glint Removal 

Standard algorithms for whitecap and glint removal also 

remove very shallow water (same for thin clouds) 

correct glint removal incorrect 



Remaining Problems:  Glint Removal 

Glint can be removed fairly well using spatial information, but at a cost… 

Retrieved depths: 

white is 10-11 m; 

black is 2-3 m 

because of glint 

9 spectra for a 3x3 block 

centered on the red 

crosshairs 

 

Omit the largest m spectra in 

an nxn block and average 

(black) the remaining 

spectra before retrieval 

Spatial smoothing 

can remove all but 

large blocks of glint, 

but at the cost of 

degrading the 

spatial resolution 



Remaining Problems:  Atmospheric Correction 



Effects of imperfect 

atmospheric correction 

on retrieved (by 

spectrum matching) 

bathymetry.  The overall 

pattern is correct but 

note the “striping” in 

retrieved depths. 

 

1 m contours (RGBYC 

=1-5 m) 

courtesy of P. Bissett, FERI 

Remaining Problems:  Atmospheric Correction 



Remaining Problems:  Data Managment 

area of the Bahamas banks 

area of my image 
≈ 200,000 

MODIS satellite image, 1 km resolution 

PHILLS airborne image,  

1.3 m resolution 

Suppose we want to map all of the world’s coral reefs at 10 m resolution 



area of the Bahamas banks 

area of my image 
≈ 200,000 

area of all coral reefs 

area of my image 
≈ 1,000,000 

Remaining Problems:  Data Managment 



For the Bahamas image I had 25 sets of water properties, 

123 bottom types, and 83 depths (25 cm depth resolution), 

so ≈ 250,000 Rrs spectra. 

 

To cover the range of all water bodies, I might need 1000 

(or more??) combinations of absorption, scatter, and 

backscatter spectra to represent the possible combinations 

and concentrations of phytoplankon, mineral particles, and 

dissolved substances.  To cover likely ranges of bottom 

types and mixtures, maybe need 500 bottom reflectance 

spectra.  Probably OK with existing depth resolution, so 

order of 100 bottom depths.  Thus I would have 1000 x 500 

x 100 = 50,000,000 Rrs spectra  

global database size 

Bahamas database size 
≈ 200 

Remaining Problems:  Data Managment 



To map all coral reef areas at 10 m resolution (the minimun to 

be useful): 

 

Imaged area increase:  factor of 1,000,000 

 

Spatial resolution (decrease from 1 m to 10 m):  factor of 0.01 

 

Wavelength resolution (still hyperspectral):  factor of 1 

 

Database size (search time increase per pixel):  factor 200 

 

Total computational increase:  2,000,000 

 

Bahamas image processing time: ~ 1 hour (2 GHz PC) 

 

Global processing time: ~ 200 years 

Remaining Problems:  Data Managment 



Lava Falls, Grand Canyon 



Lava Falls, Grand Canyon 



Lava Falls, Grand Canyon 



Lava Falls, Grand Canyon 



Lava Falls, Grand Canyon 


