#### Lecture 6

In situ fluorometry

## Fluorescence is very easy to measure, very difficult to interpret Why do it?

## Deployment



Fig. 8. Vertical profile of fluorescence (arbitrary units) and temperature from the western English Channel, 5°23'W, 49°25'N, July 1975. From Pingree et al. (1975).

Cullen 1982

profilers

## Deployment



FIG. 8. Vertical profile of fluorescence (arbitrary units) and temperature from the western English Channel. 5°23'W, 49°25'N, July 1975. From Pingree et al. (1975).

- profilers
- buoys





Fig. 8. Vertical profile of fluorescence (arbitrary units) and temperature from the western English Channel, 5°23'W, 49°25'N, July 1975.



Deployment

profilers 

## Deployment

![](_page_5_Figure_1.jpeg)

- buoys
- floats

## autonomous gliders Washington Coast, Perry

![](_page_5_Figure_5.jpeg)

![](_page_5_Figure_6.jpeg)

Fig. 8. Vertical profile of fluorescence (arbitrary units) and temperature from the western English Channel, 5'23'W, 49°25'N, July 1975, From Pingree et al. (1975).

![](_page_5_Figure_8.jpeg)

![](_page_5_Figure_9.jpeg)

Because of the sampling potential, it is worth dealing with the issues of interpretation

strategies

## Outline

- Calibration
- Characterization
- Biofouling
- Validation
- Capabilities

## Calibration

- sensor output = voltage (digital counts))
- what you want = mg chl/m<sup>3</sup>
- Standard curve
  - slope = digital count/(mg chl/m<sup>3</sup>) (type II regression)
  - intercept = media blank ≠ V<sub>dark</sub>
  - saturation limit

![](_page_8_Figure_7.jpeg)

- what do you calibrate with?
  - Chl a standard
    - not excited by 470 nm LED
    - not packaged
  - vicarious calibration in situ samples
    - changes, not really calibration
    - many sources of variability
  - culture
    - which one
    - growth conditions

 cultures respond to calibration conditions

 $Chl(mg/m^3) = (V_{sample} - V_{dark})/Slope$ 

![](_page_10_Figure_3.jpeg)

- how do you make up your standard curve samples→dilute with culture filtrate
- regression intercept vs dark reading

$$Chl(mg/m^3) = (V_{sample} - V_{dark})/Slope$$

![](_page_11_Figure_4.jpeg)

- what culture to use?
  - 13 species
  - 2 light levels
  - growth phase

![](_page_12_Figure_5.jpeg)

 $Chl(mg/m^3) = (V_{sample} - V_{dark})/Slope$ 

![](_page_12_Figure_7.jpeg)

## Calibration

- Result is
- "nutrient-replete, moderate 24hr irradiance, exponential phase-*Thalassiosira psuedonana* – equivalent chlorophyll concentration"
- or "calibrated chlorophyll fluorescence"
- Are we done?
- Environmental characterization

#### Chlorophyll Fluorometer Characterization

Hourly chlorophyll concentration observations at 3 m depth from a GoMOOS mooring

![](_page_14_Figure_2.jpeg)

#### Environmental Characterization Temperature Dependence

DFLS 039 temperature characterization Feb 14, 2002

![](_page_15_Figure_2.jpeg)

#### **Environmental Characterization** Temperature Dependence

65

60

55

50

0

180 Average DFLS Count over a 20 second period 160 The temperature 140 dependence, of course, 120 varies between sensors 100 and between sensor type 80 dfls034 60 470 m dfls037 40 dfls038 20 dfls039 0 10 15 20 25 30 5 Water Bath Temperature (C) Older sensors ~ 1 to 5 counts/°C newer sensors ~ 0.3 count/°C 30 25 $\mathbf{5}$ 10 15. 20 Temperature (°C) Slope =  $\Delta V_{dark} / \Delta T_{ea}$ 

February 14, 2002

#### Environmental Characterization Correction for Temperature Dependence

![](_page_17_Figure_1.jpeg)

Compounding Issue: The biggest temperature effect occurs in the winter (△T), and that is when chlorophyll is lowest.

#### Environmental Characterization Correction for CDOM fluorescence

• high CDOM waters exhibit high  $F_{chl}$ 

![](_page_18_Figure_2.jpeg)

## Calibration Equation

- Chl (mg/m<sup>3</sup>) =  $(V_{sample} V_{offset})/Slope$
- where  $V_{offset} = V_{dark} + B_{CDOM}$
- $V_{dark}$  = temperature corrected dark reading (dc)  $V_{dark}(T_{in \ situ}) = V_{dark}(T_{cal}) + (T_{cal} - T_{insitu}) * \Delta V_{dark} / \Delta T_{eq}$
- $B_{CDOM} = CDOM$  blank correction for  $F_{chl}$  sensor using co-located  $F_{CDOM}$  sensor which is itself temperature corrected (dc)

 $B_{CDOM} = S_{CDOM-Chl} * (V_{CDOM} - V_{dark}(T_{cal}) + (T_{cal} - T_{insitu}) * \Delta V_{dark} / \Delta T_{eq})$ 

30

• Slope is the calibration slope  $(dc/(mg chl/m^3))$ 

![](_page_19_Figure_7.jpeg)

# So now you can put it in the water and what happens?

#### stuff grows on it

![](_page_20_Picture_2.jpeg)

![](_page_20_Picture_3.jpeg)

## Instrument Drift and Biofouling

Calibrations

Roesler and Boss 2010

pure water cals

instrument drift

 $\rightarrow$  total offset

→ biofouling

- Pre-deployment calibration (1)
- Post-recovery pre-clean calibration (2)
- -Total offset = (2) (1)
- Post-recovery post-clean calibration (3)
  biofouling = (3) (2)
  drift = (3) (1)

![](_page_21_Figure_7.jpeg)

![](_page_21_Figure_8.jpeg)

## Instrument Drift and Biofouling

Roesler and Boss 2010

- Evaluating instrument drift
  - Linear trend
  - Step function trend
  - Validation (new deploy corrected)

![](_page_22_Figure_6.jpeg)

![](_page_23_Figure_0.jpeg)

## Validation (ground truth)

- why does is usually look like a scatter plot?
  - species variations

![](_page_24_Figure_3.jpeg)

http://www.bowdoin.edu/earth-oceanographic-science/workshops/index.shtml

## Validation (ground truth)

- why does is usually look like a scatter plot?
  - species variations
  - quenched fluorescence

### Chlorophyll Fluorescence Seasonal Cycles

![](_page_26_Figure_1.jpeg)

#### Chlorophyll Fluorescence Diel Cycles

![](_page_27_Figure_1.jpeg)

## Validation (ground truth)

- why does is usually look like a scatter plot?
  - species variations
  - quenched fluorescence
- and what should you report to SeaBASS?

## Hourly Observations

![](_page_29_Picture_1.jpeg)

![](_page_29_Figure_2.jpeg)

## Yearly Observations

![](_page_30_Picture_1.jpeg)

![](_page_30_Figure_2.jpeg)

## shift in bloom timing 2001-2004 and 2005-2010

![](_page_31_Figure_1.jpeg)