# Lecture 20 Reflectance inversion methods: semi-analytical models to obtain IOPs

Collin Roesler July 26 2011

note: the pdf contains more information

than will be presented today

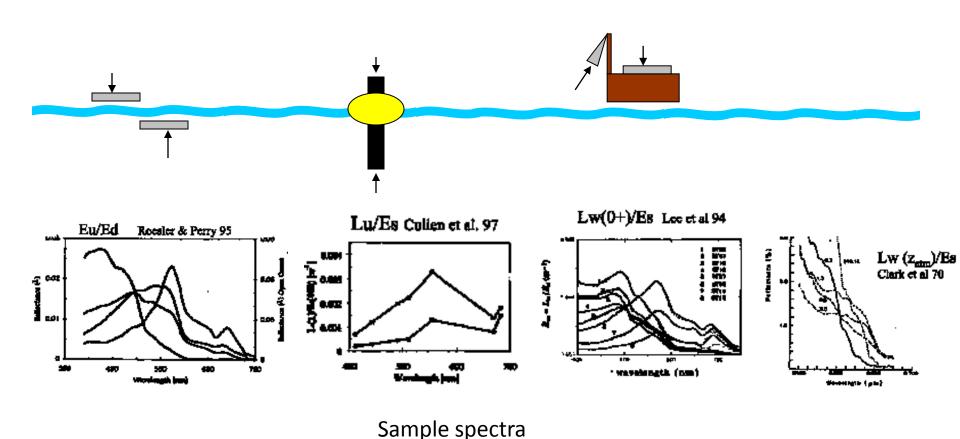
# Lecture 20 Reflectance inversion methods: semi-analytical models to obtain IOPs

FORWARD MODEL: IOPs → Hydrolight → Reflectance

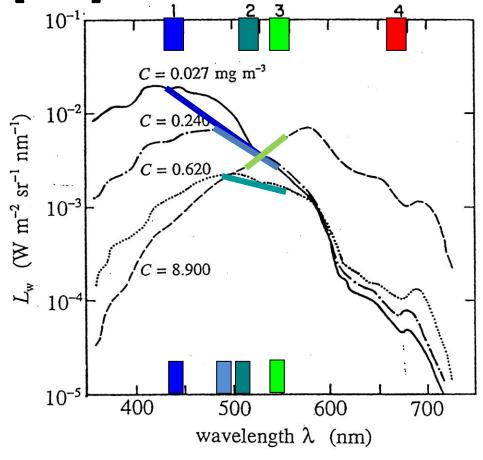
INVERSE MODEL: Reflectance → Inversions\* → IOPs

\*empirical (including neural network), semi-empirical, semi-analytical...

# A reminder on how you measure Reflectance Ratios



# From Curt's Lecture: empirically determine [chl] from radiance or reflectance ratios



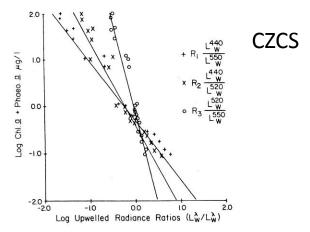
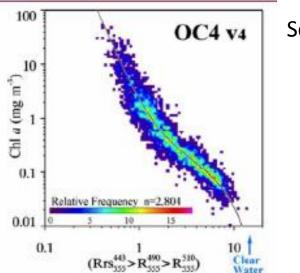


Figure 7.12 Ratios R of upwelling radiance just above the sea surface between pairs of light inds, as a function of the chlorophyll and phaeopigment concentration at the surface. The superrigion L refers to the wavelength in nanometers (from Gordon and Clark, 1980).



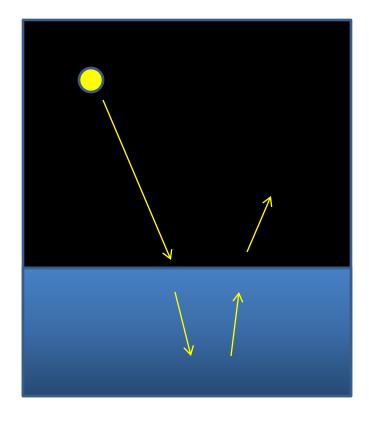
**SeaWiFS** 

## semi-analytic Reflectance inversion

starts with simplification of radiative transfer

equation, RTE

- "Howard Gordon Ocean"
  - homogeneous water
  - plane parallel geometry
  - level surface
  - point sun in black sky
  - no internal sources



## Solving RTE for Reflectance

$$cosθ d L(θ,φ) = -a L(z,θ,φ) -b L(z,θ,φ) + 4π β(z,θ,φ;θ',φ')L(θ',φ')δΩ'$$
dz

- successive order scattering
  - separate radiance into unscattered, single scattered, twice scattered... contributions, L<sub>o</sub>, L<sub>1</sub>, L<sub>2</sub>...L<sub>n</sub>
- single scattering approximation
  - consider only the unscattered and single scattered radiance terms,  $L_o$  and  $L_1$
- quasi-single scattering approximation
  - noting that volume scattering functions in the ocean are highly peaked in the forward direction
  - forward scattering is like no scattering at all
  - $\rightarrow$  so replace b with b<sub>b</sub>

### QSSA

- b → b<sub>b</sub>
- c  $\rightarrow$  a + b<sub>b</sub>
- solve the ssa
   (complete lecture
   with lots of math,
   CM)
- R  $\sim$  b<sub>b</sub>/(a + b<sub>b</sub>)

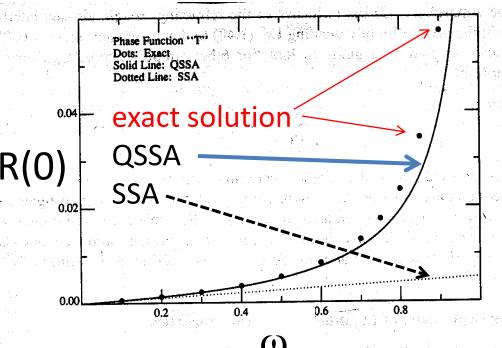


Fig. 1-3. Comparison between exact, quasi-si approximation computations of R(0).

O ing approximation, and single scattering

# semi-analytic Reflectance inversion

starts with simplification of radiative transfer equation, RTE

- $R_x = G b_b/(a+b_b)$
- x and G are defined by measurement of R
- (L<sub>u</sub>, E<sub>u</sub>, O<sup>+</sup>, O<sup>-</sup>)
- see papers by Gordon, Zaneveld, Kirk, Morel

# Fun thing we will try in lab this afternoon

- Using your measured IOPs (a, b, b<sub>b</sub>)
- Use Hydrolight to generate  $R_{HL} = L_u(0-)/E_d(0+)$
- compute  $R_{QSSA} = (f/Q) b_b/(a+b_b)$
- Compare
  - how do the spectral shapes of  $R_{HL}$ ,  $R_{OSSA}$  compare?
  - what f/Q values will allow for  $R_{QSSA} = R_{HL}$ ?
  - many assume a>> $b_b$  so R → (f/Q)  $b_b$ /a, when is this a fair approximation?

# You have heard how to estimate chl from spectral ratios of reflectance but back in 1977 Morel and Prieur were investigating the IOP ← → R relationship

Analysis of variations in ocean color<sup>1</sup>

Read this paper!

André Morel and Louis Prieur

Laboratoire de Physique et Chimie Marines, Station Marine de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France

#### Abstract

Spectral measurements of downwelling and upwelling daylight were made in waters different with respect to turbidity and pigment content and from these data the spectral values of the reflectance ratio just below the sea surface,  $R(\lambda)$ , were calculated. The experimental results are interpreted by comparison with the theoretical  $R(\lambda)$  values computed from the absorption and back-scattering coefficients. The importance of molecular scattering in the light back-scattering process is emphasized. The  $R(\lambda)$  values observed for blue waters are in full agreement with computed values in which new and realistic values of the absorption coefficient for pure water are used and presented. For the various green waters, the chlorophyll concentrations and the scattering coefficients, as measured, are used in computations which account for the observed  $R(\lambda)$  values. The inverse process, i.e. to infer the content of the water from  $R(\lambda)$  measurements at selected wavelengths, is discussed in view of remote sensing applications.

# Measurements of $R = E_u/E_d$ QSSA leads to: $R = 0.33 b_b/(a+b_b)$

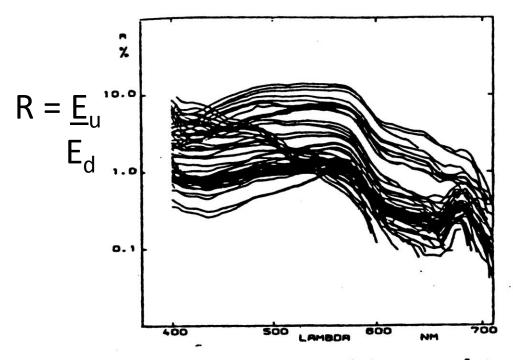


Fig. 1. Reflectance ratio  $R(\lambda)$ , expressed in percent, plotted with logarithmic scale vs. wavelength  $\lambda$  in nm, for 81 experiments in various waters. Same units and scales also used in Figs. 4, 5, 6, 7, and 11.

Morel and Prieur 1977

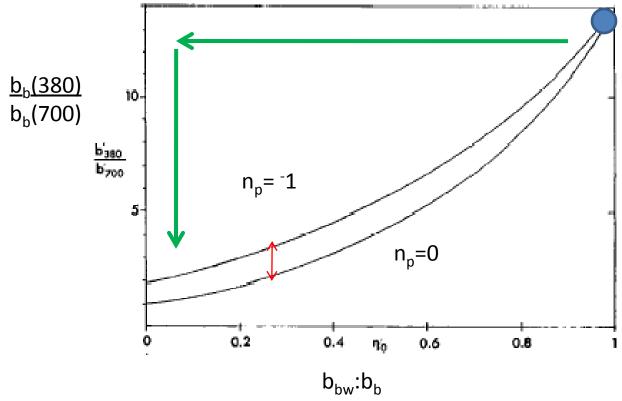
Explain variations in R with respect to b<sub>b</sub>, a

model the IOPs to predict R

These results are the basis for semi-analytic inversions

### Parameterize the Spectral Backscattering

$$b(\lambda) = b_w(\lambda) + b_p(\lambda) \quad \text{and} \quad b_b(\lambda) = b_{bw}(\lambda) + b_{bp}(\lambda)$$
$$= b_{bw}(\lambda_o) \lambda^{-4.3} + b_{bp}(\lambda_o) \lambda^{np}$$

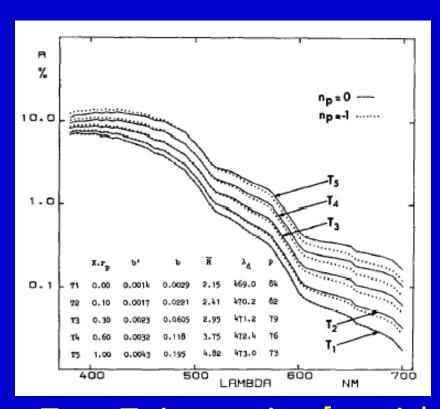


when water dominates the spectral slope is dominated by that of water

but as particles dominate the spectral slope is very reduced and dependent upon the slope of the power function  $(n_n)$ 

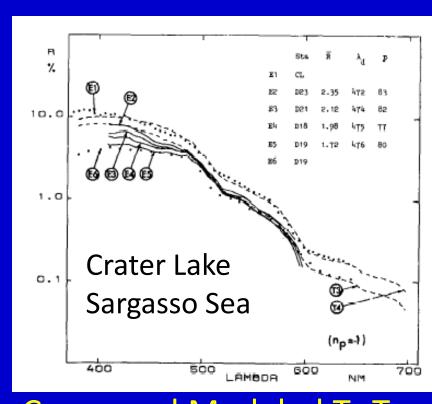
### Case 1: Blue Water

$$R = \frac{b_{bw} + b_{bp}}{a_{w}}$$



 $T_1$  to  $T_5$  increasing [particle]  $n_p=1$  (dotted)  $n_p=0$  (solid)

Only b<sub>bp</sub> varies

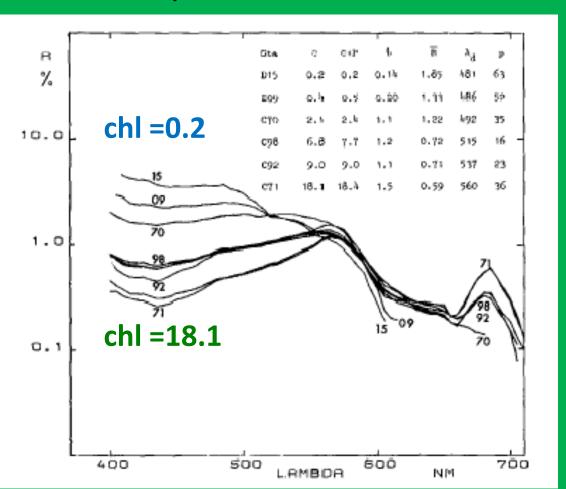


Compared Modeled T<sub>3</sub> T<sub>4</sub> with Measured Spectra

# Case 2: Green Waters V-type Chl-dominated

$$R = \underline{b}_{bw} + \underline{b}_{bp}$$
$$a_{w} + a_{ph}$$

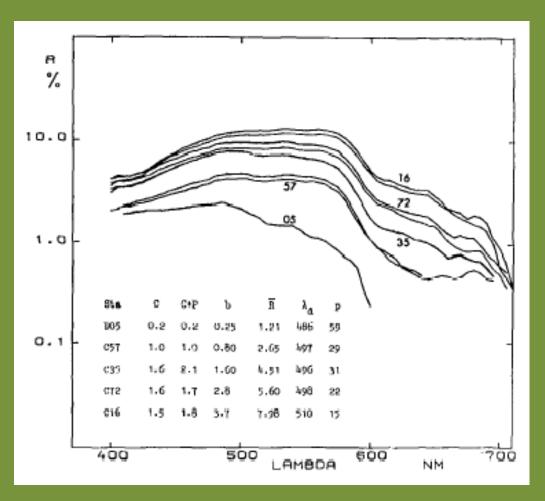
 $a_{ph}$  and  $b_{bp} \propto chl$ 



# Case 2: Green Waters U-type Sediment-dominated

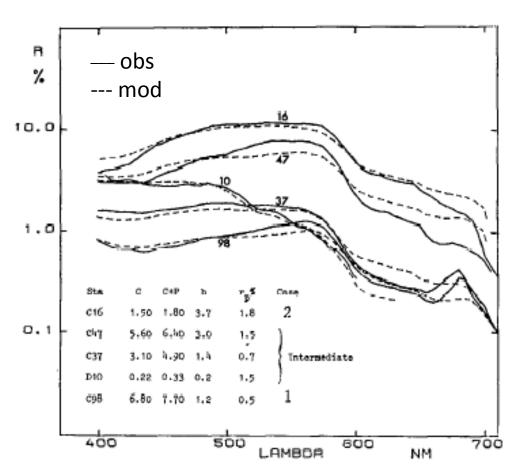
$$R = \underline{b}_{bw} + \underline{b}_{bp}$$
$$a_w + a_{ph} + a_p$$

 $a_{ph} \propto chl$ , and  $a_{p}$ ,  $b_{bp} \neq chl$ 



### The generalized semi-analytic model

$$a = a_w + [chl+pheo]a^*_{ph} + b a_p$$



$$b_b = b_{bw} + (b-b_w) \underline{b}_{bp}$$

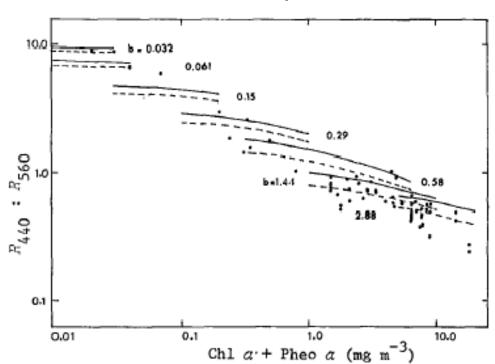
$$b_p$$

(know b<sub>w</sub>, b<sub>bw</sub>, measure b)

Assume backscattering ratio for particles is spectrally flat, adjust to match R(500),  $b_p$ 

#### The results

Order of magnitude variations exist between reflectance ratios and pigment due to combined spectral variations of absorption and backscattering



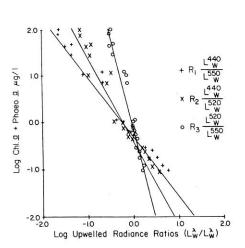


Figure 7.12 Ratios R of upwelling radiance just above the sea surface between pairs of light bands, as a function of the chlorophyll and phaeopigment concentration at the surface. The super-script on L refers to the wavelength in nanometers (from Gordon and Clark, 1980).

Variations in ocean color are explained by more than variations in pigment concentration.

$$R(\lambda) = f/Q b_b(\lambda)/(b_b(\lambda) + a(\lambda))$$

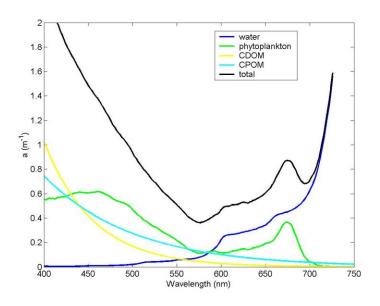
So starting in 1995 there was an explosion of papers (well, ok less than 5) focused on semi-analytic inversion models to obtain IOPs from reflectance

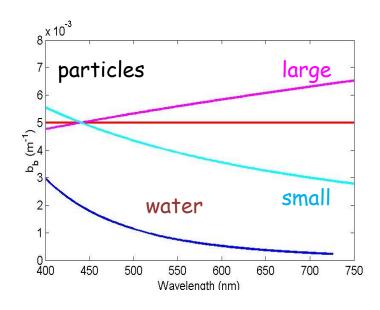
Here is how it works...

$$R(\lambda) = f/Q b_b(\lambda)/(b_b(\lambda) + a(\lambda))$$

Step 1. The IOPs are additive, separate into absorbing and backscattering components

$$\begin{aligned} a(\lambda) &= a_w(\lambda) + a_\phi(\lambda) + a_{nap}(\lambda) + a_{CDOM}(\lambda) \\ b_b(\lambda) &= b_{bw}(\lambda) + b_{bp}(\lambda) \end{aligned}$$





$$R(\lambda) = f/Q b_b(\lambda)/(b_b(\lambda) + a(\lambda))$$

Step 2. Beer's Law indicates that the IOP for a component is proportional to its concentration, define the concentration-specific spectral shape, for example the chl-specific phytoplankton absorption spectrum

$$a_{\phi}(\lambda) = Chl \times a^*_{\phi}(\lambda)$$

component IOP = concentration  $\times$  concentration-specific IOP spectrum

= scalar \*vector

= eigenvalue × eigenvector

$$R(\lambda) = f/Q b_b(\lambda)/(b_b(\lambda) + a(\lambda))$$

Step 3. Put it all together, e.g.

$$R (\lambda) = f/Q \times \frac{b_{bw}(\lambda) + A_{bp} b_{bp}^{*}(\lambda)}{b_{bw}(\lambda) + A_{bp} b_{bp}^{*}(\lambda) + a_{w}(\lambda) + A_{\phi} a_{\phi}^{*}(\lambda) + A_{nap} a_{nap}^{*}(\lambda) + A_{CDOM} a_{CDOM}^{*}(\lambda)}$$

water IOPs are known

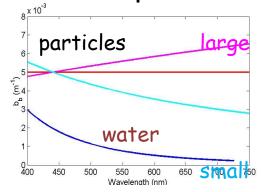
eigenvectors are spectra, representative of each constituent eigenvalues are scalars to be estimated

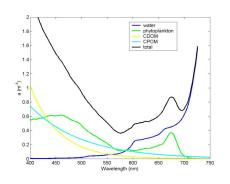
$$R(\lambda) = f/Q b_b(\lambda)/(b_b(\lambda) + a(\lambda))$$

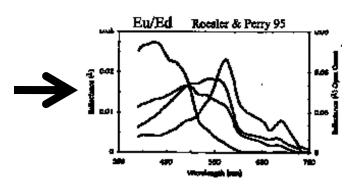
Step 4. put in known eigenvectors (spectral shapes), perform regression against measured reflectance spectrum to estimate the eigenvalues (magnitudes, A's)

$$R (\lambda) = f/Q \times \underbrace{b_{bw}(\lambda) + A_{bp} \, b_{bp}^{\phantom{b}*}(\lambda)}_{b_{bw}(\lambda) + A_{bp} \, b_{bp}^{\phantom{b}*}(\lambda) + A_{w}(\lambda) + A_{\phi} a_{\phi}^{\ast}(\lambda) + A_{nap} a_{nap}^{\ast}(\lambda) + A_{CDOM} a_{CDOM}^{\ast}(\lambda)$$

How much of each absorbing and backscattering component is needed (in a least squared sense) to reconstruct the measured spectrum?







$$R(\lambda) = f/Q b_b(\lambda)/(b_b(\lambda) + a(\lambda))$$

So starting in 1995 there was an explosion (well, about 5) of inversion models utilizing this approach. The biggest differences between them lies in:

- 1) definition of the eigenvectors (spectral shapes of the absorbing and backscattering spectra)
- 2) method of inversion (non-linear least square, linear matrix inversion...)
- 3) validation and error analysis

# Models discussed today and to be used in afternoon laboratory

- Roesler and Perry 1995
- Lee et al. 1996 → 2002 QAA
- Hoge and Lyon 1996
- Garver and Siegel 1997 → 2002 GSM
- Roesler and Boss 2003

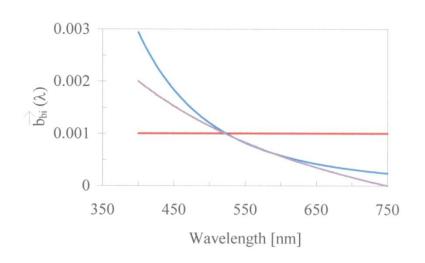
#### The biggest differences between them lies in:

- 1) definition of the eigenvectors (spectral shapes of the absorbing and backscattering spectra)
- 2) method of inversion (non-linear least square, linear matrix inversion...)
- 3) validation and error analysis

# Roesler and Perry 1995 JGR

- Eigenvectors
  - absorption
    - $a_{\phi}(\lambda) = \frac{\text{chl }}{a_{\phi}} (\lambda)$  average from in situ data base
    - $a_{nap+cdom}(\lambda) = a_{cdm}(440) \exp(-0.0145(\lambda \lambda_o))$
  - backscattering
    - $b_{bplarge}(\lambda) = b_{bplarge}(440) (\lambda/400)^0$
    - $b_{bpsmall}(\lambda) = b_{bpsmall}(440) (\lambda/400)^{-1}$
- Reflectance equation (hyperspectral)
  - Irradiance Reflectance  $R(\lambda) = 0.33 b_b(\lambda)/a(\lambda)$
- non-linear regression: Levenberg-Marqhardt
- model testing
  - measured irradiance reflectance
  - $-a_{\phi},a_{cm}$ , total particle cross-section
  - residual analysis to obtain  $a_{\phi}$  spectral variations

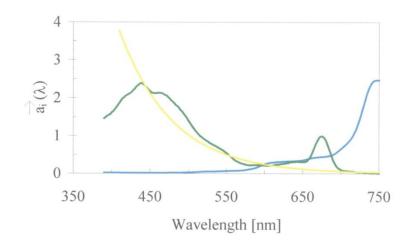
### Roesler and Perry: Eigenvectors





$$b_{bpl}(\lambda) = b(440) (\lambda/\lambda_o)^0$$

$$b_{bps}(\lambda) = b(440) (\lambda/\lambda_o)^{-1}$$

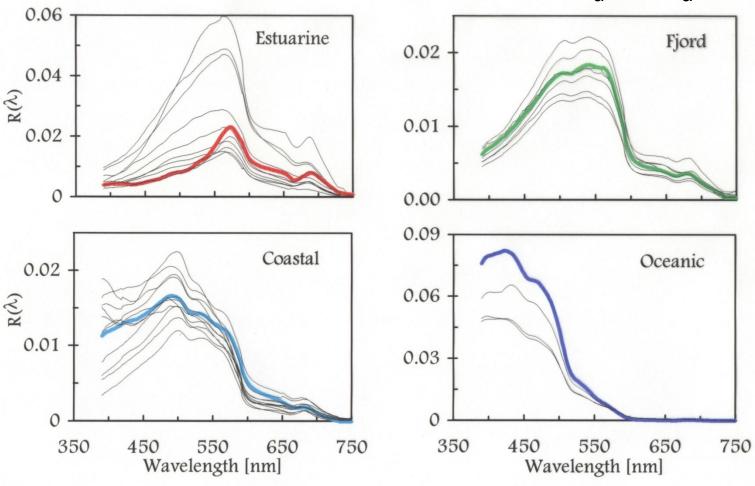


$$a_w(\lambda)$$

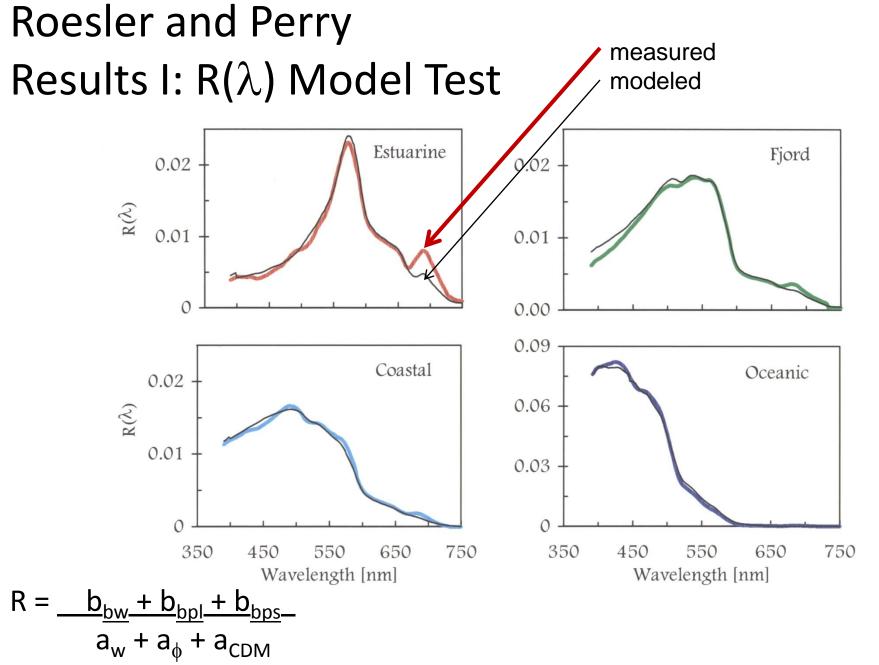
 $a_{\phi}(\lambda)$  (from 1989 data)

$$a_{NAP}(\lambda) + a_{CDM}(\lambda) \rightarrow a_{CDM}(440) \exp[-0.0145 (\lambda-440)]$$

#### Roesler and Perry: Measured $R(\lambda) = E_u(\lambda)/E_d(\lambda)$

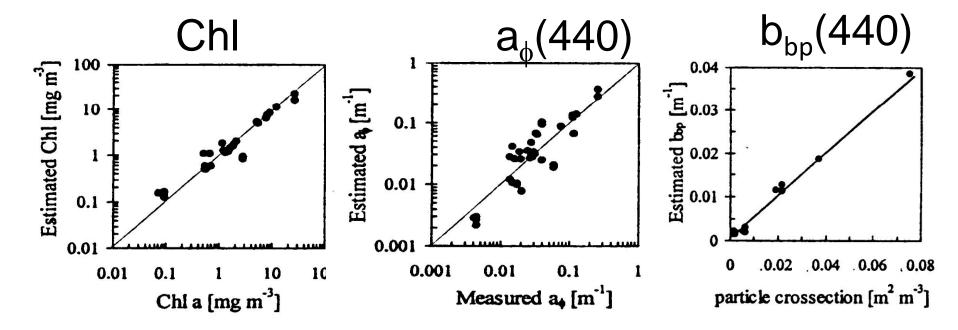


ChI = 0.07 to 25.6  $\mu$ g/I  $a_{\phi}(440) = 0.004$  to 0.5 m<sup>-1</sup>  $b_{bp}(440) \sim 0.002$  to 0.04 m<sup>-1</sup>



6-component model explains most of the observed variability

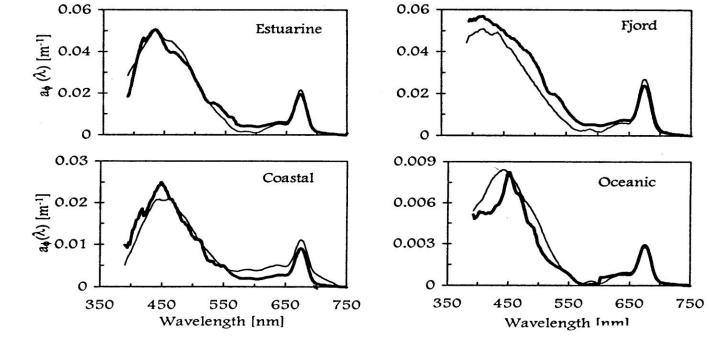
# Roesler and Perry Results II: IOP model validation



Estimated chl from  $a_{\phi}(676)[m^{-1}]/0.014[m^2 mg^{-1}]$ 

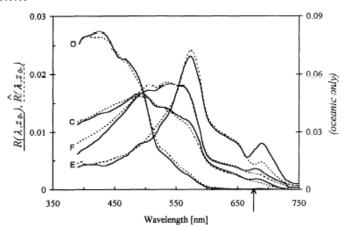
no bb meter, so from particle size distribution (Coulter Counter)

# Roesler and Perry Results III: residuals to assess $a_{\phi}$ spectral variations



First estimate:  $a_{\phi}(\lambda) = A_{\phi} a_{\phi}^*(\lambda)$ 

Second estimate: add in  $\Delta R(\lambda)$  residual Compare with Basis Vector  $a_{\phi}^*(\lambda)$ 



# Sensitivity Analysis

- Generally 30% cv
- Phyto abs retrieval most robust
- Evidence of variance transference, a<sub>cm</sub> b<sub>bp</sub>
- a<sub>cm</sub> basis vector induced largest cv in retrieval

**Table 2.** Results of Sensitivity Analysis for Equation (14): The Effect of Changes in the Basis Vectors on Estimated Phytoplankton  $\hat{a}_{\phi}$  and Tripton/Gelbstoff  $\hat{a}_{tg}$  Absorption and Particle Backscattering  $\hat{b}_{bp}$  Coefficients

| Estimated<br>Coefficient | Varied Basis<br>Vector    | Environment |         |         |         |
|--------------------------|---------------------------|-------------|---------|---------|---------|
|                          |                           | Estuarine   | Fjord   | Coastal | Oceanic |
| â <sub>φ</sub>           | $\mathbf{a}_{\phi}$       | 94 (47)     | nd      | 38 (34) | 43 (28) |
|                          | $\mathbf{a}_{lg}^{arphi}$ | 58 (49)     | 82 (72) | 42 (39) | 41 (34) |
|                          | $\mathbf{b}_{b2}$         | 50 (30)     | 27 (23) | 18 (10) | 38 (22) |
| $\hat{a}_{tg}$           | $\mathbf{a}_{\phi}$       | 37 (12)     | 16 (11) | 26 (15) | 18 (16) |
|                          | $\mathbf{a}_{tg}$         | 34 (23)     | 42 (30) | 26 (17) | 20 (16) |
|                          | $\mathbf{b}_{b2}$         | 53 (40)     | 76 (29) | 81 (52) | 62 (57) |
| $\mathcal{b}_{bp}$       | $\mathbf{a}_{\phi}$       | 40 (5)      | 10 (8)  | 14 (12) | 8 (5)   |
|                          | $\mathbf{a}_{tg}$         | 26 (19)     | 15 (9)  | 7 (4)   | 1(1)    |
|                          | $\mathbf{b}_{b2}$         | 39 (18)     | 27 (33) | 33 (21) | 20 (6)  |

Averaged coefficients of variations, expressed as percent coefficients of variation (cv), were determined for each environment. Numbers in parentheses are percent cv with the two most extreme basis vectors removed; i.e., for  $\mathbf{a}_{\phi}$ , D. salina and Synechococcus sp.; for  $\mathbf{a}_{tg}$ , S = 0.02 and 0.009; and for  $\mathbf{b}_{b2}$ , Y = 0.0 and 1.2. For fjord  $\mathbf{a}_{\phi}$ , nd indicates not determinable; model would not converge with any other  $\mathbf{a}_{tb}$ .

# Lee et al. 1996 Applied Optics

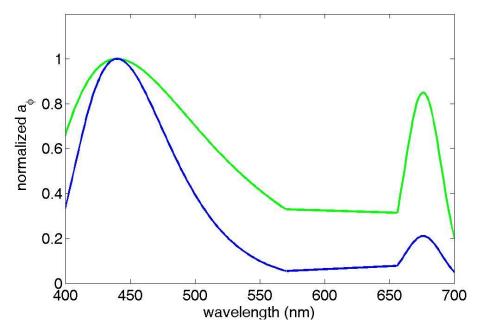
#### Basis vectors

absorption

• 
$$a_{\phi}(\lambda) = a_{\phi}(440) \exp[-F \left[ ln \left( \frac{\lambda - 440}{100} \right)^{2} \right] \lambda = 400 \text{ to 570 nm}$$
  
•  $a_{cdm}(\lambda) = a_{cdm}(440) \exp(-S (\lambda - \lambda_{o}))$   $S = 0.012 \text{ to 0.016}$ 

- backscattering
  - $b_{bp}(\lambda) = b_{bp}(400) (400/\lambda)^{\eta}$   $\eta = 0 \text{ to } 3$
- Reflectance equation (hyperspectral)
  - Radiance Reflectance  $R_{RS} = 0.0949(b_b/(b_b+a)) + 0.0794(b_b/(b_b+a))^2$  plus terms for sunglint and Fresnel reflectance
- Constrained non-linear regression
- model testing
  - measured radiance reflectance
  - a from  $K_d$ , measured  $a_{\phi}$

### Lee: Eigenvectors



$$b_{bp}(\lambda) = (\lambda/\lambda_o)^{-n}$$

$$a_{CDM}(\lambda) = a_{CDM}(410) \exp[-S (\lambda-410)]$$

$$a_{\phi}(\lambda) = a_{\phi}(440) \exp(-F^*\{[\ln(\underline{\lambda}-340)]^2\})$$
 400 < \(\lambda\) < 570 nm 100

$$400 < \lambda < 570 \text{ nm}$$

$$a_{\phi}(\lambda) = a_{\phi}(570) \ \underline{a_{\phi}(656) - a_{\phi}(570)} \ (\lambda-570) \ 570 < \lambda < 656nm \ 656-570$$

$$a_{\phi}(\lambda) = a_{\phi}(676) \exp(-(\underline{\lambda} - 676)^2)$$

$$2\sigma^2$$

$$656 < \lambda < 700 \text{ nm}$$

return

# Lee: Measured $R(\lambda) = L_u(\lambda)/E_d(\lambda)$

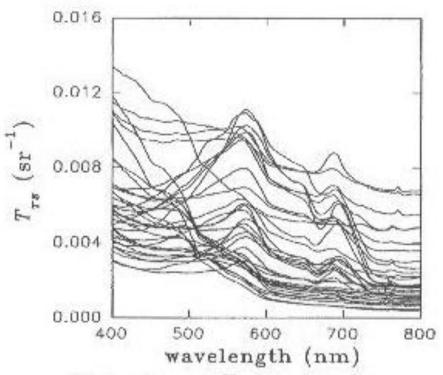


Fig. 3. Measured  $\overline{T}_{rs}$  of the stations.

ChI = 0.09 to 21  $\mu$ g/l  $a_{\phi}(440) = 0.01$  to 0.83 m<sup>-1</sup>

#### Lee: IOP model test

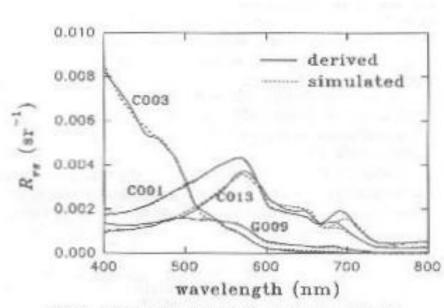


Fig. 8. Examples of derived and simulated  $R_{rs}(\lambda)$ .

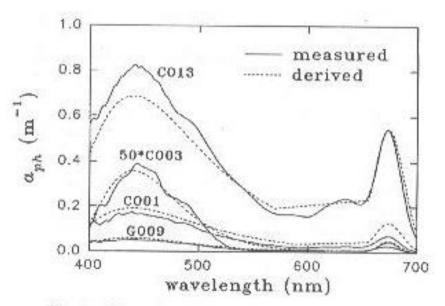


Fig. 9. Examples of derived and measured  $a_{ob}(\lambda)$ .

#### **QAA Products SeaWiFS MODIS**

Z. Lee, K. L. Carder, and R. A. Arnone, "Deriving Inherent Optical Properties from Water Color: a Multiband Quasi-Analytical Algorithm for Optically Deep Waters," Appl. Opt. 41, 5755-5772 (2002)

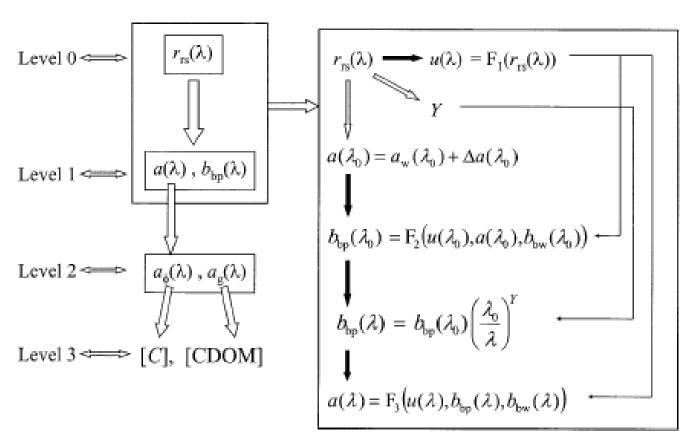


Fig. 1. Concept and schematic flow chart of the level-by-level ocean-color remote sensing and the QAA.

## **QAA: Inversion Steps**

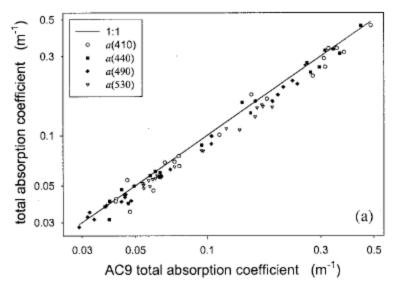
Table 2. Steps of the QAA to Derive Absorption and Backscattering Coefficients from Remote-Sensing Reflectance with 555 nm as the Reference Wavelength

| Step | Property          | Math Formula                                                                                                                                | Order of<br>Importance | Approach       |
|------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------|
| 0    | $r_{ m rs}$       | $=R_{rs}/(0.52 + 1.7R_{rs})$                                                                                                                | 1st                    | Semianalytical |
| 1    | $u(\lambda)$      | $= \frac{-g_0 + [(g_0)^2 + 4g_1r_{re}(\lambda)]^{1/2}}{2g_1}$                                                                               | 1st                    | Semianalytical |
| 2    | a(555)            | =0.0596 + 0.2[ $a(440)_i$ - 0.01], $a(440)_i$ = exp(-2.0 - 1.4 $\rho$ + 0.2 $\rho$ <sup>2</sup> ), $\rho$ = ln[ $r_{rs}(440)/r_{rs}(555)$ ] | $2\mathrm{nd}$         | Empirical      |
| 3    | $b_{bp}(555)$     | $= \frac{u(555)a(555)}{1 - u(555)} - b_{bw}(555)$                                                                                           | 1st                    | Analytical     |
| 4    | Y                 | $= 2.2 \left\{ 1 - 1.2 \exp \left[ -0.9 \frac{r_{\rm rs}(440)}{(555)} \right] \right\}$                                                     | 2nd                    | Empirical      |
| 5    | $b_{bp}({\bf k})$ | $=b_{bp}(555)\left(\frac{555}{\lambda}\right)^{Y}$                                                                                          | 1st                    | Semianalytical |
| 6    | $a(\lambda)$      | $= \frac{[1 - u(\lambda)][b_{bw}(\lambda) + b_{bp}(\lambda)]}{u(\lambda)}$                                                                  | 1st                    | Analytical     |

#### QAA: Inversion Steps and testing

| Table 3. | Steps to Decompose the | Total Absorption | to Phytoplankton and Ge | bstoff Components, | with Bands at 410 and 440 nm |
|----------|------------------------|------------------|-------------------------|--------------------|------------------------------|
|          |                        |                  |                         |                    | =                            |

| Step | Property                              | Math Formula                                                                                                            | Order of<br>Importance | Approach       |
|------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------|----------------|
| 7    | $\zeta = a_{\phi}(410)/a_{\phi}(440)$ | $= 0.71 + \frac{0.06}{0.8 + r_{\rm rs}(440)/r_{\rm rs}(555)}$                                                           | 2nd                    | Empirical      |
| 8    | $\xi = a_g(410)/a_g(440)$             | $= \exp[S(440-410)]$                                                                                                    | 2nd                    | Semianalytical |
| 9    | $a_{\rm g}(440)$                      | $= \frac{\left[a(410) - \zeta a(440)\right]}{\xi - \zeta} - \frac{\left[a_w(410) - \zeta a_w(440)\right]}{\xi - \zeta}$ | 1st                    | Analytical     |
| 10   | $a_{\Phi}(440)$                       | $= a(440) - a_g(440) - a_w(440)$                                                                                        | 1st                    | Analytical     |

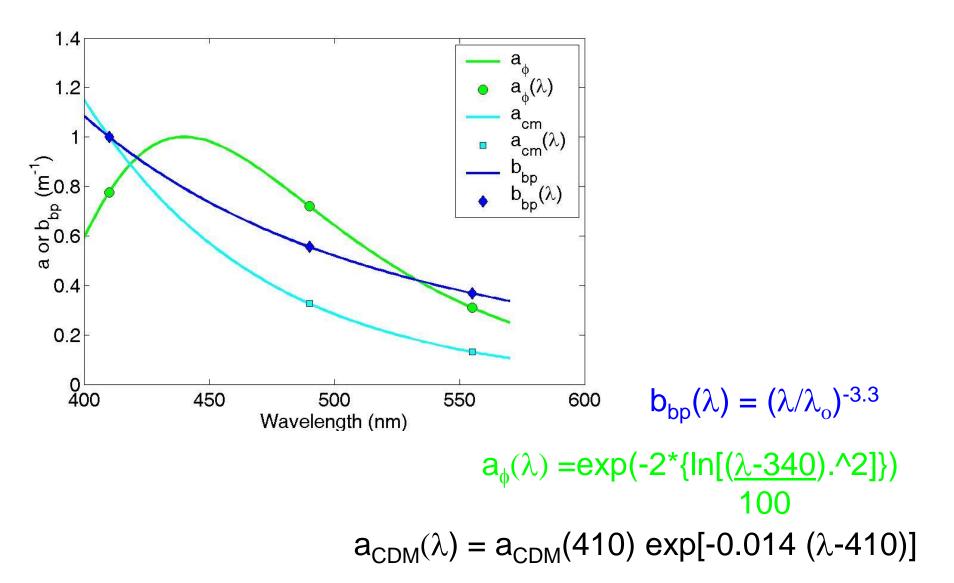


- Tested against simulated data set
- Simulated data plus noise
- Tested against n~20 obs made with an ac9 off Baja California

## Hoge and Lyon 1996 JGR

- Basis vectors
  - absorption
    - $a_{\phi}(\lambda) = a_{\phi}(440) \exp[(\lambda 440)^2/2g^2)]$  for  $\lambda = 400$  to 570 nm
    - $a_{cdm}(\lambda) = a_{cdm}(440) \exp(-0.014 (\lambda \lambda_0))$
  - backscattering
    - $b_{bp}(\lambda) = b_{bp}(440) (\lambda/440)^{-3.3}$
- Reflectance equation (410, 490 555)
  - Radiance Reflectance  $R_{RS} = 0.0949(b_b/(b_b+a)) + 0.0794(b_b/(b_b+a))^2$
- Linear regression: singular value decomposition
- model testing
  - synthetic data using basis vector parameterization
  - $-a_{\phi}$ ,  $a_{cm}$ ,  $b_{bp}$  at  $3\lambda$
  - sensitivity analysis to radiance, IOP uncertainties

## Hoge and Lyon: Eigenvectors



## Hoge and Lyon: Synthetic Reflectance Spectra

Used basis vector formulations in Rrs equation with magnitudes varied such that 5\*10<sup>5</sup> of each IOP were generated

```
a_{\phi}(410) = 0 \text{ to } 0.74 \text{ m}^{-1}

a_{cdm}(410) = 0.01 \text{ to } 0.5 \text{ m}^{-1}

b_{bp}(410) = 0.0005 \text{ to } 0.05 \text{ m}^{-1}
```

## Hoge and Lyon: Sensitivity Analysis

| Exa | amined IOP error in response to:        | <u>a</u>    | <u>a</u> cm | <u>b</u> . |
|-----|-----------------------------------------|-------------|-------------|------------|
| •   | 5% uncertainties in L(555)              | <del></del> | 10%         | 28%        |
| •   | 5% uncertainties in L(490)              |             |             |            |
| •   | 5% uncertainties in L(410)              |             |             |            |
| •   | uncertainties in all three $L(\lambda)$ |             |             |            |
| •   | 10% in width of $a_{\phi}$ peak         | 9%          | 5%          | 9%         |
| •   | 100% uncertainty in S <sub>cm</sub>     | 20%         | 20%         | 20%        |
| •   | 100% uncertainty in n                   | >20%        | >20%        | >20%       |

## singular value decomposition linear matrix inversion

#### This is linear???

$$R(\lambda) = f/Q \times \frac{b_{bw}(\lambda) + A_{bp} b_{bp}^{*}(\lambda)}{b_{bw}(\lambda) + A_{bp} b_{bp}^{*}(\lambda) + a_{w}(\lambda) + A_{\phi} a_{\phi}^{*}(\lambda) + A_{nap} a_{nap}^{*}(\lambda) + A_{CDOM} a_{CDOM}^{*}(\lambda)}$$

$$(a_{w} + a_{\phi} + a_{cdm} + b_{bw} + b_{bp}) = (f/QR) (b_{bw} + b_{bp})$$

$$(a_{\phi} + a_{cdm} + b_{bp}) - (f/QR) *b_{bp} = (f/QR) *b_{bw} - (a_{w} + b_{bw})$$

which is of the form for linear regression:

$$A1 \times a_{\phi}^* + A2 \times a_{cdm}^* + A3 \times b_{bp}^* = [(f/QR) - 1] \times b_{bw} - a_{w}$$

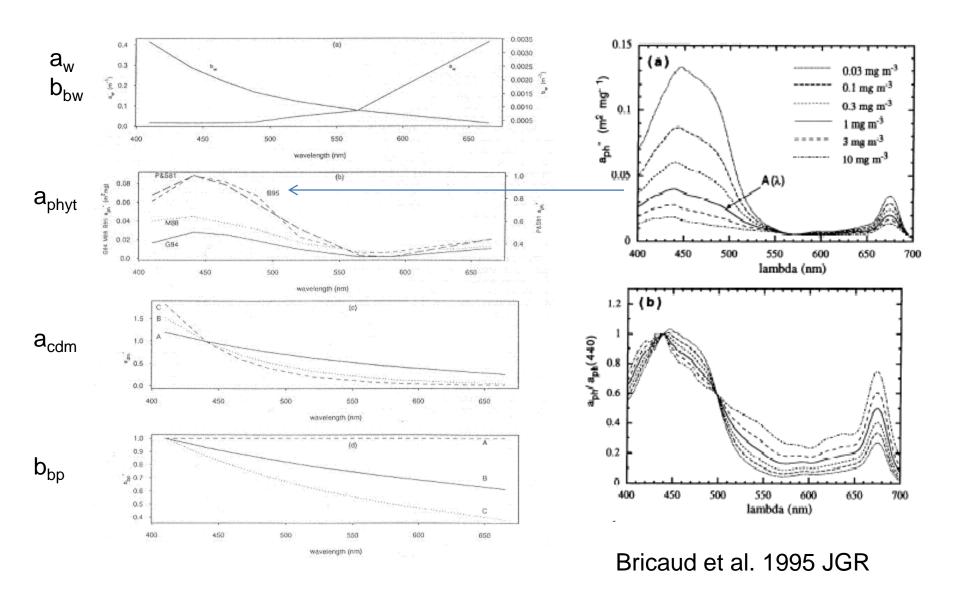
## Garver and Siegel 1997 JGR

- Basis vectors
  - absorption
    - $a_{\phi}(\lambda) = a\phi(440) a_{\phi}^*(\lambda)$  3 models
    - $a_{cdm}(\lambda) = a_{cdm}(440) \exp(-S(\lambda \lambda_o))$
  - backscattering
    - $b_{bp}(\lambda) = b_{bp}(440) (\lambda/400)^n n=0, 1, 2$
- Reflectance equation (8  $\lambda$ s)
  - Radiance Reflectance

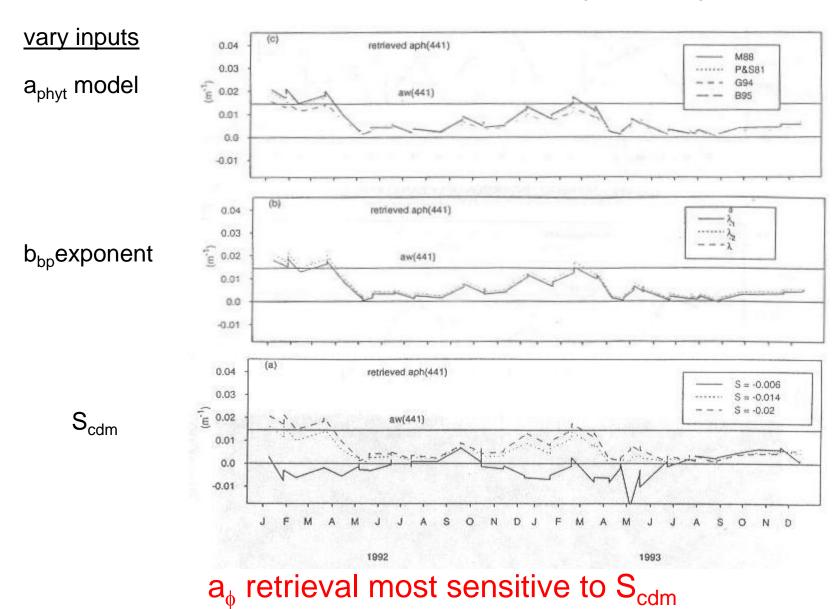
$$R_{RS} = 0.0949(b_b/(b_b+a)) + 0.0794(b_b/(b_b+a))^2$$

- non-linear regression (but see Maritorena et al. 2002 for improved optimization method)
- model testing
  - measured radiance reflectance, 2-yr BATS data
  - sensitivity analysis to  $a_{\phi}$  models, S, n
  - comparison with biogeochemical observations (no validation)

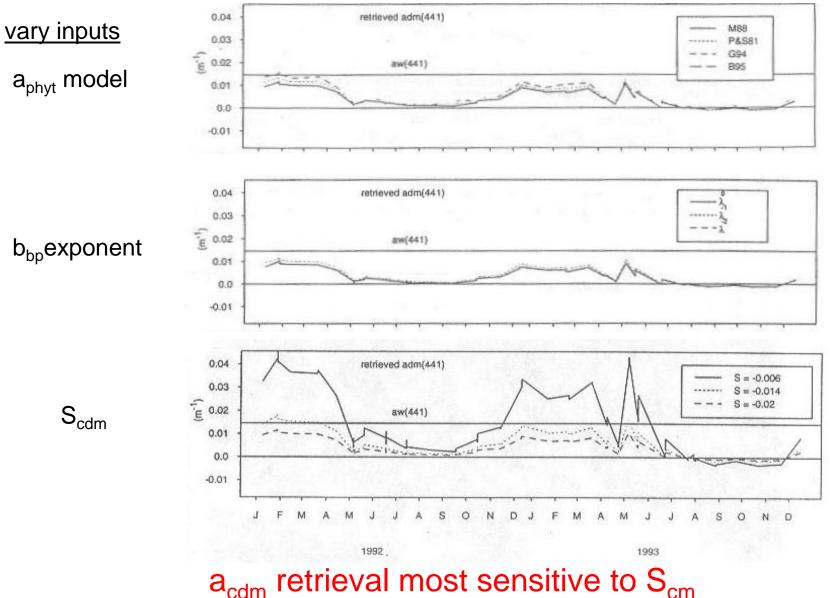
### **Garver: Basis Vectors**



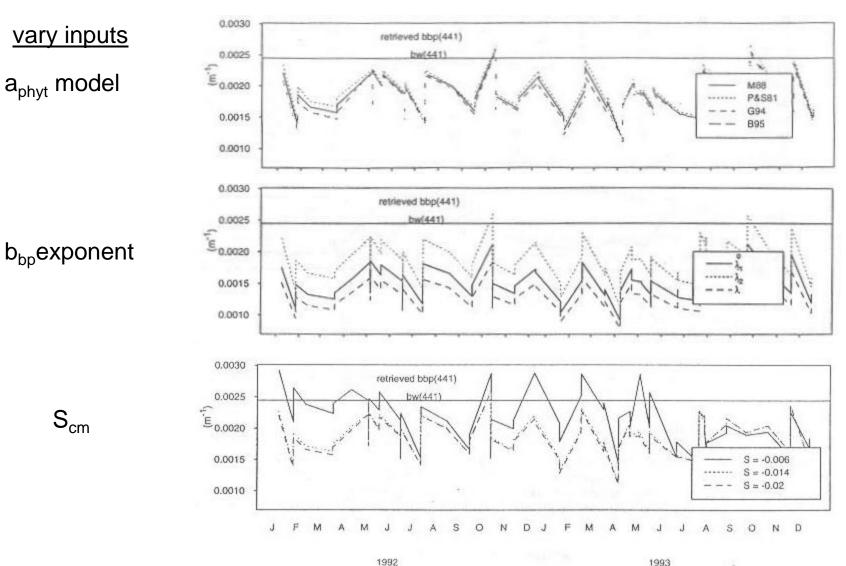
## Garver: IOP model sensitivity analysis for a \$\phi\$



## Garver: IOP model sensitivity analysis for a<sub>cdm</sub>



## Garver: IOP model sensitivity analysis for b<sub>bp</sub>



b<sub>bp</sub> retrieval most sensitive to S<sub>cdm</sub> and n

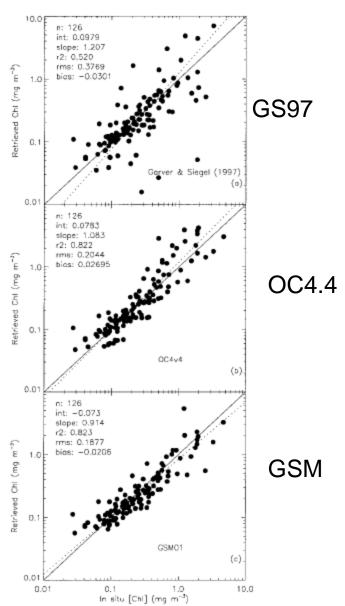
## Garver, Siegel, Maritorena 2002 GSM SeaWiFS MODIS product

#### Simulated Annealing Technique

- "Compared with other steepest descent minimization techniques that look for the quick and nearby solution, simulated annealing is an iterative heuristic method that permits the search of solutions in the uphill i.e., lower performance direction. This allows the system to ultimately find a global minimum."
- "This feature also reduces the importance of the first guesses used to initiate the process that is often a critical aspect of minimization techniques based on the steepest descent methods."
- "Simulated annealing includes three basic elements:
  - 1 a cost function that, given a set of parameters, evaluates the performance of the model;
  - 2 a candidate generator that randomly proposes new values for the **eigenvector**, and 3 a decreasing temperature that introduces some randomness in the process and controls its overall progress."

#### GSM test on SeaWiFS data

 $a_{phyt}$ 



#### Retrieved $a_{phyt}^*(\lambda)$

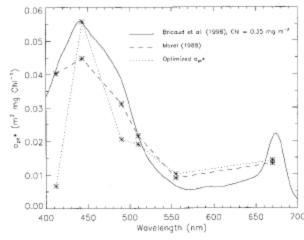
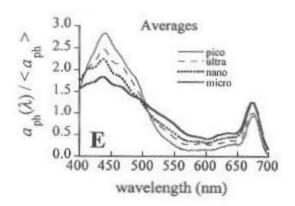
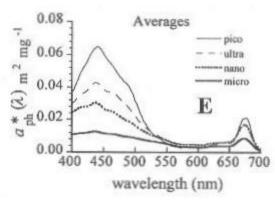


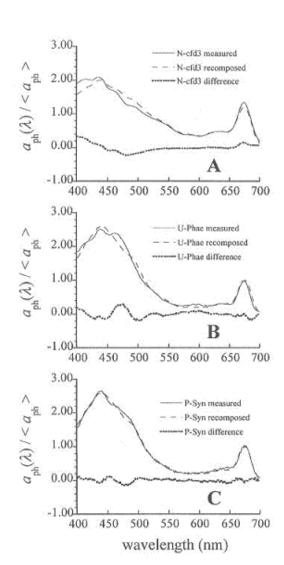
Fig. 3. Comparison of the optimized a<sub>ph</sub>\*(λ) spectrum with the mean spectrum of Morel<sup>2</sup> and a spectrum generated with the model of Bricaud et al.<sup>9</sup> for a Chl concentration of 0.35 mg m<sup>-3</sup>.

## An alternative parameterization of phytoplankton absorption, Ciotti et al. 2002 Limnol. Oceanogr.

$$a_{\phi}(\lambda) = f a_{pico}(\lambda) + (1 - f) a_{micro}(\lambda)$$







#### Roesler and Boss 2003 GRL

- Basis vectors
  - absorption
    - $a_{\phi}(\lambda) = a\phi(440) a_{\phi}^*(\lambda)$  4 species models
    - $a_{cdom}(\lambda)$  and  $a_{nap}(\lambda)$  considered separately
  - backscattering
    - reformulated
- Reflectance equation
  - Radiance Reflectance

$$R_{RS} = f/Q(b_b/(b_b+a))$$

- non-linear regression
- model testing
  - IOP validation
  - sensitivity analysis to  $a_{\phi}$  models, S, n
  - comparison with biogeochemical observations (no validation)

#### Roesler and Boss 2003 GRL:

Semianalytic inversion to retrieve beam attenuation

$$R(\lambda) = \frac{f}{Q} \frac{b_{bw} + b_{bp}}{a_w + a_{\phi} + a_{CDOM} + a_{nap} + b_{bw} + b_{bp}}$$

$$let b_{bp} = \tilde{b}_{bp} b_p$$

where  $ilde{b}_{bp}$  is the particle backscattering ratio

so 
$$b_{bp}(\lambda) = \tilde{b}_{bp}b_{p}(\lambda)$$
  
therefore  $b_{bp}(\lambda) = \tilde{b}_{bp}(c_{p}(\lambda) - a_{p}(\lambda))$ 

# What do we know about the particle backscattering ratio?

7070 APPLIED OPTICS / Vol. 33, No. 30 / 20 October 1994

#### Effect of the particle-size distribution on the backscattering ratio in seawater

Osvaldo Ulloa, Shubha Sathyendranath, and Trevor Platt

varies with real index of refraction

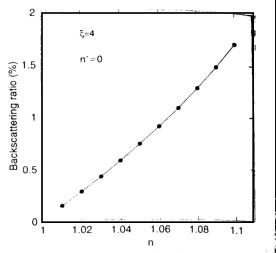
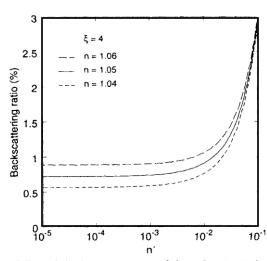


Fig. 2. Effect of the real part of the refractive index n on backscattering ratio  $\hat{b}_{bp}$ .



independent of imaginary index of refraction

Fig. 3. Effect of the imaginary part of the refractive index n' on the backscattering ratio  $\tilde{b}_{\rm bp}$ .

$$b_{bp}(\lambda) = \tilde{b}_{bp}(c_p(\lambda) - a_p(\lambda))$$

we know 
$$a_p(\lambda) = a_{\phi}(\lambda) + a_{nap}(\lambda)$$

and  $c_p(\lambda)$  is a smoothly varying function

$$c_p(\lambda) = c_p(\lambda_o) \left(\frac{\lambda}{\lambda_o}\right)^{\gamma}$$

so 
$$b_{bp}(\lambda) = \tilde{b}_{bp} \left( c_p(\lambda_o) \left( \frac{\lambda}{\lambda_o} \right)^{\gamma} - a_{\phi}(\lambda) - a_{nap}(\lambda) \right)$$

## Regression Model

$$R(\lambda) = \frac{f}{Q} \frac{b_b}{a + b_b}$$

Where

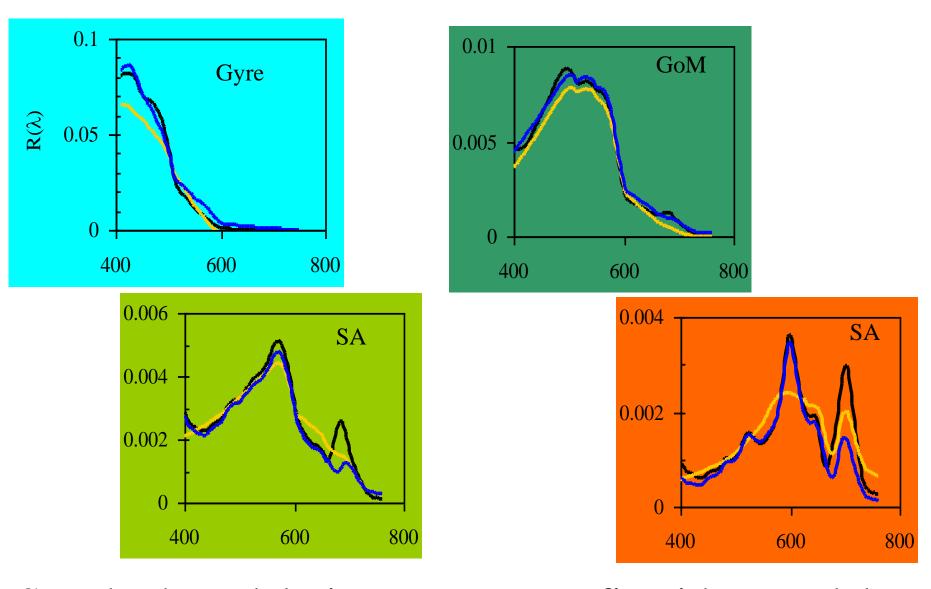
$$\frac{f}{Q} = \mathbf{A}_{\frac{f}{Q}}$$

$$b_{b}(\lambda) = b_{w}(\lambda) + A\widetilde{b}_{bp} \left( Ac_{p}(\lambda_{o}) \left( \frac{\lambda}{\lambda_{o}} \right)^{A\gamma} - A_{\phi} \widehat{a}_{\phi}(\lambda) - A_{nap} \widehat{a}_{nap}(\lambda) \right)$$

$$a(\lambda) = a_w(\lambda) + A_{\phi} \widehat{a}_{\phi}(\lambda) + A_{nap} \widehat{a}_{nap}(\lambda) + A_{CDOM} \widehat{a}_{CDOM}(\lambda)$$

7 unknowns, 3 absorption eigenvectors

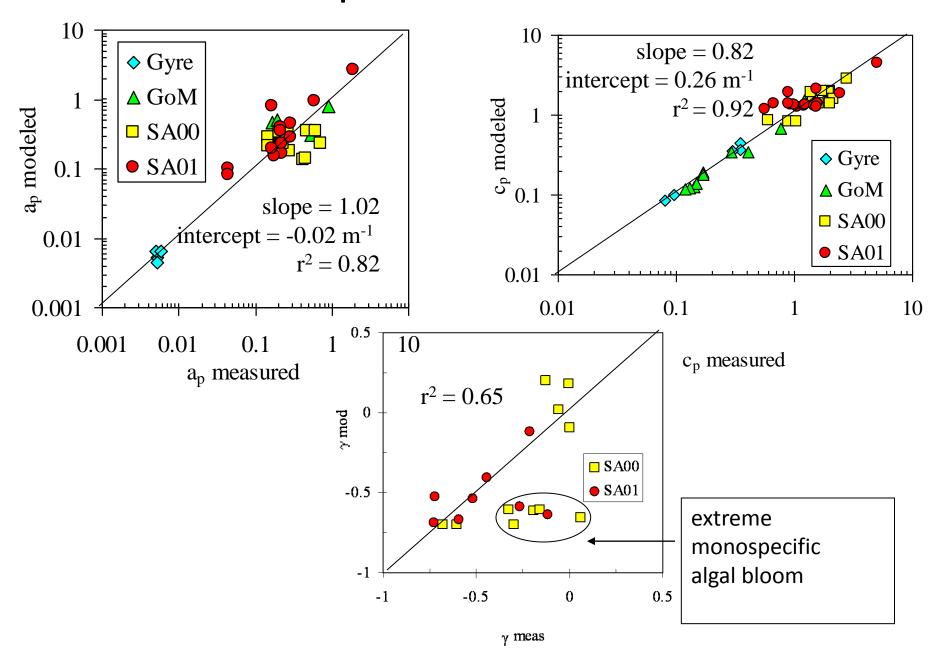
### Results: Model fit to reflectance



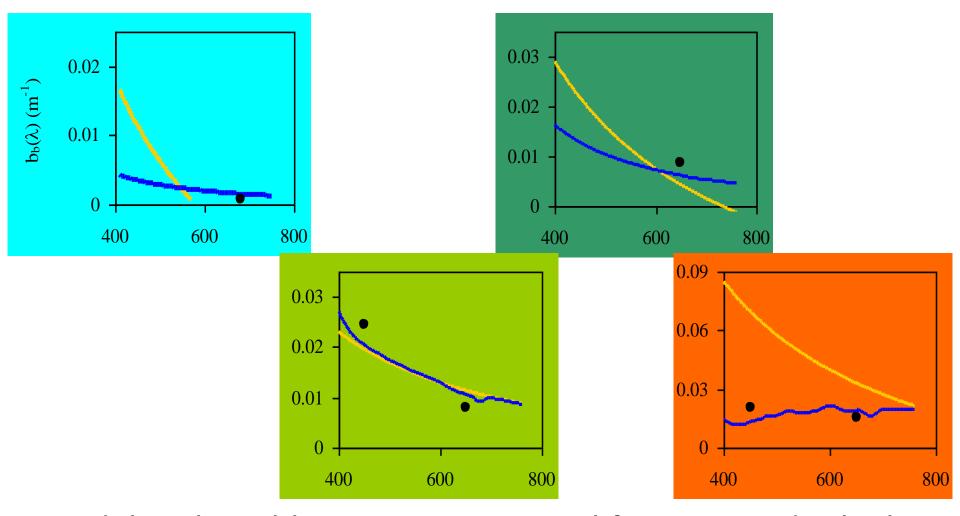
Standard Model Fit

Better fit with c-model

#### Results: comparison with measured IOPs



## Results: backscattering



C-model realistic bb spectrum, spectral features under high absorption conditions as predicted by Mie theory.

## Take Home Messages

- Semi-analytic reflectance inversion models are powerful tools for estimating spectral IOPs from ocean color
- the devil is in the details...
  - eigenvector definitions
  - over constrained (hyperspectral vs multispectral)
- solution methods: non-linear regression, optimized non-linear regression, linearized regression
- important considerations
  - testing against independent measured observations
  - sensitivity analysis
  - uncertainties