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The Radiative Transfer 

Equation (RTE) 

 
• expresses conservation of 

energy in terms of the 

radiance 

 

• connects the IOPs, 

boundary conditions, and 

light sources to the radiance 

 

All other radiometric 

variables (irradiances) and 

AOPs can be derived from 

the radiance. 

 

If you know the radiance, you 

know everything there is to 

know about the light field 



Derivation of the RTE 
To derive the time-independent RTE for horizontally homogeneous 

water, we consider the radiance at a given point r (at depth z), 

traveling in a given direction (, ), at a given wavelength .  We 

then add up the various ways the radiance L(r,,,) can be created 

or lost in a distance Δr along direction (, ), going from point r to 

r+Δr (at depth z to z+Δz). 



Losses of Radiance 

The loss due to absorption is 

proportional to how much 

radiance there is: 

dL(r,q,f,) 

    dr 
= - a(r,) L(r,q,f,) 

Likewise for loss of radiance due 

to scattering out of the beam: 

dL(r,q,f,) 

    dr 
= - b(r,) L(r,q,f,) 



Scattering into the beam from all other directions increases the radiance: 

dL(r,q,f,) 

    dr 
= 4p L(r,q,f,) b(r; q,fq,f ;) dW 

Sources of Radiance 

There can be internal 

sources of radiance 

S(r,q,f,), such as 

bioluminescence  

dL(r,q,f,) 

    dr 
= S(r,q,f,) 

See the www.oceanopticsbook.info page on “radiative transfer theory,  

deriving the radiative transfer equation” for a full development of this equation 



+ 4p L(r,q,f,) b(r; q,fq,f; ) dW 

Add up the Losses and Sources 

+ S(r,q,f,) 

dL(r,q,f,) 

    dr 
= - a(r,) L(r,q,f,) 

   - b(r,) L(r,q,f,) 

Finally, note that a + b = c and that dz = dr cos to get 



The 1D RTE, Geometric-depth Form 

This is the RTE that HydroLight solves.   

+ 4p L(z,q,f,) b(z; q,fq,f; ) dW 

+ S(z,q,f,) 

dL(z,q,f,) 

    dz 
= - c(z,) L(z,q,f,) cos 

The VSF b(z; q,fq,f; ) is usually written as b(z, ψ, ) in terms 

of the scattering angle ψ, where 

 

cosψ = cos cos + sin sin cos(f-f) 



The 1D RTE, Optical-depth Form 

Note that a given geometric depth z corresponds to a different 

optical depth z(λ) = 0
z
 c(z,) dz at each wavelength 

Define the increment of dimensionless optical depth z as dz = c dz  

and write the VSF as b times the phase function,   , and recall that  

o = b/c to get 

b 
~ 

Can specify the IOPs by c and the VSF b, or by ωo and the phase 

function     (and also c, if there are internal sources) b 
~ 

+ o 4p L(z,q,f,)   (z; q,fq,f; ) dW 

+ S(z,q,f,)/c(z,) 

dL(z,q,f,) 

    dz 
= - L(z,q,f,) cos 

b 
~ 



+ 4p L(z,q,f,) b(z; q,fq,f; ) dW 

+ S(z,q,f,) 

dL(z,q,f,) 

    dz 
= - c(z,) L(z,q,f,) cos 

NOTE:  The RTE has the TOTAL c and  TOTAL VSF.  Only 

oceanographers (not photons) care how much of the total 

absorption and scattering are due to water, phytoplankton, CDOM, 

minerals, etc. 

The 1D RTE, Geometric-depth Form 

The RTE is a linear (in the unknown radiance), first-order (only a 

first derivitive) integro-differential equation.  Given the green 

(plus boundary conditions), solve for the red.  This is a two-point 

(surface and bottom) boundary value problem. 



The Source Terms 
The source terms for inelastic scatter (Raman, Chl or CDOM 

fluoresecence) or bioluminescence are similar to the elastic scatter 

path function, except that there is now an integral over wavelength: 

Recall that for Chl fluoresecence we had 



The Source Terms 

This is how HydroLight includes Chl fluoresence.  Raman, CDOM, 

and bioluminescence are handled in the same way, but with different 

VSFs for each process (bioluminescence at λ does not depend on 

inputs from shorter wavelengths). 



A unique solution of the RTE requires: 

Region of 
interest: 
IOPs are 
known 

Radiance incident onto all 
boundaries from outside  
the region is known 

A 3-D problem 

IOPs are known as a  
function of depth 

Bottom (can be at ) 

Radiance incident onto sea  
surface is known 

A 1-D problem 

Stretch out the 
region to make 
a horizontally 
homogeneous 
ocean 

Solving the RTE 

Theorem: Given the IOPs within a region and the incident radiances, 

there is a unique solution for the radiance within and leaving the region 



Solving the RTE:  The Lambert-Beer Law 

A trivial solution:   

• homogeneous water (IOPs do not depend on z) 

• no scattering (VSF β = 0, so c = a + b = a) 

• no internal sources (S = 0) 
• infinitely deep water (no radiance coming from the bottom boundary, 

so L  0 as z  ∞) 

• incident radiance L(z=0) is known just below the sea surface 

Note that this L satisfies the RTE, the surface boundary condition, and 

the bottom boundary condition L(z →∞) → 0. 



Solving the RTE:  Gershun’s Law 

Start with the 1D, source-free, RTE. 

Integrate over all directions.  The left-hand-side becomes 



Solving the RTE:  Gershun’s Law 

The – cL term becomes 

The elastic-scatter path function becomes 



Solving the RTE:  Gershun’s Law 

Collecting terms, 

or 

Gershun’s law can be used to retrieve the absorption coefficient from 

measured in-water irradiances (at wavelengths where inelastic 

scattering effects are negligible). 

 

This is an example of an explicit inverse model that recovers an IOP 

from measured light variables. 



Water Heating and Gershun’s Law 

The rate of heating of water depends on how much irradiance there is 

and on how much is absorbed: 

cv = 3900 J (kg deg C)-1 is the specific heat of sea water   

ρ = 1025 kg m-3 is the water density  

This is how irradiance is used in a coupled physical-biological-optical 

ecosystem model to couple the biological variables (which, with water, 

determine the absorption coefficient and the irradiance) to the 

hydrodynamics (heating of the upper ocean water) 



Solving the RTE 

Exact analytical (i.e., pencil and paper) solutions of the RTE can be 

obtained only for very simple situations, such as no scattering.  

There is no function (that anyone has ever found) that gives 

 

L(z,q,f,) = f(a, VSF, sun angle, bottom reflectance, etc.) 

 

even for very simple situations such as homogenous water with 

isotropic scattering.  Even the extremely simple geometry of an 

isotropic point light source in an infinite homogeneous ocean is 

unsolved (a very complicated solution for Eo(r) around a point 

source with isotropic scattering does exist).  This is because of the 

complications of scattering (which don’t exist for problems like the 

gravitational field around a point mass). 



Solving the RTE 

Approximate analytical solutions can be obtained for idealized 

situations such as single scattering in a homogeneous ocean. (This 

is where Rrs = bb/(a + bb) comes from.) 

 

I have included a set of notes on the single-scattering 

approximation (SSA) and related approximations in the papers 

directory.  However, we don’t have time to discuss these 

approximate solutions, and they are not very useful anyway. 



Solving the RTE 

The solution of the RTE for any realistic conditions of scattering or 

geometry must be done numerically.  Three widely used exact 

numerical methods are seen in the literature (in RT theory, “exact” 

means that we don’t make approximations such as single scattering.  

Given enough computer time, you can get the correct answer as 

closely as you wish.) 

 

• Discrete ordinates:  often used in atmospheric optics 

• highly mathematical 

• difficult to program 

• doesn’t handle highly peaked phase functions well 

• most codes need a level sea surface 

• models the medium as homogeneous layers 

• fast for irradiances and homogeneous systems 

• slow for radiances and inhomogeneous systems 

• therefore, not much used in oceanography 

 



Solving the RTE 

 

• Monte Carlo:  widely used 

• simple math, easy to program 

• can solve 3D problems 

• run time increases exponentially with optical depth 

• have to trace many photons to get accurate radiance estimates 

   (solutions have statistical noise) 

• very long run times for radiances and/or great depths 

• more useful for irradiance computations and/or shallow depths 

 

• Invariant Imbedding:  what Hydrolight uses 

• highly mathematical (see Light and Water, Chaps 7 and 8) 

• difficult to program 

• 1D (depth dependence) problems only 

• run time increases linearly with optical depth 

• computes radiances accurately (no statistical noise) 

• extremely fast and accurate even for radiances and large depths 



Boundary Conditions at the Sea Surface 

Must know how radiance coming from any direction above or below the 

surface is reflected and transmitted by the surface into any other direction 

. 

Requires 4 bi-directional surface reflectance and transmittance functions.  

Depend strongly on wind speed (i.e., on wave slopes); only weakly on 

wavelength (via the water index of refraction) 

 

Pre-computed by Monte Carlo simlations of random sea surfaces (>105 

surface realizations) to get time-averaged functions.  Details in Light and 

Water Chapter 4. 



wave slopes are 

correct in HydroLight, 

wave heights are not 

See HydroLight Tech Note 1 for more discussion 

(HE5/Documents/HTN1_SurfaceWaves.pdf) 

H Uses Cox-Munk Wind Speed-Wave Slope Statistics to Model 

the Sea Surface (C-M Includes Both Capillary and Gravity Waves) 



Boundary Conditions at the Sea Bottom 
Must know how the bottom reflects radiance from any downward 

direction into any upward direction.   

 

Described by the bottom bi-directional reflectance distribtution 

function, BRDF(θi, φi, θr, φr, λ)  [units of 1/steradian] 

See 

www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_brdf 

http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_brdf
http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_brdf
http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_brdf


Lambertian BRDFs 

Physical bottoms are usually assumed to be Lambertian: 

 

Each point of the surface reflects radiance in a cosine pattern 

 

Viewing many points then gives radiance reflected equally in all 

directions 

See 

www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_lambertian_brdf 

http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_lambertian_brdf


Lambertian BRDFs 
The BRDF of a Lambertian reflector is fully specified by it reflectivity ρ, 

which equals the irradiance reflectance R = Eu/Ed: 
 

BRDF(θi, φi, θr, φr, λ) = ρ(λ)/π 

 
ρ = 0 for a “black” surface; ρ = 1 for a “white” surface 

 

The default in HydroLight is to specifiy a bottom reflectance (really ρ = Eu/Ed), 

and H then assumes that the bottom is Lambertian. 



Approaching Hurrah Pass,  

SW of Moab, Utah 

photo by Curtis Mobley 

It’s always good to go mountain 

biking in the desert in the 

springtime after a long, cold, 

dark, rainy or snowy winter 


