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[1] The inverse problem of ocean color consists in deriving the inherent optical properties
(IOP) of marine particles from a reflectance spectrum measured at the sea surface.
Such a problem is ill-posed or ambiguous because of the nonuniqueness of the solution;
that is, several combinations of IOP values can lead to a unique reflectance spectrum.
Currently, great efforts are made in the development of inverse methods to accurately
retrieve the IOPs. However, many fewer studies have been devoted to the analysis of the
ambiguities, which affect yet the error on the IOPs retrieval. In this paper, the ambiguities
related to the ocean color problem in coastal waters are characterized and their
implications for inverse modeling are studied. A synthetic data set is created on the basis
of radiative transfer modeling. The simulations are constrained using in situ
observations and statistical rules to make the data set realistic. The ambiguity rate of
remote sensing reflectance (Rrs) spectra is around 90%, thus meaning that the ocean color
problem is extremely ambiguous. The influence of the ambiguities on the IOPs retrieval is
evaluated. It is demonstrated that the error that is ascribed to the occurrence of
ambiguity is equal to the dispersion of all the plausible IOPs solutions. The ambiguity
error made on the total absorption coefficient is shown to be greater in highly absorbing
water mass. On the other hand, the ambiguity error made on the total backscattering
coefficient is higher in turbid scattering waters. Finally, different strategies to reduce the
effects of ambiguities are discussed.
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1. Introduction

[2] The inverse problem of ocean color consists in
determining biogeochemical parameters such as the chloro-
phyll a concentration from the upwelling radiance spectrum.
Because the inherent optical properties (IOPs) of the par-
ticles, namely the scattering, backscattering and absorption
coefficients, are at the center of measured water leaving
radiance and water constituents, the inverse problem is often
examined as a two steps process: the derivation of IOPs
from the radiance, and then biogeochemical parameters
from the IOPs. Such an IOPs-based inversion maximizes
the information gained from remote sensing. A number of
methods for the IOPs retrieval of each water components,
namely phytoplankton (Chl), nonalgal particles (NAP),
inorganic material (sed) and colored dissolved organic
matter (CDOM) from remotely sensed data have been
proposed. Empirical approaches consist in establishing

statistical relationships between the marine reflectance and
the desired optical parameters. This method is fairly reliable
when the IOPs are mainly ascribed to phytoplankton and
associated products as observed in the open ocean [Gordon
et al., 1983; Morel, 1988; O’Reilly et al., 1988]. However, it
can be highly inaccurate in coastal zones owing to the
prevailing contribution to the light field from inorganic and/
or dissolved material. In the latter case, semianalytical
algorithms, which are based on radiative transfer simula-
tions, are used to approximate the relationship between the
IOPs and the reflectance. Equation 1 provides an example
of relationships that is often used as a basis of many
inversion algorithms:

Rrs ¼ Lu=Ed ¼ g
bbtot

atot
; ð1Þ

where Rrs is the subsurface remote sensing reflectance,
defined by the ratio of nadir-viewed upwelling radiance
Lu (in Wm�2 sr�1) to downwelling irradiance Ed (in Wm�2)
just beneath the sea surface, bbtot is the total backscattering
coefficient (in m�1), atot is the total absorption coefficient
(in m�1) and g is a proportionality factor (sr�1).
[3] The major difficulty of solving the inverse problem of

ocean color rests on the fact that the relationship between
the Rrs and the IOPs of each water component is mathe-
matically not a bijection. Because of their additive property,
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IOPs of each water component combined in different ways
can lead to identical sum of IOPs and thus to similar
reflectance values. Furthermore, a given value of the ratio
bbtot/atot can be obtained from different values of bbtot and
atot, thus also generating a similar reflectance value as
inferred by equation 1. Because the solutions are not
unique, the inverse problem of ocean color is said ambig-
uous or ill-posed. Therefore, fundamentally, both the inver-
sion algorithm and the presence of ambiguities are sources
of error in the retrieved IOPs. Note that the error due to the
occurrence of ambiguities also corresponds to the minimum
error that can be made when inverting the reflectance,
whatever the algorithm employed. Most of the current
studies focus on the development of original inversion
algorithms [Carder et al., 1999; Chami and Robilliard,
2002; Garver and Siegel, 1997; Hoge and Lyon, 1996;
Lee et al., 2002, 1996; Maritorena et al., 2002; Roesler and
Boss, 2003; Roesler and Perry, 1995; Schiller and Doerffer,
2005]. These studies contribute to significantly document
and reduce the fraction of the error that is ascribed to the
methodology. The variability of the error related to the
methodology was recently studied in the framework of
a rigorous intercomparison exercise organized by the
International Ocean Colour Coordinating Group [2006].
However, much less efforts have been devoted to examine
the influence of the ambiguities caused by the non bijec-
tivity of the inversion problem on the error made in the
retrieved IOPs. It is the purpose of this paper to deeply
analyze the nonuniqueness of the solution of the inversion
problem and the resulting implications in terms of accuracy
of IOPs retrieval. The objective is thus to quantify the
fraction of the error that is ascribed to the physical part of
the inversion problem rather than that due to the algorith-
mical part. Our analysis relies on a synthetic data set that is
representative of optically complex waters such as those
found in coastal areas. The paper is organized as follows.
First, the radiative transfer simulations are described and the
synthetic data set is analyzed. Second, formal mathematical
definitions of the ambiguities are provided and the distri-
bution of the nonuniqueness of the solution within the data
set is characterized. Then the impact of the ambiguities on
the accuracy of the retrieved optical parameters is evaluated.
Finally, several strategies that might be relevant to tackle the
ambiguity problem are discussed.

2. Simulation and Analysis of the Synthetic
Data Set

[4] A great part controlling the success of an algorithm
developed to address the inverse problem of ocean color in
coastal waters is its ability to correctly represent real-world
conditions. One way of doing consists in using empirical
data set. However, inverse models based on in situ measure-
ments strongly depend on both the quantity and the quality
of the available data. It is also often very difficult to gather
enough measurements, especially in coastal waters, to
properly educate an inversion algorithm. Furthermore,
owing to the huge variability in the optical properties of
particles in coastal waters, empirical-based methods may
lead to produce overspecialized models that cannot be
efficiently applied on unseen data, i.e., data that are not
used to build the inverse model. Another way to make an

inversion algorithm able to represent real-world conditions
is to use a simulated data set constrained by observations. In
this latter case, a great variety of optical conditions can be
taken into account in the data set. Furthermore, a huge
number of data can be simulated such that the algorithm can
be reliable, from a statistical point of view. A synthetic data
set has often been used to describe and validate methods
suitable for data inversion [Gross et al., 2000; Schiller and
Doerffer, 1999]. Currently, a large set of efficient inverse
methods, all having their own specificities, is available.
Further significant improvements in the solving of the
inverse problem of ocean color in coastal waters will come
firstly from the quality of data creation process and then
from a deeper knowledge of the statistical properties of the
data set, in particular of the (often underestimated) question
of ambiguities. Afterward, we think that, with a well known
characterization of the data set, the judicious choice of
appropriate inverse methods will be greatly facilitated.
However, most of the current studies have rarely gone to
great efforts to rigorously design and analyze the simulated
data set. Recently, the working group of IOCCG proposed a
simulated data set inspired by observations [International
Ocean Colour Coordinating Group, 2006] but a thorough
analysis of the data set itself is still missing. Here a synthetic
data set is generated following the same logic as that
proposed by IOCCG. However, the originality of our
approach is to focus not only on the physical but also on
the statistical constraints to ensure a generation of a syn-
thetic data set which is realistic with respect with observa-
tions and reliable for algorithmic development purposes.

2.1. Forward Model

[5] The simulations were performed using the OSOA
radiative transfer model [Chami et al., 2001]. The OSOA
model solves the vector radiative transfer equation for the
coupled atmosphere-ocean system using the successive
orders of scattering method. Given a set of inherent optical
properties in the water column, the OSOA model outputs
the angular distribution of the radiance field. The originality
of OSOA model, when comparing to other widely used
models such as Hydrolight [Mobley, 1989], is to account for
the polarization state of light in the water mass. Note that
owing to that interesting feature, it was not relevant in this
study to use the synthetic data set generated in the frame-
work of the IOCCG working group, which is based on
Hydrolight simulations.
[6] We report here on the inputs parameters used in the

OSOA model. Standard atmosphere with tropospheric aero-
sols T70 [Shettle and Fenn, 1979] having an optical depth
of 0.2 at 555 nm (i.e., horizontal visibility of 23 km) was
used to simulate the incoming solar light. The solar zenith
angle was set up to 30�. The nadir-viewed remote sensing
reflectance was simulated just beneath the surface. The
wavelengths used to compute the Rrs were: 412 nm,
443 nm, 490 nm, 510 nm, 555 nm, 620 nm and 665 nm.
The set of wavelengths is referred to as L = {412, 443, 490,
510, 555, 620, 665}. The inherent optical properties re-
quired for the simulation are the absorption coefficients, the
scattering coefficients and the phase function of the par-
ticles. For computation of the IOPs, a five components
seawater model is considered. The five components are pure
seawater, phytoplankton and their covarying particles (Chl),
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colored dissolved organic matter (CDOM), nonalgal par-
ticles (NAP) and inorganic particles (sed). In the notation,
IOPv is a vector composed by each component of the IOPs,
such that IOPv = {aCDOM, aNAP, achl, bchl, bsed, bbchl, bbsed}.
In this water model, the total absorption coefficient atot is
the sum of contributions from all components. Since
CDOM is supposed to be nonscattering material, the total
scattering coefficient btot and backscattering coefficient bbtot
are the sum of all other components. We note also ap, bp and
bbp, respectively the absorption, scattering and backscatter-
ing coefficients of particles. The phase functions of particles
are computed using Mie theory and different refractive
indices for the phytoplankton and inorganic particles. Stan-
dard ranges of variations in the refractive index are used,
namely [1.05, 1.10] and [1.15, 1.20] for phytoplankton and
inorganic matter respectively. The size distribution of the
particles is modeled as a Junge power law. The Junge
exponent is considered as a parameter varying in the range
[3, 5]. Note that the variations of the refractive indices and
the Junge exponent mean that many directional effects of
particles are included in the computations, which is consis-
tent with the variability observed in the phase functions in
coastal areas [Chami et al., 2005, 2006]. Such important
features are not necessarily accounted for in synthetic data
sets in which a single particle phase function is used
[Gross et al., 2000; Schiller and Doerffer, 1999]. A number
of N = 10000 reflectance spectra are simulated to cover a
large variety of optical coastal waters conditions. For
convenience, the synthetic data set is hereafter referred to
as DPCK2.

2.2. Random but Constrained Generation of Data

[7] To feed the OSOA model with several thousands sets
of IOP vectors a random assignment of each IOP value is
performed. Nevertheless two different types of constraints
have to be taken into account.
[8] 1. The ‘‘realistic constraints’’ arise from the optical

and biogeochemical properties of the oceanic constituents.
Typically, these constraints consist in the selection of
appropriate ranges of variation for each IOP, ranges of
covariation between IOPs but also appropriate spectral
dependencies for each IOP. The realistic constraints have
to be respected to generate synthetic spectra similar to

natural ones. In this study, we will mainly use the set of
COASTlooc measurements [Babin et al., 2003a, 2003b] to
satisfy these realistic constraints. The COASTlooc data,
which were acquired in many European coastal waters
(387 data in total), are highly appropriate inasmuch as they
cover a wide variety of optical conditions, ranging from
CDOM dominated waters (such as the Baltic Sea) to
mineral dominated waters (such as the English Channel).
[9] 2. The ‘‘statistical constraints’’ require that, in a ideal

data set, all the variables within the samples should be
independent and identically distributed [Vapnik, 1995]. The
notation iid is hereafter used to specify a data set which is
independent and identically distributed. Nevertheless, it is
clear that this ideal case cannot be reached owing to the
realistic constraints above mentioned. For example, the
independence of variables is in our case meaningless
because of the spectral variations properties of the IOPs.
The distribution of values within any data sets needs to be
also investigated carefully since it could greatly influence
the performance of the resulting inverse models. The
inverse models built on uniformly distributed data usually
report uniformly distributed errors so that the overall quality
of these models can be systematically predicted with preci-
sion. However the distribution of in situ collected data may
not be uniform. This could be problematic for a user that
intends to invert them using models build on uniformly
distributed data. Therefore in the case of measurements
demonstrating overrepresented values, i.e., a nonuniform
distribution, it is clear that the inverse models should be
overspecialized on these prevailing values even though this
overspecialization leads to introduce differently distributed
(i.e., not iid) values within the data sets.

2.3. A Two-Step Creation Process

[10] The procedure that is used to create the synthetic data
set includes two steps. First, the IOP values at 443 nm are
fixed for the N samples of DPCK2 accounting for the
constraints above described. Second, the IOP values are
determined at other wavelengths.
2.3.1. First Step: Setting of the IOP Values at 443 nm
[11] We start with the random assignment of the

particulate scattering coefficient bp(443) so that each
value is drawn in a specific range of variation based
on COASTlooc measurements at 443 nm (Table 1). The
contribution to bp(443) from bchl(443) (i.e., bchl/bp) is
uniformly drawn in the range [0, 1], thus allowing the
determination of both bchl(443) and bsed(443). The back-
scattering coefficient of phytoplankton bbchl and inorganic
matter bbsed, are calculated by integrating their respective
phase function in the backward hemisphere and multi-
plying the result of the integration by their respective
scattering coefficient. Note that the values of bbchl(443)
and bbsed(443) are not independent.
[12] To account for the covariations of the particulate

scattering coefficient bp with the particulate absorption
properties, namely the covariations between (1) bp and achl
and (2) bp and aNAP, the values of achl(443) and aNAP(443)
are drawn into two specific ranges both computed from the
set of COASTlooc measurements. These two specific
ranges are, respectively, the set of covariation bounds
between bp(443) and achl(443) and the set of covariation
bounds between bp(443) and aNAP(443). We call set of

Table 1. Range of Variations of the Optical Parametersat 443 nma

Data Mean Sigma Min Max

achl 1.43E-01 1.50E-01 6.12E-03 9.04E-01
anap 1.39E-01 2.23E-01 2.05E-03 1.73E+00
aCDOM 5.01E-01 2.88E-01 9.27E-05 1.00E+00
bchl 1.87E+00 3.14E+00 1.81E-05 2.08E+01
bsed 1.85E+00 3.07E+00 1.04E-04 2.06E+01
bbchl 1.73E-02 3.58E-02 1.00E-08 3.94E-01
bbsed 4.64E-02 7.89E-02 1.00E-08 6.59E-01
ap 2.83E-01 3.04E-01 8.56E-03 2.57E+00
bp 3.72E+00 5.08E+00 7.59E-02 2.10E+01
bbp 6.37E-02 9.62E-02 2.40E-04 6.64E-01
atot 7.91E-01 4.16E-01 2.07E-02 3.15E+00
btot 3.72E+00 5.08E+00 8.07E-02 2.10E+01
bbtot 6.61E-02 9.62E-02 2.60E-03 6.66E-01
Rrs 1.40E-02 1.24E-02 3.30E-04 1.28E-01

aSigma is the standard deviation. Read, for example, 6.12E-03 as
6.12 � 10�3.
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covariation bounds, the set of extreme values (lower and
upper) giving the limits of an envelope in which data
covariations are considered to be realistic. Accounting for
the dispersion of COASTlooc measurements (Figure 1)
where low values prevail, the two sets of covariation bounds
are calculated using a logarithmic scaling. The upper and
lower covariation bounds are centered on local mean values
of the measurements. Note that the distance between the
bounds depends on the local dispersions of the measure-
ments. Because no covariation was found between aCDOM
and the other IOPs, each value of aCDOM(443) is uniformly
drawn in a range of variation motivated by the related
literature [Babin et al., 2003b].
[13] After this first step, all of the synthetic IOP values at

443 nm are fully specified. The effective ranges of variation
of the IOPs at 443 nm used in this study are reported in
Table 1.
2.3.2. Second Step: Setting of the IOP Values at
Other Wavelengths
[14] The spectral values of nonalgal particles and CDOM

absorption are calculated using the bio-optical models
developed by Bricaud et al. [1981] and Babin et al.

[2003b] which report an exponential decrease of the ab-
sorption coefficient with wavelength (equation (2)). The
spectral values of bchl and bsed are obtained using a power
law function (equation (2)).
[15] For all l in L we have

aNAP lð Þ ¼ aNAP 443ð Þe�SaNAP l�443ð Þ ; ð2aÞ

aCDOM lð Þ ¼ aCDOM 443ð Þe�SaCDOM l�443ð Þ ; ð2bÞ

bchl lð Þ ¼ bchl 443ð Þ l
443

� ��Sbchl

; ð2cÞ

bsed lð Þ ¼ bsed 443ð Þ l
443

� ��Sbsed

: ð2dÞ

[16] The spectral slopes SaNAP, SaCDOM, Sbchl and Sbsed
are uniformly drawn in specific ranges of variation [Babin
et al., 2003b] (Table 2). Figure 2a shows examples of
synthetic bchl spectra.
[17] The spectral slope of the scattering coefficient Sbp is

evaluated using a nonlinear regression, assuming that the
spectral variation of bp also follows a power law function. It
is interesting to note that the derived values of Sbp can be
accurately approximated (the correlation coefficient is 0.98)
using the following formulation:

Sbp �
bchl 443ð Þ � Sbchl þ bsed 443ð Þ � Sbsed

bchl 443ð Þ þ bsed 443ð Þ : ð3Þ

[18] The computation of achl at other wavelengths than
443 nm is somewhat more specific. Contrary to aNAP and
aCDOM for which parametric models of their spectral varia-
tions are available, there is no standard law describing the
spectral dependencies of achl in coastal waters. The spectral
shape of achl is thus determined by averaging the three
absorption spectra taken in the COASTlOOC database for
which the measured value of achl(443) is the nearest to the
randomly selected value of achl(443). The advantage of such
way of doing is to account for the relationship that exists
between the spectral shape of phytoplankton absorption
coefficient and the magnitude of achl(443). Note that this
latter relationship is due to the packaging effect within
phytoplankton cells. Therefore the data set is in accordance

Table 2. Range of Variations of the Spectral Slopes Used in the

Optical Modelsa

Data Mean Sigma Min Max

SaNAP 1.30E-02 1.16E-03 1.10E-02 1.50E-02
SaCDOM 1.70E-02 1.70E-02 1.50E-02 1.90E-02
Sbp 1.00E+00 5.76E-01 5.23E-05 2.00E+00
Sbchl 1.01E+00 5.79E-01 5.23E-05 2.00E+00
Sbsed 1.00E+00 5.79E-01 9.38E-05 2.00E+00

aSigma is the standard deviation. Read, for example, 1.30E-02 as
1.3 � 10�2.

Figure 1. Examples of IOP covariations bounds at 443 nm:
(a) between achl and bp and (b) between aNAP and bp. The
bounds were determined using the COASTlooc database.
Units of the x axis and y axis are m�1.
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with the biological properties of phytoplankton. The ratio,
A(l)/A(443) where A(l) is the average absorption coeffi-
cient calculated over the three COASTlooc spectra, thus
determines the spectral shape of achl. The spectral values of
achl(l) are then calculated as follows:

achl lð Þ ¼ A lð Þ
A 443ð Þ achl 443ð Þ: ð4Þ

Figure 2b shows examples of synthetic achl(443) spectra.
[19] Once the second step is achieved, a set of synthetic

vectors of IOPv is created and is introduced in the OSOA
forward model to generate subsequent Rrs spectra. Finally
the data set DPCK2 contains N = 10000 couples of (Rrs,
IOPv).

2.4. Data Set Analysis

[20] As we have already mentioned (section 2.2) our
primarily objective when generating the DPCK2 data set is
to produce realistic IOP spectra. Even though the data set
creation process relies on truth measurements, a comparison
of DPCK2 with the IOCCG data set [IOCCG, 2006] is
performed to verify that DPCK2 is not overspecialized on
the COASTlooc database. In particular the covariations that
exist between IOPs are studied. Figure 3 shows that the
covariation between bbp and ap at 555 nm found in both data
set are in good agreement, thus demonstrating the consis-
tency of the DPCK2 data set with the literature.
[21] In order to gain in efficiency in inverse problem

solving, the different variables within the data set should be
iid, which can obviously not be obtained when dealing with
the inverse problem of ocean color in coastal waters.
Nevertheless, it is important to gain insight into the relation-
ships that may exist within the data set between the different
variables. It is well known that two variables are statistically
independent if they are uncorrelated. To study the correla-
tions within DPCK2, the percent of variance each IOP at
443 nm have in common with the others is calculated using
the coefficient of determination R2 (Table 3). Table 3 shows
that most of the variables exhibit very low correlation with
the others, which means that the statistical constraint is
fairly verified. Because the backscattering coefficients are
fractions of the scattering coefficients, it is not surprising to
observe high coefficients of determination between bbchl
and bchl as well as between bbsed and bsed. Since the Rrs
spectra within DPCK2 were generated using realistic inputs,
their spectral shapes are not random and so the Rrs values at
different wavelengths cannot be independent. Thus we have
also investigated how the Rrs values are correlated with

Figure 3. Covariations between the particulate back-
scattering coefficient bbp (m�1) and the particulate absorp-
tion coefficient ap (m�1) at 555 nm found in the IOCCG
data set (gray circles) and in the DPCK2 data set (black
dots).

Figure 2. Examples of spectral dependencies of (a) bchl
and (b) achl, as computed using optical models and random
spectral slopes. The x axis is the wavelength (nm), and the y
axis is bchl or achl (m

�1).

Table 3. Correlation Between the IOPs at 443 nm Found in the

Synthetic Data Set DPCK2

IOP achl anap aCDOM bchl bsed bbchl bbsed

achl 100.00
anap 9.06 100.00
aCDOM 0.03 0.01 100.00
bchl 12.09 17.76 0.01 100.00
bsed 11.60 16.85 0.00 11.04 100.00
bbchl 6.64 9.77 0.00 59.41 6.38 100.00
bbsed 10.61 15.40 0.00 9.91 90.56 10.80 100.00
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regard to the wavelength. The coefficients of determination
R2 reported Table 4 indicate that the Rrs values are highly
correlated when considering two neighboring wavelengths.
Therefore an inverse model will not necessarily gain in
efficiency from the Rrs measured at two neighboring wave-
lengths. Most of the useful information is provided by one
of these Rrs only. At the opposite, the correlation between
Rrs(412) and Rrs(665) is low, thus meaning that the
information brought by the full Rrs spectra will be consid-
ered as relevant by an inverse algorithm.
[22] Some of the data distributions within DPCK2 are, by

construction, well known, in particular the values at
443 nm. In this latter case, two different distributions were
used depending on the optical parameter that is drawn. The
standard Uniform distribution was used to draw the
aCDOM(443) values whose empirical distribution is still
poorly documented. The uniform distribution, noted
U(a, b), is characterized by the following probability density
function:

fU xð Þ ¼
1

b� a
a < x < b

0 otherwise

8><
>: : ð5Þ

[23] A log-uniform distribution, which corresponds to an
uniform draw in a logarithmic scale, was used to set the
values of achl(443), aNAP(443) and bp(443).The log-uniform

distribution, noted LU(a, b) is described with the following
probability density function:

fLU xð Þ ¼
1

log b� log a
� 1

x
a < x < b

0 otherwise

8><
>: : ð6Þ

[24] Despite it is often admitted that the log-normal
distribution is suitable to model the ocean bio-optical
variability [Campbell, 1995], this original log-uniform dis-
tribution (equation (6)) was selected because the distribution
of the weak values of achl, aNAP and bp in the COASTlooc
database compares reasonably well with the Uniform
distribution in the log-space (Figure 4). The distributions
of bchl(443) and bsed(443) are much more complex (see
Figures 5a and 5b). They depend on the distribution of bp(443)
and correspond to the product of both distributions LU(a=min
(bp), b = max (bp)) and U(a = 0, b = 1). The subsequent
probability density functions are reported hereafter:

fLU :U xð Þ �
1

log b� log a
� �1

b
þ 1

x

� �
a < x < b

0 otherwise

:

8><
>: ð7Þ

Table 4. Correlation Between the Remote Sensing Reflectance

Rrs at Different Wavelengths Found in the Synthetic Data Set

DPCK2

l 412 443 490 510 555 620 665

412 100.00
443 96.41 100.00
490 88.24 96.83 100.00
510 84.37 93.97 99.40 100.00
555 73.96 85.16 94.59 97.49 100.00
620 53.85 66.78 78.72 83.34 91.07 100.00
665 46.63 60.31 72.40 76.72 84.29 98.06 100.00

Figure 4. Distribution of the log(bp) values (m�1) taken
from the COASTlooc database (in black) and the theoretical
uniform distribution (in gray) at 443 nm.

Figure 5. Distributions of synthetic (a) bchl and (b) bsed
values at 443 nm within DPCK2. Units of the x axis are m

�1.
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[25] Similarly, since bbchl(443) and bbsed(443) are frac-
tions of respectively bchl(443) and bsed(443), they report
similar distributions as bchl and bsed. It is important to note
that similar shapes of distributions are observed at other
wavelengths than 443 nm.
[26] Since the Rrs spectra are the outputs of the forward

model, the distributions of the Rrs values are a priori
unknown, for all the wavelengths of L. We found that the
distribution of the Rrs values at 443 nm (Figure 6a)
corresponds, in first approximation, to a lognormal distri-
bution LN(m, s) having the following probability density
function:

fLN xð Þ ¼
e�

1
2

log x�T

sð Þ2

xs
ffiffiffiffiffiffi
2p

p 0 < x

0 otherwise

8>><
>>: : ð8Þ

[27] This hypothesis has been verified using a nonlinear
regression method to fit the parameters T and s. We found
that T � 7.10, s � 6.92. With such settings, the theoretical
distributions of Rrs values at 443 nm showed very good
agreements (r = 0.98) with the synthetic distribution plotted
in Figure 6a. Similar agreements have been obtained at
other wavelengths, see for example Figure 6b, but with

other settings of the parameters T and s. This indicates that
even if the Rrs values are not rigorously identically distrib-
uted in the data set, they report comparable distributions
each other and so the best possible performances of inverse
models might be expected.

3. Ambiguity and Ill-Posedness of the Inverse
Problem

[28] The inverse problem of ocean color in coastal waters
is very complex mainly because this is an ill-posed problem
with many ambiguities. Intuitively we understand that the
ambiguous samples of a data set are that for which several
combinations of IOP values correspond to one ‘‘unique’’
Rrs spectrum. As an example, Figure 7 shows the variations
in the Rrs at 555 nm as a function of the total absorption,
scattering and backscattering coefficient. It is clearly
observed that identical values of Rrs are obtained for
different combinations of total IOPs. It is obvious that this
situation is problematic for inverse models since they may
not be able to discriminate several similar Rrs spectra and so
to output the desired IOPs. Therefore one of the major
issues of the inverse problem of ocean color in coastal
waters consists in a deep characterization of the ambiguities.

3.1. Relationship Between Ambiguity
and Ill-Posedness

[29] According to Hadamard [1902] a well-posed inverse
problem must satisfy three criteria: (1) A solution always
exists (for any data), (2) the relationship between inputs and
outputs is continuous and (3) the solution is unique.
[30] Regarding the inverse problem of ocean color in

coastal waters, the first criterion is always guaranteed
because the forward model is based on the well-posed
Radiative Transfer Equation (RTE) and thus, each synthetic
Rrs spectrum of the data set is associated with an IOP
spectrum. To check whether the second criterion is satisfied,
it is rigorously necessary to demonstrate that the relationship
between the Rrs and the IOPs is continuous. Practically,
such a demonstration is intractable. However, it is mathe-
matically well known that a stable problem is systematically
continuous. Note that a stable inverse problem can be

Figure 6. Distributions of the synthetic Rrs (sr�1) (a) at
443 and (b) 555 nm within DPCK2.

Figure 7. Example of ambiguities in the inverse
problem of ocean color in coastal waters. To a unique
Rrs(555) value may correspond several triplets (atot(555),
btot(555), bbtot(555)). The units are: sr�1 for Rrs and m�1

for atot, btot and bbtot.
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defined such that weak variations of the inputs (i.e., Rrs
spectra) induce weak variations of the outputs (i.e., IOPv).
Therefore the stability of the inverse problem of ocean color
is investigated to test the second criterion of well-posedness.
The so-called condition number (CN) (equation (9)) is then
computed to establish the stability of the solutions of the
inverse problem. Note that CN values that are much greater
than 1 (typically CN > 10) indicate an unstable problem. The
equation 9 gives a good empirical approximation of CN for a
couple (Rrs1, IOPv1) 2 DPCK2.

CN Rrs1; IOPv1ð Þ � max
l2L

IOPv1 lð Þ�IOP lð Þ
IOPv1 lð Þ

��� ���
Rrs1 lð Þ�Rrs lð Þ

Rrs1 lð Þ

��� ���
0
B@

1
CA: ð9Þ

[31] In equation (9), IOP and Rrs are the mean of IOPv sets
and Rrs spectra respectively. In Figure 8, the distribution of
CN for all the samples is reported. We see that for the vast
majority of the data, the CN values are smaller than 10. The
inverse problem is most of the time stable and thus, most of
the time continuous. Hence only the presence of ambiguities
and so only the ‘‘nonuniqueness’’ of the solution, which is the
third criterion, is an obstacle to the well-posedness of the
inverse problem of ocean color in coastal waters. These
results show that a correct handling of the ambiguities should
significantly improve the performances of any inverse model
since the problem will tend to be well-posed.

3.2. Formal Definitions of Ambiguity

[32] In order to perform a thorough analysis of the
ambiguities present within the data set, a formalism defining
the ambiguities is required.
3.2.1. Spectral Distance
[33] An objective measure of similarity is needed to

determine ‘‘uniqueness’’ of several Rrs spectra. For that
purpose, we define the spectral distance dRrs between two
Rrs spectra Rrs1 and Rrs2,

dRrs Rrs1;Rrs2ð Þ � max
l2L

Rrs1 lð Þ � Rrs2 lð Þ
1
2
Rrs1 lð Þ þ Rrs2 lð Þð Þ

�����
�����

 !
: ð10Þ

[34] Equation (10) corresponds to the maximum of the
absolute difference between Rrs1 and Rrs2 normalized to the
average over these two spectra and computed for all wave-
lengths in L. We note that this measure is symmetric and
varies, in this study, in the range [0, 2]. Similarly, we define
the spectral distance dIOP between two sets of IOP vector
IOPv1 and IOPv2,

dIOP IOPv1; IOPv2ð Þ � max
p2IOP

� max
l2L

IOPv1;p lð Þ � IOPv2;p lð Þ
1
2

IOPv1;p lð Þ þ IOPv2;p lð Þ
� �

�����
�����

 ! !
:

ð11Þ

[35] In equation (11), p is one element of the IOP vector
(i.e., the absorption, scattering or backscattering coefficient
of one of the seawater component). It is also possible to
compute a spectral distance for each element of the IOP
vector. This means that the maximum value in equation 11
is only searched over the set of wavelengths and not
over the entire set of IOPv. The spectral distance defined
for each element of the IOP vector is referred using the
notation of this element. As an example, the bchl spectral
distance between IOPv1 and IOPv2 is referred to as
dbchl(IOPv1,IOPv2).
3.2.2. Spectral Neighborhood
[36] We define the set of spectral neighborhood of one

Rrs spectrum Rrs1 within the DPCK2 data set as

NDPCK2;e Rrs1ð Þ ¼ Rrs2j Rrs2; IOPv2ð Þf
2 DPCK2; dRrs Rrs1;Rrs2ð Þ < eg; ð12Þ

with e a threshold value, typically the uncertainty in the Rrs
measurements. In this paper e is fixed to 5%, which is
consistent with the accuracy provided by the current
commercially available instruments. For clarity, DPCK2

and e will be further omitted in the notation. Note that the
definition given in equation (12) and other forthcoming
equations could be used for any other data set than DPCK2.
By construction all the elements of the set N (Rrs1) are said
to be similar as Rrs1 and so they will be considered as
unique by any inversion algorithm.
3.2.3. Inversion Set
[37] We define the inversion set of a given Rrs spectrum

Rrs1 as

S Rrs1ð Þ ¼ IOPv2 Rrs2; IOPv2ð Þ 2 DPCK2;Rrs2 2 N Rrs1ð Þjf g:
ð13Þ

[38] The inversion set S (Rrs1) contains all the IOP
vectors IOPv for which the forward OSOA model outputs
Rrs spectra that are considered similar as Rrs1 accordingly
to the definition of the spectral neighborhood of Rrs1
(equation (12)).
3.2.4. Spectral Ambiguity Test
[39] A spectrum Rrs1 within the data set is considered as

ambiguous if the spectral distance between the IOP vectors
that belong to the inversion set S(Rrs1) is significant

Figure 8. Distribution of the condition number within
DPCK2.
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(typically greater than e). To test whether Rrs1 is ambigu-
ous, the following function is used:

TAIOP Rrs1ð Þ ¼
true 9IOPv2; IOPv3 2 S Rrs1ð Þ dIOPj IOPv2; IOPv3ð Þ > e

false otherwise

8><
>: : ð14Þ

[40] Therefore Rrs1 is considered as an ambiguous spec-
trum when the predicate TAIOP(Rrs1), which is called the
spectral ambiguity of Rrs1, is true. It is also possible to test
for the spectral ambiguity of Rrs1 relatively to each of the
elements of the IOP vector. As an example, the test for the
bchl spectral ambiguity is referred as TAbchl

(Rrs1).

3.3. Analysis of the Ambiguities Within the Data Set

3.3.1. Relevance of the Spectral Ambiguity Test
[41] The practical evaluation of ambiguities within any

data set is not straightforward. The spectral ambiguity test
TAIOP (Rrs1) related to a given spectrum Rrs1 is trustworthy
only if the inversion set S (Rrs1), and thus the spectral
neighborhood N(Rrs1), are not empty sets. The number of
elements in the sets of spectral neighborhood, hereafter
referred to as # (N(Rrs1)), depends on the value of e. The
percentage of the trustworthy samples of DPCK2, i.e., the
samples for which #(N(Rrs1)) � 2, is plotted as a function
of e in Figure 9. When e is greater than 15%, each sample of
DPCK2 has at least one spectral neighbor. When e is equal
to 5%, which is the value adopted in this study, the
proportion of trustworthy samples is very high, around
92%, thus making reliable our analysis of the ambiguities
within the DPCK2 data set.
[42] We define the ambiguity rate RIOP as the proportion

of ambiguous samples within DPCK2,

RIOP ¼ 1

N

X
Rrs1 ;IOPv1ð Þ2DPCK2

1 if TAIOP Rrs1ð Þis true

0 otherwise

8<
: : ð15Þ

[43] In equation (15), N is the number of element of
DPCK2. The ambiguity rate could be very helpful when
trying to compare the ambiguities within different data sets
and thus to evaluate the impact of strategies to tackle the

ambiguity problem, which will be discussed later. The
ambiguity rates within the data set DPCK2 is calculated
for each element of the IOP vector and results are reported
in Table 5. The ambiguity rates show fairly similar values
(around 92%). Therefore almost all the trustworthy samples
of DPCK2 have been considered to be ambiguous.
3.3.2. Ambiguity Distance
[44] Because the spectral distance between the IOP vec-

tors corresponding to ambiguous Rrs samples may be
highly variable (i.e., all the samples are not equally ambig-
uous), it is interesting to evaluate the maximum difference
that exists between the IOP vectors belonging to the
inversion sets. In this objective, we define the ambiguity
distance DIOP of a given Rrs spectrum Rrs1 as follows:

DIOP Rrs1ð Þ ¼ max dIOP IOPv1; IOPv2ð Þ IOPv1; IOPv2 2 S Rrs1ðj Þgf :

ð16Þ

We note that it is also possible to compute an ambiguity
distance for each element of the IOP vector.

[45] Figure 10a shows three similar Rrs spectra. One of
them (solid lines) is taken as the reference spectrum Rrs1 and
the two other spectra were selected within the spectral neigh-
borhood set N(Rrs1). The corresponding bchl spectra that
belong to the inversion set S(Rrs1) are plotted in Figure 10b.
It is observed that highly different values of bchl can lead to
identical Rrs values. In this example, the maximum bias
between the bchl spectra (i.e., the ambiguity distance Dbchl

(Rrs1)) reaches 172.8%. Figure 10 clearly illustrates the
necessity of quantifying the ambiguity distance for inverse
modeling purpose, as it will be discussed later.
[46] We have computed the mean ambiguity distance,

noted �DIOP, over the 10000 samples of the DPCK2 data set.
The mean ambiguity distance has to be understood as the
average discrepancy between two sets of IOPv that lead to
similar Rrs spectra. The results are reported in Table 5. The
mean ambiguity distance found for each IOP shows high
values. However, a strong variability is observed depending
on the inherent optical property that is studied. As expected
from its definition, �DIOP exhibits the highest value. We
observe also that despite a considerable difference between
the ranges of variation of bchl and bbchl (Table 1), their mean
ambiguity distance are almost equal. A similar remark can

Figure 9. Percentage of Rrs spectra having at least one
neighbor as a function of e (in %).

Table 5. Ambiguity Rate R(DPCK2) and Mean Ambiguity

Distance �D (DPCK2) Within DPCK2

Data R(DPCK2), % �D (DPCK2), %

IOP 92.00 165.76
achl 91.63 114.22
anap 91.96 129.50
aCDOM 91.38 86.30
bchl 92.00 151.58
bsed 91.97 124.06
bbchl 91.97 153.04
bbsed 91.92 119.11
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be made with regard to bsed and bbsed. This is not surprising
since the backscattering coefficient is strongly correlated
with the scattering coefficient. The effects of the uncertain-
ties in the particulate phase function on the ambiguity were
studied through the variations in the backscattering ratio
(i.e., bbp/bp). The ambiguity distance Dbbp/bp was related to
�DIOP. A good positive correlation was obtained (R2 = 0.80).
This means that most of the ambiguity found in the IOP
(nearly 80%) can be ascribed to uncertainties in the phase
function. This result is physically very consistent. The Rrs is
highly sensitive to the phase function of the particles (the
directional effects of the particles are contained in the
parameter ‘‘g’’ in equation (1)) [Mobley et al., 2002].
Therefore, given similar Rrs spectra, a significant variation
of the phase function (i.e., variations of ‘‘g’’ in equation (1))
induces an increase of the number of the combinations
between the IOPs (for example atot, bbtot in equation (1)),
thus leading to an increase in the ambiguity of the IOPs
parameters.
[47] We also computed the distributions of the ambiguity

distances for all the samples of DPCK2. Two examples are

presented Figure 11. The DaCDOM distribution is nearly
uniform thus meaning that there is an equivalent amount of
very ambiguous or slightly ambiguous samples. On the
contrary the ambiguity distance Dbchl shows a weak vari-
ance and is clearly not equally distributed. Note that the first
class of the histograms in Figure 11 corresponds to the
unambiguous samples (with D � 5%) and holds around 8%
of the samples of DPCK2, which is consistent with the value
of 92% found for the ambiguity rate (Table 5).
[48] Since the ambiguity distance DIOP is not equally

distributed within DPCK2, it can be very useful for a final
user to gain a priori knowledge about DIOP before the
inversion of a given Rrs spectrum. Therefore we propose
to classify the Rrs spectra of the data set according to their
ambiguity distance DIOP. We first define the class U for
unambiguous samples (0% � DIOP < 5%), the class M for
fairly ambiguous samples (5% � DIOP < 100%) and class H
for highly ambiguous samples (100% � DIOP). Such a
classification allows the computation of the probability
P(Rrs1 2 C) that a given Rrs spectrum Rrs1 belongs to
a given class C (i.e., classes U, M or H). For example,
we found that P(Rrs1 2 U) � 8%, P(Rrs1 2 M) � 52% and
P(Rrs1 2 H) � 40% regarding DaCDOM whereas P(Rrs1 2
U) � 8%, P(Rrs1 2 M) � 8% and P(Rrs1 2 H) � 84%
regarding Dbchl.

Figure 10. (a) a set of spectral neighborhood N(Rrs1)
containing three Rrs spectra (sr�1) with Rrs1 as the solid
line and (b) the corresponding inversion set S(Rrs1)
containing three bchl spectra (m�1) with IOP1 as the solid
line. The x axis is the wavelength (nm).

Figure 11. Distributions of ambiguity distances (dimen-
sionless) within DPCK2: (a) DaCDOM and (b) Dbchl.
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[49] In Figure 12, we plotted these probabilities according
to band reflectance ratio. The spectral ratio Rrs1 (412)/Rrs1
(555) and Rrs1 (620)/Rrs1 (555) are used for the aCDOM and
the bchl coefficient respectively. Actually, Figure 12 shows
the conditional probabilities P(Rrs1 2 CjRrs1 (412)/Rrs1
(555)) and P(Rrs1 2 CjRrs1(620)/Rrs1 (555)). When
performing the inversion of a given Rrs spectrum, we know
a priori that the spectral distance between aCDOM spectra in
the inversion set is highly sensitive to the reflectance ratio
Rrs1(412)/Rrs1(555). In particular, the different aCDOM
spectra to be retrieved will be probably not so dissimilar
from each others when the values of the ratio Rrs1(412)/
Rrs1(555) are high. On the contrary, the ambiguity distance
between Dbchl

spectra is systematically high and fairly
independent on the reflectance ratio Rrs1(620)/Rrs1 (555).
This means that the retrieval of bchl spectra from the
reflectance is expected to be more difficult than that of
aCDOM spectra.

4. Impact of Ambiguities on Inverse Modeling

[50] We investigate now the influence of ambiguities on
the performances of inversion algorithms. Most of the

inversion algorithm uses least squares minimization to
converge toward good solutions. It has been shown that,
in presence of nonuniqueness of the solution, these types of
inverse methods tend to output the average of the desired
parameters [Bishop, 1994]. Thus these models approximate
the conditional mean E(yjx), where y is the desired param-
eter and x is the input of the inverse model. When address-
ing the inversion of the ambiguous ocean color problem, the
conditional mean E(IOP(l)jRrs(l)) will be approximated by
most of the inversion algorithm. This situation is often
dramatically problematic since the answer E(IOP(l)jRrs(l))
can be, in the better case, only one element of the set of all the
possible solutions but worst it can also be outside this set (if
this latter is not a convex set). Thus, even when inverse
models are based on realistic data, they could report outputs
far from physically plausible solutions.
[51] To illustrate this, we present in Figure 13 the inver-

sion of the spectral neighborhood N(Rrs1) which was
previously reported in Figure 10. A Multi-Layer Perceptron
(MLP), also known as a Multi-Layer Feed-Forward Artifi-
cial Neural Network, which was trained on the DPCK2 data
set was used to perform the inversion. We can see the three
bchl spectra of the inversion set Sbchl(Rrs1) that should
be retrieved and the three bchl spectra that are actually
predicted by the MLP. The three retrieved bchl spectra from
the inverse model are very similar each other but far from
the desired spectra. This is not surprising since these
retrieved bchl spectra also correspond roughly to the average
spectrum over the set of the three desired bchl spectra
accordingly to theory [Bishop, 1994].
[52] Thus, in the general case, the performance of an

inverse model when trying to retrieve an inversion set
S(Rrs1) from a neighborhood N(Rrs1) depends on the
dispersion of the spectra within the set S(Rrs1). We note
DRrs1

the restricted data set that is composed only of the
n pairs (Rrs,IOPv), where Rrs belong to the set N(Rrs1) and
IOPv belongs to the set S(Rrs1). We note also E(S(Rrs1)) and
s(S(Rrs1)) respectively the mean spectrum and the standard
deviation of S(Rrs1). We note m the best inverse model that
can be constructed on DRrs1

such that m(Rrs1) = E(S(Rrs1)).
If the error function used to ensure the convergence of the
algorithm is for example the root mean square error RMSE,
then we have

RMSE m;DRrs1½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
Rrs2 ;IOPv2ð Þ2DRrs1

IOPv2 � m Rrs2ð Þð Þ2
vuut

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
Rrs2;IOPv2ð Þ2DRrs1

IOPv2 � m Rrs1ð Þð Þ2
vuut

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
Rrs2 ;IOPv2ð Þ2DRrs1

IOPv2 � E S Rrs1ð Þð Þð Þ2
vuut

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
Rrs2 ;IOPv2ð Þ2DRrs1

IOPv2 � E IOPv2ð Þð Þ2
vuut

¼ s S Rrs1ð Þð Þ: ð17Þ

[53] Therefore, on the basis of equation (17), any inver-
sion method using the standard RMSE to ensure the

Figure 12. Classifications of ambiguity distances
(a) DaCDOM as a function of the ratio Rrs(412)/Rrs(555)
and (b) Dbchl as a function of the ratio Rrs(620)/Rrs(555).
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convergence of the algorithm within the restricted data set
DRrs1

cannot report an error smaller than s(S(Rrs1)). Thus
the dispersion s(S(Rrs1)) of the IOP spectra within an
inversion set is called the minimum inverse problem error
(MIPE). Note that the unit of the MIPE is m�1 when
retrieving inherent optical properties of marine particles.
[54] Since the ambiguities are not equally distributed

within the synthetic data set DPCK2 and since the inversion
sets hold different numbers of spectra with different dis-
tributions of their IOP values, it is only possible to provide
an estimate of the MIPE for the entire data set DPCK2,

MIPE DPCK2ð Þ ¼ RMSE m;DPCK2½ �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
Rrs1;IOPv1ð Þ2DK2

1

n
s S Rrs1ð Þð Þ

2

vuut : ð18Þ

[55] Figure 14 shows the spectral variations of the esti-
mated MIPE computed for aNAP and for bchl. We also
plotted the spectral variations of the training RMSE
corresponding to the inversion of Rrs using a MLP inver-
sion algorithm. As expected, the MIPE and the training
error made by the MLP algorithm shows very similar
spectral shape for both IOPs. It is interesting to note that
the magnitude of the MIPE and the MLP errors made on
aNAP and bchl retrieval significantly differ, thus highlighting
that the MLP algorithm may not be the best one. The
previous results indicate that the MIPE gives a reliable
approximation of the performance of an inverse model on
DPCK2 and more generally on any ambiguous data set.
Hence the MIPE can also be used to identify the most
ambiguous regions within a data set. In order to build two-
dimensional maps of MIPE, we divided the whole data set
DPCK2 into a regular grid of 20 � 20 subsets according
either to the Rrs or IOP values. Note that the number of
elements differs within subsets, since Rrs or IOP values are
not equally distributed, and some of them can even be
empty. For each subset that hold a significant number of
items (>10), a local MIPE has been computed. Figure 15

shows maps of MIPE regarding the total absorption coeffi-
cient atot (Figure 15a) and the total backscattering coeffi-
cient bbtot (Figure 15b). Each of these IOP is plotted as a
function of Rrs. The wavelengths 443 and 620 nm are used
for atot and bbtot respectively. The MIPE obtained regarding
atot shows the highest values when the Rrs(443) is low and
when the absorption coefficient is high. It is observed that
the minimum error in the atot retrieval is within the range
[±0.1 m�1, ±0.2 m�1] when the remote sensing reflectance
is smaller than 0.02 sr�1. When the particles are strongly
absorbing, the Rrs values are so low that it is very difficult
to clearly identify the contribution to Rrs from atot. As a
result, the determination of atot is made more difficult. A
similar reason led O’Reilly et al. [1988] to propose the use
of the reflectance at 490 nm or 510 nm instead of the
reflectance at 443 nm in the standard ocean color algorithms
such as those used for SeaWiFS to correctly retrieve the
biomass concentration in the case of turbid open ocean
waters. On the other hand, the MIPE significantly decreases
as the reflectance increases. In this latter case, the contri-
bution to Rrs(443) from atot is weak. The problem due to the

Figure 13. Comparison between an expected bchl spectrum
(black lines) and bchl spectra (gray lines) predicted using a
Multi-Layer Perceptron. The x axis is the wavelength
(nm�1), and the y axis is bchl (m

�1).

Figure 14. Spectral variations of the minimum inverse
problem error of DPCK2 (in black) and the root-mean-square
error (in gray) as provided by a Multi-Layer Perceptron
trained on DPCK2 (a) for aNAP (m

�1) and (b) for bchl (m
�1).

The x axis is the wavelength (nm).
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low signal vanishes and the retrieval of atot is improved. The
MIPE obtained for bbtot at 620 nm (Figure 15b) shows some
interesting features. The wavelength 620 nm is appropriate
to evaluate the scattering properties of the particles in
coastal waters since the particulate absorption is strongly
attenuated. The MIPE linearly increases with both the
reflectance and backscattering coefficient. The highest val-
ues of MIPE point out that bbtot cannot be retrieved with a
precision better than ±0.045 m�1 in turbid waters. The
magnitude of the reflectance can be so high in turbid waters
that a saturation of the signal occurs. As a result, it is
difficult to distinguish the different values of the scattering
coefficient from the reflectance, thus leading to high values
of MIPE. Because the phenomenon of saturation of the
reflectance is commonly observed in highly turbid waters,
several authors has already investigated the use of the
reflectance in the near infrared to get a measured signal more
sensitive to the suspended matter [Doxaran et al., 2002;
Ruddick et al., 2006]. Here we have illustrated through two
different examples that our results are consistent with theory
and observations.
[56] We propose also a second kind of map in Figure 16

in which the values of the MIPE for atot and bbtot are
reported along with Rrs(443) and Rrs(555). This type of
representation can be relevant for final users whose objec-
tives are to inverse an in situ measured Rrs spectrum.
Figure 16a shows that the minimum inversion error for atot
is the greatest when the ratio Rrs(443)/Rrs(555) is low. An

opposite trend is observed regarding bbtot (Figure 16b); high
reflectance ratio leads to significant MIPE. These results are
consistent with those obtained in Figure 15.

5. Discussion

[57] In this paper, we showed that the inverse problem of
ocean color in coastal waters is ill-posed. We described its
ambiguous aspect and how the presence of ambiguities
influences the performance of the inverse models. In this
section, we discuss three different strategies that should be
investigated to tackle the ambiguity problem.

5.1. Integration Strategy

[58] The integration strategy is concerned with the set of
methods able to integrate the ambiguities into the inverse
models. To overcome the nonuniqueness of the solution, the
methods based on the integration strategy provide a global
unique solution, even though this global solution consists in
a distribution or a complex and structured collection of all
the plausible solutions.
[59] The first idea of the integration strategy is to ensure

that the output of an inverse model (i.e., the retrieved IOP)
is at least one of the plausible solutions instead of predicting
the conditional mean E(IOP(l)jRrs(l)). The underlying
theory to achieve that is called learning with a distal teacher
[Jordan and Rumelhart, 1992]. Such a theory has already
been applied in the framework of the ocean color inverse
problem [Doerffer and Schiller, 2000] or more generally in

Figure 15. Maps of minimum inverse problem error (m�1)
expressed in terms of IOPs versus Rrs: (a) for atot (443)
(m�1) and (b) for bbtot (620) (m

�1).

Figure 16. Maps of minimum inverse problem error (m�1)
expressed in term of Rrs: (a) for atot(443) (m

�1) and (b) for
bbtot (443) (m

�1).

C03004 DEFOIN-PLATEL AND CHAMI: AMBIGUITIES IN COASTAL WATERS

13 of 16

C03004



the work of Schiller [2003] to detect dramatic behaviors of
models. It is worth noticing that the choice of this unique
plausible solution among all the others is a critical issue that can
be tackled using prior information; see for example the estima-
tion of canopy variables in the work of Combal et al. [2002].
[60] A second idea of the integration strategy is to give an

estimate of the distribution of the plausible solutions, for
example, with the probability density function. Gouveia
and Scales [1998] showed that ambiguities existing in
inverse problems can be directly handled using the Bayesian
approach [Tarantola, 1987] which operates on data distri-
bution. Therefore Gouveia and Scales [1998] concluded
that there is no ill-posed inverse problem from a Bayesian
viewpoint. Unfortunately, Bayesian-based statistical
approaches, such as the Mixture Density Network [Bishop,
1994] or Hierarchical Mixture of Experts [Jordan and
Jacobs, 1994] cannot be systematically employed because
they require both the construction of prior distributions of
data and huge computational costs. Nevertheless interesting
results have already been obtained for various real-world
remote sensing inverse problems, for example in wind
vectors retrieval [Cornford et al., 1999], ocean tomography
inversion [Stéphan et al., 1996], and atmospheric prediction
of carbon monoxide [Hadji-Lazaro et al., 1999].
[61] In order to integrate the nonuniqueness of the solu-

tion into the inverse models, a third alternative in the
integration strategy is to make use of a discrete representa-
tion, for example, to output discrete lists of solutions for
each IOP. To increase the level of confidence in the
retrieved parameters, it is often possible to associate some
probabilities of appearance to each of the proposed solution.
In this context, Richaume et al. [2000] developed a tech-
nique based on the discretization of the distributions using
histograms. Such a technique might be applied regarding
the ocean color inverse problem.

5.2. Divide and Conquer Strategy

[62] The Divide and Conquer strategy, which is widely
used in the computer science research field, can be applied
to tackle the ambiguity problem. This may lead to transform
a huge complex and strongly ambiguous inverse problem
into numerous small unambiguous ones. We discern at least
two ways of dividing the global problem.
[63] The first way concerns the concept of transductive

learning (local or personalized modeling) as opposed to
inductive learning (global modeling); see Kasabov [2007]
for a complete review. In the local modeling approach, a set
of local models are created from data, each representing a
subspace (cluster) of the problem space whereas a model is
created for each input of the problem space in the person-
alized modeling approach. Different transductive learning
techniques have already proved their efficiency in the
Divide and Conquer strategy and should be used to elim-
inate the ambiguities, see for example the Polyhedral
Mixture of Experts [Karniel et al., 1998] or the Evolving
Connectionist System [Futschik et al., 2003].
[64] The second way is much more concerned with

physics and consists in the specialization of inverse
models to particular restricted subproblems. Practically,
inverse models specifically designed for given geographic
areas and/or for given seasons and/or for particular coastal
waters types, i.e., CDOM or mineral dominated waters,

might be satisfactorily applied to overcome the problem of
ambiguities.

5.3. Enrichment Strategy

[65] The enrichment strategy proposes to drastically
reduce the effects of ambiguities using ancillary data. We
have identified at least three potential sources of ancillary
information.
[66] In situ measurements obtained during field experi-

ments or using buoys moorings provide a significant
amount of statistical ancillary information. This information
can be processed offline, during a long time period, to
increase the global knowledge of the experts, for example to
inform about seasonal or geographical variations of IOPs or
about prior distributions that can be critical in the Bayesian
approach [Tarantola, 1987]. The global knowledge of the
experts can then be used in real-time to resolve ambiguities
of a given inversion or beforehand to improve the synthetic
data set creation process. The in situ collected data can also
be used directly to adjust the inverse model or to select the
most probable answer. This latter case can be envisaged
only if the Rrs measurements of the database were collected
at the same time period and same area as the Rrs spectrum
to invert. The most likely solution of the inverse model is
then the retrieved IOP that best matches the measured IOP
of the database. Unfortunately, match-up events do no occur
so often and cannot be integrated routinely into an inversion
algorithm. They can only be used as a validation step.
[67] The second source of ancillary data relies on the use

of additional physical information than that commonly
measured in ocean color field experiment. In particular,
the directional variations and the polarization of the reflec-
tance might be relevant physical constraints that should
contribute to significantly reduce the influence of the
ambiguities on the retrieved solutions. Currently, the satel-
lite sensor PARASOL (CNES) is the only one that is able to
measure the directionality and polarization of the reflec-
tance. However, the exploitation of the data provided by this
sensor still remains to be achieved. Note that in situ instru-
ments devoted to the measurements of the directional and
polarized subsurface reflectance are not fully operational yet
and are still being developed [Souaidia and Voss, 2006].
Hyperspectral measurements might also be used as relevant
information to reduce the number of solutions of the inverse
problem. Previous studies [Doxaran et al., 2002; Ruddick et
al., 2006] showed that hyperspectral data can significantly
improve the determination of the optical properties of
particles in coastal waters. Nevertheless, most of the results
were obtained based on ship measurements and great efforts
should still be put in the development of hyperspectral
satellite sensors to increase the spatial coverage of coastal
zones. Satellite multisensor approaches could also be highly
promising to tackle the ambiguity problem inasmuch as any
pixel can be characterized by various physical information
such as wind and sea surface temperature. The exploitation
of data provided by satellite platforms such as the ENVI-
SAT platform (European Space Agency) should be encour-
aged to reach the objectives above mentioned.
[68] The last source of potential information that has to be

investigated is the local context of the measurement. Indeed,
it is most of the time clear that the different variables
describing the physical phenomenon to study, in our case
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the set of all IOPs, are temporally and/or spatially
correlated. Thus, when inverting a given highly ambiguous
spectrum for which multiple answers are produced by
inverse models, it is promising to explore the spatial and/
or temporal neighborhood of the Rrs spectrum to invert to
find the nearest nonambiguous measurement. Then the
ambiguity problem can be solved locally with a close-to-
close approach. As an example, when computing the value
of a pixel in a satellite image, the number of solutions might
be significantly reduced accounting for the information
provided by neighboring pixels.

6. Summary

[69] The nonuniqueness of the solution of the inverse
problem of ocean color, so-called ambiguity problem, was
characterized for coastal waters applications. First, great
efforts were devoted to the creation of a synthetic data set
representative of real-world conditions. In particular, the
simulations were constrained by both observations and
statistical rules, thus making the data set reliable for inverse
modeling purposes. Second, mathematical definitions were
proposed to quantify the presence of ambiguities. Note that
this is the first time, to our knowledge, that such formula-
tions of the ambiguity problem are provided. The rate of
ambiguity of the remote sensing reflectance spectra within
the data set was high, around 90%. The influence of the
ambiguities on inverse modeling was studied. It was dem-
onstrated that the fraction of the error that is ascribed to the
ambiguities, so-called minimum inverse problem error, is
equal to the dispersion of the plausible solutions of the
problem. Practically, the ambiguity error is estimated
calculating the standard deviation over all the IOPs that
lead to one given unique Rrs spectrum. On the basis of this
important result, it was shown that the minimum error made
on the total absorption coefficient is the highest when the
reflectance values in the blue are weak. On the other hand, a
greater error is made regarding the total backscattering
coefficient when the reflectance level is high. Several
strategies are finally discussed to tackle the ambiguity
problem. Future efforts should be put in the application of
these strategies to significantly enhance the performance of
the inverse modeling in optically complex waters.

Notation

l wavelength, nm.
qs solar zenith angle, degrees.
qv viewing zenith angle, degrees.
atot total absorption coefficient, m�1.
btot total scattering coefficient, m�1.
bbtot total backscattering coefficient, m�1.
ap particulate absorption coefficient, m�1.
bp particulate scattering coefficient, m�1.
bp particulate backscattering coefficient, m�1.
achl absorption coefficient of chlorophyll a, m�1.

aNAP absorption coefficient of non algal particles,
m�1.

aCDOM absorption coefficient of colored dissolved
organic matter, m�1.

bchl scattering coefficient of chlorophyll a, m�1.
bsed scattering coefficient of sediment, m�1.

bbchl backscattering coefficient of chlorophyll a,
m�1.

bbsed backscattering coefficient of sediment, m�1.
iid independent and identically distributed.

CNES Centre National d’Etudes Spatiales.
ESA European Space Agency.
IOP inherent optical property.

MIPE minimum inverse problem error.
OSOA Ordres Successifs Ocean Atmosphere.

PARASOL Polarization and Anisotropy of Reflectances
for Atmospheric Sciences Coupled with
Observations from a Lidar.

RMSE root mean square error.
Rrs subsurface remote sensing reflectance.
RTE radiative transfer equation.
R2 coefficient of determination.
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