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Abstract 

Radiative transfer theory is combined with a bio-optical model of Case 1 waters and an optical 
model of the atmosphere to simulate the transport of radiation in the ocean-atmosphere system. 
The results are treated as experimental data to study the downwelling irradiance attenuation 
coefficient. It is shown that the downwelling irradiance attenuation coefficient just beneath the 
surface and the mean downwelling irradiance attenuation coefficient from the surface to the depth 
where the irradiance falls to 10% of its value at the surface can be corrected for the geometric 
structure of the in-water light field to yield quantities that are-to a high degree of accuracy- 
inherent optical properties. For Case 1 waters these geometry-corrected attenuation coefficients 
arc shown to satisfy the Lambert-Beer law with a maximum error of 5-10% depending on wave- 
length. This near-validity of the Lambert-Beer law, when there are compelling reasons to believe 
that it should fail, is shown to result from three independent facts: the dependence of the diffuse 
attenuation coefficients on the geometric structure of the light field can be removed; pure seawater 
is a much better absorber than scatterer at optical frequencies; and the phase function for particles 
suspended in the ocean differs significantly from that of pure seawater. Finally, it is shown that 
extrapolation of the corrected diffuse attenuation coefficients to the limit c --* c, yields quantities 
that are within 2% of the corresponding quantities that would be measured for an ocean consisting 
of pure seawater with the sun at zenith and the atmosphere removed. 

In a series of papers, Smith and Baker phytin a, and are contained in phytoplank- 
(Baker and Smith 1982, and references ton or in their detrital material. In Eq. 1, 
therein) have developed a “bio-optical” the Lambert-Beer law applied to &, K,,, is 
model for relating the optical properties of the contribution to Kd from the water itself, 
near-surface ocean water to the content of K, is the contribution from material susi 
biological material. Specifically, the atten- pended or dissolved in the water and not 
uation coefficient Kd of downwelling irra- covarying with C, and Kc(C) represents the 
diance Ed defined by Kd = - ( 1 /Ed) dE,/dz, contribution to Kd from phytoplankton and 
where z is depth, is related to the phyto- their immediate detrital material (units giv- 
plankton pigment concentration C through en in list of symbols). This decomposition 

Kd = K, + Kc(C) + K,, (1) 
of Kd is very useful for the optical analysis 
of ocean water because of the relative ease 

C is the concentration of Chl a and all chlo- in measuring Ed, the absence of the require- 
rophyll-like pigments that absorb in the ment for absolute radiometry to determine 
same spectral bands as Chl a, such as pheo- Kn, and the possibility of measuring Kd re- 

motely (Austin and Petzold 198 1; Gordon 
1982) and even at night (Gordon 1987). To 

Acknowledgments 
This work received support from the Office of Naval 

utilize it, we plot measurements of Kd for a 

Research under contract NO00 14-84-K-045 1 and grant given wavelength and from a variety of 
NO00 14-89-J- 1985, and from the National Aeronau- oceanic waters as a function of C and as- 
tics and Space Administration under grant NAGW- sume the minimum envelope of the result- 
273. ing curve, (Kd)min, corresponds to K, = 0. 

1389 



1390 Gordon 

Taking the limit of (Kd)min as C + 0 yields 
K,. Then, Kc(C) is given by (Kd)mi” - K,,,. 
(For an example of this procedure see figure 
1 of Baker and Smith 1982.) If we assume 
that Kc(C) is valid for all waters, Eq. 1 
can be applied to specific cases to estimate 
K, from Kd and C or to estimate C from Kd 
in waters for which Kx is known to be neg- 
ligible. These latter waters are usually re- 
ferred to as “Case 1 waters” and are defined 
to be waters for which the optical properties 
are controlled by phytoplankton and their 
immediate detrital material (Gordon and 
Morel 1983; Morel and Prieur 1977). Lim- 
iting the analysis to Case 1 waters, Gordon 
and Morel (1983) and Morel (1988) used 
Eq. 1 to derive Kc(C) by assuming K, = 0. 

Equation 1 has been criticized by Morel 
and Bricaud (198 1) and Stavn (1988) on the 
basis that, unlike the absorption coefficient 
and the volume scattering function, Kd is 
not solely a property of the medium. This 
is because it depends on the depth (even for 
a homogeneous ocean) and on the geometric 
structure of the light field incident on the 
sea surface, as well as on the properties of 
the medium. Since a given Kd is unique only 
to the particular situation in which it is mea- 
sured, and there is no reason to expect that 
the three components of Kd will vary in the 
same manner with depth and with the struc- 
ture of the incident light field, it is correctly 
asserted that Eq. 1 can only be an approx- 
imation. However, Gordon et al. (1975) 
have shown with Monte Carlo simulations 
of the in-water light field that for simple 
modes of illumination (i.e. a sky of uniform 
radiance or a parallel beam of irradiance 
incident at an angle So with the vertical), 
the dependence of Kd on the structure of the 
incident light field can be removed without 
any knowledge of the optical properties of 
the medium. Gordon (1976) showed that 
the correction factor required to remove the 
light field dependence from Kd could be 
computed with reasonable accuracy by 
knowing only the relative amounts of sky- 
light and direct sunlight incident on the sea 
surface in the spectral band in question. Lat- 
er, Baker and Smith (1979) directly verified 
that for turbid water under clear skies, Kd 
was nearly independent of 6, for b0 540”. 
Finally, Gordon ( 1980) demonstrated that 

for a stratified ocean with sun at zenith the 
value of Kd at a given depth depended most- 
ly on the properties of the medium at that 
depth, i.e. Kd is a local property of the me- 
dium. These observations suggest that if Kd 
values were corrected for variations in il- 
lumination (e.g. corrected so that they are 
referenced to a standard incident illumi- 
nation) and used in Eq. 1, the error resulting 
from the fact that Kd is not a true property 
of the medium would be considerably re- 
duced. But a residual error would remain 
in Eq. 1 because Kd depends on depth. 

In this paper the earlier computations 
(Gordon et al. 1975) of Kd are extended to 
cases of more realistic illumination of the 
surface and a realistic model of the optical 
properties of the ocean. It begins with a re- 
view of the equation which governs the 
transport of radiant energy in the ocean and 
in the atmosphere, and of the basic optical 
properties (e.g. absorption and scattering 
coefficients, etc.) required to obtain a so- 
lution. A realistic model of these optical 
properties is then presented and the results 
of Monte Carlo simulations of the in-water 
light field are used to study the properties 
of Kti The analysis of Kd shows that when 
it is measured either just beneath the sur- 
face, or when an average value is deter- 
mined between the surface and the depth 
where the surface irradiance is reduced to 
10% of its value at the surface, the resulting 
Kd can be corrected to yield a quantity that 
can be directly expressed in terms of the 
optical properties of the medium. Further- 
more, the corrected Kd values are shown to 
depend almost linearly on the optical prop- 
erties of the medium, which in turn are lin- 
early additive over the constituents, and so 
the corrected values will satisfy the Lam- 
bert-Beer law with reasonable accuracy. Fi- 
nally, the computations show that the value 
of K,,, determined by extrapolation of Kd to 
C = 0 in Case 1 waters is very nearly equal 
to the value of Kd that would be measured 
in an ocean consisting ofonly pure seawater. 

The radiative transfer equation and 
optical properties 

Consider an ocean in which the optical 
properties and sources depend only on the 
depth z. The steady state light field in the 
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EoAz) 

KAz) 
KIxz) 

Total absorption coefficient, m-’ 
Particle absorption coefficient, m-l 
Water absorption coefficient, m-l 
Total scattering coefficient, m-l 
Total backscattering coefficient, m-l 
Total backscattering probability 
Particle scattering coefficient, m-’ 
Water scattering coefficient, m-l 
Total volume scattering function, m-l 

sr-’ 
Particle volume scattering function, m-l 

sr-l 
Water volume scattering function, m-l 

sr-’ 
Specific volume scattering function (pi/ 

C,), m2 mg-’ sr-’ 
Total attenuation coeflicient (a + b), m-l 
Particle attenuation cocfhcient (a,, + b,), 

m-l 
Water attenuation coefficient (a,,, + b,), 

m-l 
Attenuation coefficient of component i, 

m-l 
Specific attenuation coefficient c/C,, m2 

mg-’ 
Pigment concentration, mg m-3 
Concentration of ith constituent, mg m-3 
Downwelling distribution function 

ho = 0) 
Direct sun fraction of Ed(O) 
Tolal forward scattering probability (1 - 

bd 
Particle forward scattering probability 
Water forward scattering probability 
Extraterrestrial solar irradiance, mW 

cm-2 pm-’ 
Downwelling irradiance at z, mW cm-2 

pm-l 
Direct sun component of surface irradi- 

ance, mW cme2 pm-l 
Sky component of surface irradiance, 

mW cm-2 pm-l 
Upwelling irradiance at z, mW cm-2 

pm-l 
Scalar irradiance at z, mW cm-2 km-’ 
Downwelling scalar irradiance at z, mW 

cm-2 pm-l 
Attenuation coefficient for EAz), m-l 
Inherent value of KAz) at z, m-l 

K KAO), m-’ 
K’ Inherent value of K<,(O), m-l 
KV Pure water component of KAO) and KAz), 

m-’ 
K, Particle component of K, m-’ 
KC Pigment component of KAz), m-l 
KC Nonpigment-nonwater component of 

KAz), m-l 
(K> Mean K,Xz) from surface to zlO, m-l 

K 
Inherent value of (K), m-’ 
Water component of (K), m-’ 

I 
IZMJ 

Inherent value of (K),, m-l 

W); 
Particle component of (K), m-l 
Lambcrt-Beer value of (K) ((K), + 

W,), m ’ 
(K), True value of (K), m-l 
K,(z) Attenuation coelhcient for E,(z), m-l 
L(z; 6, sb) Radiance traveling in direction (29, V), 

mW (cm2 pm sr)-1 
x Wavelength, nm 
P Average cosine of L(z; 29, p) 
PM, Average cosine when c, = 0 
4J Average cosine when c,, = 0 
P(@) Scattering phase function (/3/b), sr-’ 
ppw Particle scattering phase function (&lb,), 

sr-’ 
pww Water scattering phase function (~,Jb,,J, 

sr-’ 
Q(z; 29, p) Intensity density of internal sources, mW 

(cm3 wrn sr)-’ 
fJ2 Surface slope variance 
t Fresncl transmittance of sea surface 
7 Optical depth (T = cz) 
710 Optical depth at 10% surface irradiance 

ekJ) 

Aerosol optical thickness of atmosphere 
Ozone optical thickness of atmosphere 
Rayleigh optical thickness of atmosphere 
Direction of radiant energy flow 
Scattering angle 
Solar zenith angle 
Solar zenith angle below surface 
Total scattering albedo (b/c) 
Particle scattering albcdo (bdc,) 
Water scattering albedo (b,Jc,) 
Solid angle, sr 
Depth, m 
Depth at 10% surface irradiance, m 
Surface slope components 

ocean is described by the radiant power per erncd by the radiative transfer equation 
unit area per unit solid angle called the ra- (RTE): 
diance L(z; 0, P), where 0 and P are the 
polar and azimuth angles (in a spherical co- 

cos 8 dW; 0, q) 
dz 

= -c(z)L(z; I?, P) 
ordinate system in which the z-axis is into 
the ocean and the X- and y-axes are along + 
the ocean surface) of a vector in the direc- s 

/3(z; I?‘, cp’ --) 6, P) 
w 

tion the radiant energy is flowing. The dis- ,L(z; W, P’) dQ’ 
tribution of radiance in the ocean is gov- + Q<z; 8, VP) 
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where c(z) is the beam attenuation coeffi- 
cient, @(z; 20’, Cp’ -+ 3, p) the volume scat- 
tering function for the scattering of radiance 
from a direction specified by (@, p’) to that 
specified by (ti, VP), and da’ a differential 
element of solid angle around the direction 
(vY, p’). The subscript s1’ on the integral in- 
dicates that the integration is to be taken 
over the entire range of dQ’ (i.e. 47r sr). The 
last term, Q(z; 6, p) is the intensity density 
-(radiant power per unit volume per unit sol- 
id angle) of in ternal sources in the ocean 

the direction with which the solar beam en- 
ters the top of the atmosphere, and 6 the 
Dirac delta function. 

The quantities a(z), b(z), c(z), and ,&z; 0) 
depend only on the constituents of the me- 
dium and are known as the inherent optical 
properties (IOPs) (Preisendorfer 1976). Note 
that only two of these, a and p, are required 
to specify the full set. They are all linearly 
additive over the constituents, i.e. if /3,, is 
the volume scattering function of pure sea- 
water and pi that of the ith constituent, 

such as fluorescence (Gordon 1979), Raman 
scattering (Stavn and Weidemann 1988), 
bioluminescence (Gordon 1987), etc. PC@) = Pw(@) + C Pi(@)- 

i 

The total scattering coefficient b(z) is re- 
lated to the volume scattering function The individual IOPs are directly propor- 
through tional to the concentration of the constitu- 

s 

ents. For example, pi is directly proportional 

b(z) = p(z; W’, P’ 4 G, P) dQ’ to the concentration of ith constituent c-‘i: 
$1’ 

P 
Pi(@) = PT Co) ci 

2 27r 
J 

p(z; 0) sin 0 de, where 0; is called the speciJic volume scat- 
0 tering function. It is convenient to define 

where 0 is the angle between the directions two new IOPs: the scattering phase func- 
specified by (fi’, 9’) and (fi, V). The beam tion, 
attenuation coefficient is given by 

c(z) = a(z) + b(z) P(z; I?‘, cp I -’ I?, 50) = 
@(z; d’, cp’ ---) 9.9, PO) 

where a(z) is the absorption coefficient of 
b(z) ’ 

the medium. The radiance, a, b, c, 0, and 
Q all depend on the wavelength x of the 

and the single scattering albedo oo( z) - b(z)/ 

light; however, this dependence has not been 
c(z). The RTE then becomes 

explicitly shown in these equations. It has 
been shown (Case 1957) that given the ra- 

cos 0 dW; 639 
c(z)d z 

= -L(z; 9, P) + q)(z) 

diance incident on the sea surface [L(O; 9, 
‘P) for 6 <n/2] and the sources within the 

. 
s 

P(z; I?‘, cp’ -+ I?, 9) 
ocean, the RTE has unique solutions if b(z)/ 
c(z) < 1, i.e. in an ocean that has some 

4;~; W, 9’) dL?’ 

absorption throughout. The RTE also ap- + Q(z; ~-8 ‘WC(Z), 

plies to the combined ocean-atmosphere 
system when z = 0 is taken to be the top of 
the atmosphere; however, in this case L must 
be replaced by L mM2, where m is the index 
of refraction of the medium (m M 1 for the 
atmosphere and M 1.33 for the ocean). Also, 
Snell’s law, the law of reflection, and the 
Frcsnel equations must be used to propagate 
the radiance across the air-water interface. 
The incident radiance on the boundary of 
the ocean-atmosphere system is simply a 
beam of parallel light from the sun: L(0; 6, 
9) = L,6(?9 - Go)S(8 -- (PO), where L, is the 
average radiance of the solar disk, (9,, Vo) 

from which it is seen that there are no in- 
ternal sources (Q = 0). When the true depth 
is scaled by the beam attenuation coefficient 
to form the optical depth 7, where d7 = c(z) 
dz, the propagation of the radiance is de- 
termined only by ~~(7) and the scattering 
phase function, i.e. 

cos d dU7; 8, Q’> 
d7 

= -L(7; 8, P) + coo(T) 

P(7; d ‘, 9’ + 9, 9) 

(2) 
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Radiance in the ocean is difficult to mea- 
sure because of its dependence on 9 and Cp. 
Thus, most measurements of the oceanic 
light field are limited to integrals of the ra- 
diance. Three integrals particularly useful in 
marine optics arc the downwelling Ed, up- 
welling E,, and scalar E. irradiances defined 
by 

L(z; 29, v?)cos 9 sin d d9, 

L(z; 0, P)cos 29 sin d db, 

and 

The irradiances Ed and E, are the down- 
ward and upward flux (radiant power per 
unit area) of radiant energy across a hori- 
zontal surface at depth z. The scalar irra- 
diance is proportional to the energy density 
of the light field at z. If the RTE (with Q = 
0) is multiplied by dfi and integrated over 
all Q the result is Gershun’s equation (Ger- 
shun 1939; Preisendorfer 196 1): 

-& EM - JW)l = -4WoW 

The combination Ed - E, is called the vec- 
tor irradiance and given the symbol E(z). A 
quantity which will be of interest later is the 
“average cosine” fi of the light field: 

E(z) F(z) = - 
E”(Z) * 

From the definitions of E and E, it is seen 
that ji is the average value of cos d weighted 
by the radiance distribution. 

Of the three irradiances defined above, 
Ed has most often been measured and we 
center our interest on it. Observations in 
the ocean show that Ed(z) (along with E, 
and E,) decreases approximately exponen- 

tially with depth, so it is useful to determine 
the exponential decay coefficient of Ed: 

&(‘) = - 
~~l&%(z)l~ 

dz 

or 

Km d { WU~)l > -= - 
C dT ’ 

Kd is the downwelling irradiance attenua- 
tion coefficient. For a homogeneous ocean 
(IOPs independent of z), it is a slowly vary- 
ing function of depth (e.g. see Fig. 3A) and 
thus for a given distribution of radiance on 
the sea surface it could almost be considered 
a property of the medium; however, it also 
depends on the geometric structure of the 
light field (the radiance) in the water which 
in turn depends on the distribution of ra- 
diance incident on the sea surface (e.g. see 
Fig. 3B). If the latter is changed, the value 
of Kd will also change. Thus, in contrast to 
the IOPs, Preisendorfer (1976) has called Kd 
an apparent optical property (AOP) of the 
medium. Although he was able to relate Kd(z) 
to the diffuse absorption and backscattering 
coefficients (which he called hybrid optical 
properties) exactly, these coefficients are not 
independent of the light field. In an analysis 
of this relationship, Kirk (1981, 1983) has 
shown that the diffuse backscattering coef- 
ficients bear little resemblance to their in- 
herent counterpart, the true backscattering 
coefficient b, given by 

s 

?r 
bb = 2~ /3(0)sin 0 de. 

T/2 

Thus, a direct relationship between Kd and 
the IOPs has yet to be established, and this 
is one of the bases for criticism of the ap- 
plication of the Lambert-Beer law to &(z). 

Optical model of the 
ocean-atmosphere system 

The present study of the efficacy of Eq. 1 
is based on solving the RTE in the ocean- 
atmosphere to determine Ed(z) from which 
&(z) is computed. To accomplish this re- 
quires realistic models of the IOPs of the 
ocean and the atmosphere. Such models are 
described below. 

The ocean-As discussed earlier, water 
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and its constituents influence the in-water 
light field through their effect on a and /?. 
For simplicity, we limit the modeling of 
these properties to Case I waters. Moreover, 
WC also limit the model to those waters for 
which absorbing dissolved organic mate- 
rials-yellow substances-are absent. The 
rationale for this is that the effect of yellow 
substance absorption on the results would 
be identical to that of increasing the ab- 
sorption coefficient of pure seawater by an 
appropriate amount. Also, the medium is 
assumed to be homogeneous. Thus, the me- 
dium is described by an absorption coeffi- 
cient, a = a, + a,, where the subscripts w 
and p here (and hereafter) refer to the con- 
tribution from water and suspended parti- 
cles and a volume scattering function given 
by p(O) = &,(O) + p,(O). The total scattering 
coefficient b found by integrating ,6 over sol- 
id angle is b = b, + bP. Likewise, the beam 
attenuation coefficient is given by c = c, + 
G =a+b. 

From the partial IOPs (i.e. a,,,, a,, ,6,, and 
/3&, the parameters P(0) and w. that are re- 
quired in Eq. 2 for the ocean can be related 
to the similar water and particle quantities 
P,+,(O), P,(O), w+,,, and op through 

00 = &pkv) + WV 
c,Ic, + 1 ’ (3) 

OOP = qJyq7kJ~ + w&v 
c,Ic, + 1 . (4) 

Thus, in this model, given a,,,, ‘3p, P,,,(O), and 
P,(O), representing the inherent optical 
properties of the water and of the particles, 
w. and P(0) are specified by the ratio c,Ic,. 
This ratio is proportional to the particle 
concentration. 

Experimental measurements must be used 
to provide a realistic parameterization of 
the IOPs oW, oy, P,,,(O), and P,(O). These 
IOPs are functions of the wavelength X of 
the light, and therefore, in what follows, the 
wavelength will be explicitly displayed in 
the equations, e.g. b,(X) refers to the scat- 
tering coefficient at the wavelength X. The 
model used here is identical to the one I 
developed (Gordon 1987) to study the prop- 

agation of irradiance from a point-source 
embedded in the ocean. Briefly, the absorp- 
tion coefficient a,,, has been inferred from 
measurements of downwelling and upwell- 
ing irradiance in oligotrophic waters such 
as the Sargasso Sea (Morel and Prieur 1977; 
Prieur and Sathyendranath 198 1; Smith and 
Baker 198 I), and the scattering coefficient 
b, and the volume scattering function /3,,,(O) 
have been measured directly for pure water 
and for saline solutions of pure water cor- 
responding to salinities between 35 and 39o/oo 
by Morel (1974). The resulting a,, b,, and 
w, are given in Table 1 for the wavelengths 
used in the present computations. Note that 
these values of w, represent the upper limit 
of the scattering albedo for water plus any 
dissolved material such as yellow sub- 
stances, since dissolved material typically 
found in seawater can contribute to the ab- 
sorption coefficient but not to the scattering 
coefficient. The scattering phase function for 
pure seawater is from Morel (1974). 

The optical properties of the suspended 
particles for Case 1 waters can be related to 
pigment concentration. The scattering coef- 
ficient of particles at 550 nm, b,(550), is 
nonlinearly related to the pigment concen- 
tration C through (Morel 1980). 

bP = B,P.62 (5) 

where b,(550) is in m-l and C is in mg rnh3 
(see also Gordon and Morel 1983). The con- 
stant Rc- the scattering coefficient at a pig- 
ment concentration of 1 mg mh3-ranges 
from 0.12 to 0.45 and has an average value 
of 0.30. The variation in BcV is due to the 
natural variability of scattering over the 
various species of phytoplankton, as well as 
variability in scattering by detrital particles 
associated with the phytoplankton. Simi- 
larly the absorption coefficient of the par- 
ticles has been studied as a function of c’ by 
Prieur and Sathyendranath (198 l), yielding 
for C < 10 mg m-3: 

a,(A) = 0.06A~y(X)C0.602, (6) 
where a,(X) is in m-l and C is in mg me3. 
In this equation A,(h) is the absorption coef- 
ficient of phytoplankton normalized to 440 
nm: 

a,@) A,(h) = - 
a,(440) * 
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Table 1. Absorption 
pure seawater. 

and scattering coefficients of 

440 0.0049 0.0145 0.253 
480 0.0034 0.0176 0.162 
550 0.0019 0.0638 0.029 

The relative absorption of phytoplankton 
A,(X) deduced by Prieur and Sathyendra- 
nath (198 1) agrees well with absorption 
measurements made on phytoplankton cul- 
tures by Sathyendranath (198 1). Note that 
a,(X) includes both phytoplankton and their 
detrital material and thus represents the ab- 
sorption of all components other than the 
water itself. These nonlinear relationships 
between bP and C and aP and C are believed 
to be due to a systematic variation in the 
ratio of the concentration of phytoplankton 
to that of detrital material as a function of 
the concentration of phytoplankton (Hob- 
son et al. 1973; Smith and Baker 1978a). 
Since b,(X) and a,(X) vary with pigment con- 
centration in nearly the same manner, b,(h)/ 
a,(X) is nearly independent of the pigment 
concentration: 

This relation provides an estimate of o,(X) 
and shows that this quantity is, in the first 
approximation, independent of pigment 
concentration. At 5 50 nm, where an average 
Bc is known, it yields ~~(550) = 0.933, in 
good agreement with the range for those 
measured by Bricaud et al. ( 1983) for four 
species of cultured phytoplankton: 0.89 I 
~~(550) 5 0.97. To fix reasonable values of 
L+,(X) at the other wavelengths of interest, 
we require the variation of Bc with X. Fol- 
lowing Gordon (1987) we assume B,(X) 
obeys a power law with wavelength (i.e.) 
B,(X) 0~ X-” and take n = + 1. This yields 
B&480) ~0.34 and B&440) x 0.38. The 
resulting values of U,(X) and o,(X) used in 
the computations are provided in Table 2. 
It should be noted that the assumption B,(X) 
0~ X-l often overestimates the dependence 
of b, on X since the scattering by absorbing 
particles (e.g. phytoplankton) tends to be 
depressed in the pigment absorption bands 

Table 2. Model values of w,, and w,. 

A (nm) % WI9 

440 0.86 0.253 
480 0.88 0.162 
550 0.93 0.029 

(Bricaud et al. 1983). This depression of 
scattering would make ~~(440) and ~~(480) 
smaller than given in Table 2; however, the 
effect is not large, e.g. changing n from + 1 
to - 1 only reduces ~~(440) from 0.86 to 
0.80. To ensure that wide departures of UV 
from those used in Table 2 do not influence 
the results of this work, I have also carried 
out simulations for ~~(480) = 0.5, 0.7, and 
0.99. 

The particle phase function is the most 
difficult quantity to parameterize because it 
requires the individual phase functions of 
the plankton and the detrital material-nei- 
ther of which have ever been measured in 
the field. Thus, we must rely on measure- 
ments of the total particle phase function 
(plankton plus detrital material). Measure- 
ments of the volume scattering function at 
530 nm have been made for waters in sev- 
eral locations with very different turbidities 
(total scattering coefficients) by Petzold 
(1972). When the scattering by pure sea- 
water is subtracted, the resulting particle 
phase functions are very similar, having a 
standard deviation within about 30% of the 
mean, over waters for which the particle 
scattering coefficient varied over a factor of 
50. This mean particle phase function de- 
rived from Petzold’s measurements is 
adopted for this study and designated by the 
symbol “M.” Also, two other particle phase 
functions are used to represent the extremes 
of the phase functions given by Petzold’s 
measurements: the mean of three phase 
functions measured in the turbid waters of 
San Diego Harbor and designated by “T,” 
and a phase function measured in the clear 
waters of the Tongue of the Ocean, Baha- 
mas, and designated by “C.” The three par- 
ticle phase functions are shown in Fig. 1 
along with the phase function for scattering 
by the water itself [PJO)]. We see that these 
model phase functions differ principally in 
their scattering at angles >25”. 

This completes the specification of the 
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Fig. 1. Phase functions for particles and water. Phase 
functions M and C have been multiplied by 2 and 4, 
respectively, to facilitate plotting. 

quantities needed for the simulation: o,, w,, 
P,(O), and P,(O). Varying the parameter ci/ 
c, from 0 to 0~) results in models which 
range from a particle-free ocean to an ocean 
in which the optical properties of the par- 
ticles are completely dominant. This pa- 
rameter can be related to the pigment con- 
centration through the bio-optical model by 
noting that Cu = a, + b. and using Eq. 5 
and 6. The result is 

c,(N - = y(x)c”.6, 
Gm 

where y(X) = 22.4, 18.5, and 4.9 at 440, 
480, and 550 nm. 

The atmosphere -The atmosphere influ- 
ences the in-water light field by distributing 
a portion of the near-parallel solar beam 
over the entire upward hemisphere (i.e. in 
producing sky light from direct sunlight). To 
simulate the angular distribution of radia- 
tion entering the ocean requires an atmo- 
spheric model. This model atmosphere con- 
sisted of 50 layers and included the effects 
of aerosols, ozone, and Rayleigh scattering, 
vertically distributed according to data tak- 
cn from the work of Elterman (1968). The 
aerosol phase functions were computed by 
R. Fraser (pers. comm.) from Mie theory 
with the Deirmendjian (1969) Haze C size 
distribution. This model simulates optical 
properties of the cloud-free atmosphere only. 

Computations and properties of I(d 
With the above model for the IOPs of the 

ocean and atmosphere, the transport of ra- 

diant energy is simulated by Monte Carlo 
methods yielding the irradiance in the water. 
This is a numerical solution of Eq. 2 which 
fully accounts for multiple scattering in the 
ocean and in the atmosphere, including 
ocean-atmosphere coupling (i.e. light can 
scatter out of the ocean and then backscatter 
from the atmosphere and re-enter the ocean, 
etc.). In most of the simulations the sea sur- 
face is flat. As in all Monte Carlo simula- 
tions, the computed values of Ed(z) contain 
statistical uncertainties. On the basis of the 
number of photons processed in each com- 
puter run, the maximum error (SD) in Ed 
just beneath the surface is less than +0.3%. 
This error increases with depth, reaching 
+ 1% where E, falls to 10% of its value at - 
the surface and + 3% where Ed is 1% of its 
value at the surface. 

To assess the errors in Eq. I, we use the 
simulations to provide Kd as a function of 
C. Specifically, the various model oceans 
are generated by allowing the pigment con- 
centration C to vary from 0 to about 4.5 Img 
me3 which in turn causes c,Ic, at each wave- 
length to vary according to Eq. 7. This vari- 
ation in c,lc,, then induces variations in w. 
and P(0) determined by Eq. 3 and 4. Figure 
2, for example, shows the change in the shape 
of the total phase function at 480 nm as c,l 
c, is varied from 0 to 100. Note how the 
phase function deviates strongly from that 
of pure water (Rayleigh scattering) even 
when c,lc, = 1, i.e. even when the total 
attenuation is shared equally between water 
and particles. To simulate a variety of cloud- 
free situations, I have carried out the com- 
putations for solar zenith angles of O”, 20”, 
25”, 30”, 40”, 60”, and 80”. Also, to simulate 
a totally overcast sky, I have studied each 
ocean model with the atmosphere removed 
and a totally diffuse light field incident on 
the sea surface. Thus, only situations with 
broken clouds are not considered here. A 
sky with broken clouds is particularly dif- 
ficult to examine because the radiation field 
is no longer independent of the observer’s 
horizontal position in the medium. 

For the analysis, the resulting values of 
E,(a) from the simulations are treated as 
experimental data, albeit data collected un- 
der carefully controlled conditions-a cloud- 
free sky and a homogeneous ocean of pre- 
cisely known inherent optical properties- 
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Fig. 2. Total phase function at 480 nm as a function 
of the particle concentration. Progressing from bottom 
to top on the left of the graph, c,Ic, = 0, 1, 3, 10, and 
100. 

from which Kd can be determined by nu- 
merical differentiation and related to the 
IOPs of the ocean and ultimately to the con- 
stituent concentrations. Where comparison 
of the resulting Kd values with computations 
by Kirk (1984) is possible, i.e. Kd computed 
at the midpoint of the euphotic zone using 
particle phase function T with c,/c, very 
large and the atmosphere removed, the 
agreement is excellent. 

Figure 3A provides some samples of the 
resulting profiles of the irradiance attenua- 
tion coefficient. In these examples IQ/c,,, is 
computed for c,,/c, = 0, 1.4, and 3.7 for 
particle phase function M at 440 nm with 
the sun at zenith. The deepest computed 
point for each profile corresponds to r = 9. 
These particular profiles represent a clear 
ocean (i.e. C I 0.05 mg m-3) with c,/c, = 
0 corresponding to pure seawater. The im- 
mediate conclusion to be drawn from these 
simulations is, as mentioned earlier, that Kd 
is dependent on depth even for a homoge- 
neous ocean. Also, Kd near the surface in- 
creases more rapidly with z as c,/c, in- 
creases. In fact, from the surface to z = 100 
m, Kd increases by 2.5, 10, and 20% for cJ 
CW = 0, 1.4, and 3.7, respectively. Figure 3B 
provides &/c,,, at 440 nm as a function of 
depth with c,,/c, = 5.6 (C = 0.1 mg m-3) for 
three solar zenith angles (o. = O”, 20”, and 

Fig. 3. A. Computed dependence of &/cW on depth 
at 440 nm for particle phase function M. The three 
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cases from left to right are for c,/c, = 0, 1.4, and 3.7. 
B. Computed dependence of J&/c,,, on depth at 440 nm 
for particle phase function M with q/c, = 5.6. The 
three cases from left to right correspond to 19~ = O”, 20”, 
40”. 
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Fig. 4. K/c as a function of 1 - q,. The symbol 
code is given on Fig. 1. Note, 1 - wO = a/c. 

40”). It shows that I& in the upper 70 m is 
also strongly dependent on the incident ra- 
diance distribution as well as on depth. 

These computations confirm the argu- 
ment that Kd cannot be considered an in- 
herent optical property because it depends 
on depth and on the incident radiance dis- 
tribution. [An exception to this of course is 
the asymptotic light field (z -+ 00) for which 
it has been shown (Preisendorfer 19 59) that 
Kd becomes independent of depth and in- 
dependent of the incident radiance distri- 
bution. The asymptotic values of I&/c, for 
the examples in Fig. 3 are 1 .OO, 1.38, 1.95, 
and 2.42 for c,,Ic, = 0, 1.4, 3.7, and 5.6.1 
Thus, if we attempt to use Kd as an inherent 
optical property, it is necessary to specify 
in some manner the depth at which the mea- 
sured value applies and to remove the de- 
pendence on the incident radiance distri- 
bution. Here we focus on the irradiance 
attenuation coefficient (K) just beneath the 
surface, i.e. 

K = lim KCI(7), 
T >o 

and on the average diffuse attenuation coef- 
ficient ((K)) over the upper half of the eu- 
photic zone, 

EL- 1n b% I OY&KOl 
c 710 

where 710 is the optical depth for which Ed 
falls to 10% of its value just beneath the 
surface [EJT~~)/E~(O) = 0.11. Although dif- 

Fig. 5. As Fig. 4, but for (K)/c. 

-k-h-------1 0.8 

'-@-+I 

ficult to measure because of wave-induced 
light-field fluctuations, K is valuable for 
showing the way toward a useful represen- 
tation of Kd in terms of the IOPs. In con- 
trast, (K) is relatively simple to measure. 
On the basis of the number of photons con- 
tributing to K and (K), the statistical un- 
certainty 6K/c in K/c is x +O.O 12, while the 
relative error 6(K) in (K) is about t-0.006, 
i.e. 6(K)/(K) x kO.006. 

Figures 4 and 5 provide the computations 
of K/c and (K)lc as a function of o. for 334 
simulations comprising various values of 1-9, 
and C for each particle phase function and 
wavelength. Note that 1 - o. = a/c, so these 
figures relate K and (K) to the absorption 
coefficient a. Although a strong trend of in- 
creasing K/c and (K)lc with an increasing 
absorption component in the total atten- 
uation is observed, it is clear (as expected) 
that the variation in K and (K) cannot be 
explained solely on the basis of the total 
absorption and scattering coefficients of the 
medium alone. 

To proceed further it is useful to review 
the results of earlier investigations. Gordon 
et al. (1975) found that the dependence of 
Kd(r) on the scattering phase function could 
be approximately removed by expressing 
KLt(7) as a function of ooF, where F is the 
forward scattering probability (F = 1 -- bb, 
where bb = b,lb), rather than o. alone. Also, 
they Found that the effect of the nature of 
the illumination of the ocean on Kd(7) could 
be understood by examining Kd(7)/Do(7), 
where Do(~) was the downwelling distribu- 
tion function (Preisendorfer 196 1) for a to- 
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Table 3. D,, just beneath the sea surface. 

$0 440 nm 480 nm 550 nm 1 /cos o,, 

0" 1.034 1.027 1.019 1 .ooo 
20” 1.074 1.065 1.055 1.035 
25” 1.088 1.077 1.067 1.054 
30” 1.105 1.100 1.093 1.079 
40” 1.158 1.154 1.149 1.142 
60” 1.286 1.293 1.299 1.315 

’ 80” 1.284 1.311 1.346 1.484 
Di ffisc 1.197 1.197 1,197 

tally absorbing ocean with the same surface 
illumination, i.e. 

with o. = 0, where EOd is the downwelling 
scalar irradiance defined by 

In the revised suggested notation (Morel 
and Smith 1982) for optical oceanography 
Do(T) = l/jid for &+, = 0, where & is the 
“average cosine” of the downwelling light 
field evaluated just beneath the surface. In 
the Gordon et al. (1975) study there was no 
atmosphere over the ocean, and in that case 
Do@) = l/cos tiow, where bow is the solar 
zenith angle measured beneath the sea sur- 
face. In the present simulations this is no 
longer valid because of the presence of the 
atmosphere, and Do is also dependent on 
wavelength because the amount of skylight 
produced by scattering in the atmosphere is 
a function of wavelength. Therefore, Do has 
been computed at each wavelength and for 
each solar zenith angle by directly solving 
the transfer equation for the given X and 6, 
with o. = 0. The results of this computation 
for Do just beneath the surface (7 = 0) are 
given in Table 3. The statistical errors in 
Ed(O) and EOd(0) are t-0.3%, so the error in 
Do(O) will normally be 5 +0.4%. Note that, 
as expected, Do usually increases with in- 
creasing 6,; however, for 440 nm the con- 
tribution from the increasing amount of 
skylight compared to direct sunlight from 
b. = 60” to b, = 80” actually causes a small 

OK I I I I I I I I I 
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Fig. 6. K/cDo as a function of 1 - w$. The symbol 
code is given on Fig. 1. 

decrease in Do, Also, for b. 160” the dif- 
ference between Do(O) and l/cos b,, is usu- 
ally 5 3%. Do(~) also depends on r; however, 
this dependence is of little interest here. 

Applying the observations from previous 
studies to the computations in Figs. 4 and 
5, w. is replaced by woF and K/c and ( K)/c 
are replaced by K/CD, and (K)/cDo, where 
Do is the value of Do(O) taken from Table 
3. This new scaling of the computations is 
presented in Figs. 6 and 7. We see that when 
the computations are presented in this man- 
ner, K/cDo and (K)/cDo fall on what appear 
to be universal curves. The curves on the 
figures are least-squares fits of the points to 

5 = 5 k,(l - C&-J)n, (8) 
0 n=l 

and 

g = i (k),(l - OOfln, (9) 
0 n=l 

with k, = 1.0617, k, = -0.0370, (k), = 
1.3197, (k)2 = -0.7559, and (k), = 0.4655. 
The average error in the least-squares fit to 
Eq. 8 and 9, is 1.8 and 2.2%. [Replacing 
Do(O) by Do(~lo) in Eq. 9 provides no sig- 
nificant increase in the quality of the ex- 
pansion.] Also, a linear fit of K/CD0 to (1 - 
o,F) is almost as good as Eq. 8, i.e. 

K 
- = 1.0395( 1 - CL@), 
CD, 
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which implies that 

K 
- = l.O395(a + bJ, 
DO 

with an average error of 2.5%. The points 
on Figs. 6 and 7 with 1 - ooF > 0.85 do 
not fit Eq. 8 and 9 quite as well as the rest 
because these points correspond to pure sea- 
water-the phase function of which differs 
considerably from an ocean containing par- 
ticles (see Fig. 2). The K/cDo - (1 - o,fl 
relationship computed for an ocean free of 
particles is presented in Fig. 8 (for So = 0 
and no atmosphere); it differs considerably 
from that in Figs. 6 and 7. Since the mini- 
mum value of (1 - w,JJ is 0.85 (near 400 
nm), and over the range 0.85 5 (1 - wz,,,) 
5 1 the K/cDo - (1 - w,F) relationship for 
water and for the strongly forward scattering 
particles is very similar, the computations 
for the model ocean all fall very near the 
universal curves even though there is a large 
variation in the shape of the scattering phase 
function. 

The above analysis shows that K/Do and 
(K)lDo can be written as explicit algebraic 
functions of the inherent optical properties 
c, wo, and F (independent of the geometry 
of the incident light field) with an accuracy 
that is likely better than the accuracy with 
which K or (K) can be measured. Therefore 
we are justified in regarding the quantities 
K/Do and (K)/Do as inherent optical prop- 
erties. Note that if the mode of illumination 
of the ocean never varied, the distinction 
between the IOPs and the AOPs would blur 
(i.e. for a given set of IOPs the AOPs would 

o.o(w 
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Fig. 8. K/CD, for a particle free ocean (Rayleigh 
scattering). K/CD,-0; (K)lcD,-0. 

always be the same at a given point in the 
ocean). A particular setting, wherein the (fiat) 
sea surface is illuminated by the sun at ze- 
nith with the atmosphere absent, is unique 
as far as Kd(z) is concerned. For a given z 
the value of K,(z) in this setting is a mini- 
mum over all possible modes of illumina- 
tion. Thus, it is reasonable to refer to Kd(z) 
in this situation as the inherent irradiance 
attenuation coefficient and give it the special 
symbol K$(z). Likewise, Kr and (K)’ are the 
inherent values of K and (K) (i.e. the values 
that would be measured in an imaginary 
ocean-atmosphere system above). The 
quantities K/Do and ( K)lDo represent. ex- 
cellent approximations to Kz and (K)‘, i.e. 
the results of measurements in real situa- 
tions can be transformed to this ideal setting 
through simple division by Do. 

To consider applying this result to a real 
ocean, we must examine the effect of surface 
roughness on this simple observation. To 
include surface waves in the radiative trans- 
fer code requires a statistical model of the 
waves. For simplicity, we assume that the 
surface roughness has no preferred direction 
(i.e. the structure of the surface is indepen- 
dent of wind direction). Then with the mea- 
surements of Cox and Munk (1954) the 
probability density that the sea surface at a 
given point has slope components z, and z,, 
in the x and y directions is given approxr- 
mately by 

PC%, zy) 
1 

= 2 exp 
z; + z; ( ) - - 

7rcr CT2 
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where c2, the slope variance, is related to 
the wind speed V (in m s-l) through 

rT2 = 0.003 + 0.005 12 K 

The rough surface described by p(z,, z,,) 
is incorporated into the Monte Carlo radia- 
tive transfer code used in this work in a 
manner similar to that described by Plass 
et al. (1975). A complete examination of the 
effect of surface roughness on K and (K) 
requires a significant computational effort; 
however, only a few computations are re- 
quired to show that the basic result above- 
division by DO renders K and (K) inherent 
optical properties - is still valid for an ocean 
with waves. A sample of the computations 
carried out is presented in Table 4 which 
provides computations of DO, K, and (K) 
as a function of the surface roughness at 480 
nm for 6, = 60” and c,lc, = 12.3 (C z 0.5 
mg m-3). Note the slow increase in D, with 
c indicating an increasingly diffuse incident 
light field beneath the surface as the rough- 
ness increases. This increases K with in- 
creasing roughness; however, division of K 
by DO provides a quantity that is nearly in- 
dependent of surface roughness. Interest- 
ingly, the effect of surface roughness on both 
(K)/c and (K)/cD, is small (~3%) up to 
wind speeds of 17 m s-l. These computa- 
tions suggest that K/D, and (K)/D, remain 
inherent optical properties even in the pres- 
ence of surface waves; however, the value 
of D, used to form these ratios must be that 
which is valid in the presence of the rough 
surface. 

Experimental estimation of D, 
Determination of D,, from field measure- 

ments requires the radiance distribution in- 
cident on the sea surface. This can be quan- 
titatively determined using a camera 
equipped with a fisheye lens (Smith 1974; 
Smith et al. 1970); however, analysis of the 
resulting sky photographs is not simple. 
Earlier (Gordon 1976) I proposed a simple 
scheme for estimating D,. Briefly, if Ed(i) is 
the irradiance incident on the sea surface 
from source i (e.g. direct sunlight, skylight, 
clouds, etc.), then it is easy to show that 

Table 4. Computed D, and diffuse attenuation coef- 
ficients at 480 nm and tiO = 60” as a function of the 
surface roughness parameter c. 

(r DO K/c K/cDo (WC (WcDo 

0.0 1.293 0.2624 0.2029 0.2914 0.2254 
0.1 1.306 0.2632 0.2015 0.2924 0.226 1 
0.2 1.333 0.2733 0.2050 0.2954 0.2285 
0.3 1.373 0.2833 0.2063 0.2999 0.23 19 

where t(i) is the irradiance transmittance for 
light from source i and D,(i) the value of 
Do that would result from source i acting 
alone. For a cloud-free atmosphere the only 
sources are the sun and the sky so this equa- 
tion reduces to 

Do = fl>o(sun) + (1 - f-Po(W ( 11) 

where f is the fraction of direct sunlight in 
the incident irradiance transmitted through 
the interface, i.e. 

f= 
t(sun)E,(sun) 

t(sun)Ed(sun) + t(sky)EJsky) ’ 

If skylight is assumed to have a uniform 
radiance distribution [i.e. radiance (bright- 
ness) independent of direction of viewing], 
Eq. 11 simplifies to 

f Do = - cos d + 1.197(1 -j-). (12) 
ow 

Given TJ,, the only unknown isJ: It can be 
estimated by placing an irradiance meter 
above the surface, measuring the total in- 
cident irradiance E,(sun) + E,(sky), and 
then measuring the sky irradiance E,(sky) 
by casting a shadow over the opal diffuser 
of the instrument. 

The efficacy of Eq. 12 is tested with the 
Monte Carlo simulations, where E,(sun) is 
computed from 

E,(sun) = cos 19,Fo 
’ exp[-(rA + TR + %d 

+ cos ?Jo] (13 

with F. the extraterrestrial solar irradiance 
and r,& TR, and 702 the contributions to the 
optical thickness of the atmosphere from 
aerosol scattering, molecular (Rayleigh) 
scattering, and ozone absorption. E,(sky) is 
then determined by subtraction from the 



1402 Gordon 

total irradiance falling on the sea surface. 
Even though Eq. 13 is exact, for our pur- 
poses it underestimates E,(sun) because all 
photons scattered by the aerosol are as- 
sumed to be uniformly distributed over the 
sky; in reality a significant fraction of the 
aerosol scattering is through small angles 
and these scattered photons are still trav- 
eling in nearly the same direction as the 
unscattered photons. To compensate for this 
effect, we can obtain an upper limit on 
E,(sun) by ignoring the aerosol scattering 
entirely, i.e. by computing E,(sun) accord- 
ing to 

E,(sun) = cos fioFo 
’ exP[- @R + TOz) 

+ cos So], (14 

which clearly overestimates E,(sun) since 
aerosol scattering does make some contri- 
bution to E,(sky). Thus, for our purposes 
Eq. 13 and 14 provide lower- and upper- 
bound estimates of E,(sun) and therefore of 
J: Comparison between Do computed from 
E<q. 12 using Eq. 13 for Ed(sun) and the 
“exact” values (Table 3) shows that for 0 5 
Go I 60” the error is < +. 3%, and for Go = 
80” Eq. 12 yields a value for Do that is 5- 
8% too low. The corresponding computa- 
tions with Eq. 14 for Eti(sun) show that for 
0 5 Go 2 60” the error is < i2%, and for 
19~ = 80” the computed value is 0.5-4% too 
high. 

We can apply this computation to the 
“shadow” method suggested above for es- 
timating J: Assume that the object used to 
cast the shadow of the sun is a circular disk 
of diameter somewhat larger than the col- 
lecting face of the irradiance meter. Then, 
if the disk is relatively close to the irradiance 
meter, a portion of the sky in the vicinity 
of the sun is also obscured. This would ap- 
proximately correspond to estimatingfwith 
Eq. 14, i.e. photons scattered at small angles 
from the sun would be included in E,(sun). 
Conversely, if the disk were at a great dis- 
tance from the instrument only the solar 
disk itself would be obscured, and photons 
scattered at small angles from the sun be- 
come part of Ed(sky)- approximately cor- 
responding to using Eq. 13 to estimate x 
Thus we conclude that the shadow method 
of determining f should yield values of Do 

between the estimate obtained with Eq. 13 
and 14. 

In the presence of surface waves, com- 
putation of the correct value of Do is facil- 
itated by the empirical observation that Do 
increases approximately in proportion to a2 
for wind speeds up to M 20 m s-l. This is 
demonstrated in Fig. 9 for an overcast sky 
and for solar illumination (no atmosphere) 
with 19, = 60”, 70”, and 80”. The dots on 
Fig. 9 are the computed values of Do and 
the lines are least-squares fits to Do = cl + 
c2c2, where c1 and c2 are constants. The lcast- 
squares lines allow estimation of Do with 
an error of 5 2%. For b. 5 50” the variation 
in Do for 0 I (r 5 0.3 is ~2%. Thus, for 6, 
I 50”, Do can be computed by assuming that 
the sea surface is flat; for larger values of 
6, (or for an overcast sky) the flat-surface 
values of D,(sun) and D,(sky) for use in Eq. 
11 must be increased in accordance with 
Fig. 9. 

Finally, in the atmospheric model used 
here rA at 550 nm was taken to be 0.25. This 
is very conservative, since it would corre- 
spond to a coastal atmosphere (it is typical 
of a continental aerosol) and is a factor of 
2-3 higher than would be expected for a 
“clear” marine atmosphere. Therefore an 
estimate off based on Eq. 14 alone (i.e. 
without any measurements above the sur- 
face) should provide excellent estimates of 
Do in clear marine atmospheres. 

The Lambert-Beer law applied to & 
Having established that measurements of 

K and (K) can be transformed into inherent 
optical properties in a variety of realistic 
situations, we now turn to the main ques- 
tion of this paper: the extent to which Kd 
satisfies the Lambert-Beer law. Consider an 
ocean consisting of m components, one of 
which is pure seawater. Let CT be the specific 
attenuation coefficient ofconstituent i. Then, 
ci = C~Cj, and the total attenuation coeffi- 
cient can bc written 

C = Cw + 5 Cj 
i-l 
m 

= Cw -t 2 CrCi 
r=l 

where Cj is the concentration of the ith con- 
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Fig. 9. Do as a function of a2. The curves from 
bottom to top correspond to a completely overcast sky 
and to solar illumination with &, = 60”, 70”, and 80”. 

stitucnt. These relationships comprise the 
Lambert-Beer law, i.e. the individual atten- 
uation coefficients are proportional to the 
individual concentrations and the total at- 
tenuation coefficient is a linear sum of the 
individual or partial attenuation coeffi- 
cients. [On the surface, Eq. 5 and 6 seem to 
suggest that cl, is not proportional to the 
concentration of phytoplankton, but rather 
on the concentration to the 0.6 power. How- 
ever, this is an artifact because cp in the 
present bio-optical model includes not only 
the contribution of phytoplankton but also 
the contribution from detrital material- the 
relative concentration of which varies with 
the concentration of phytoplankton (Hob- 
son et al. 1973). In reality the attenuation 
coefficient of particles in Case 1 waters 
should be written cr, = &Cph + ciCd, where 
the subscripts ph and d refer to phytoplank- 
ton and detritus.] Since K/Do and (K)/D, 
are inherent optical properties, the relevant 
question concerns the validity of the expres- 
sions 

K m Kj -= 
DO 

c 1=1 D, 
and 

(K) m (K)j - 
DO 

z: 
i=l Do - 

(15) 

(16) 

For an individual observation, the D,s can- 
cel from these equations; however, we will 
keep Do on both sides of these equations 
because Eq. 8-10 express K/D, and (K)/D, 

as functions of the inherent optical prop- 
erties and because measurements made un- 
der a variety of environmental conditions 
(i.e. a variety of D,s) are often combined 
for statistical analysis (Baker and Smith 
1982; Morel 1988). 

Clearly, if Eq. 10 is used for K/Do, its 
linear dependence on the inherent optical 
properties means that the error in Eq. 15 is 
no more than the error in Eq. 10, i.e. 

K 
- = l.O395(a + bb) 
DO 

rm m 1 

= 1.0395 
1 
z ai + 2 (bb)i 
i=l i=l 1 

= 5 l.O395[ai + (bb)j]* 
i=l 

z 
4 = 

i=l D,’ 

Thus, any error in the Lambert-Beer law 
over and above the error due to the fact that 
division of K and (K) by Do does not re- 
move all of the geometric effects, i.e. the 
scatter of the points about the smooth curve 
in Figs. 6 and 7 is due to nonlinearities in 
the dependence of K and (K)/D, on the 
inherent optical properties. To understand 
the magnitude of this nonlinear contribu- 
tion to the error we consider a hypothetical 
model. Assume that Eq. 9 for (K)/cD,-the 
more nonlinear of the two relationships- 
is exact and that the ocean consists only of 
water and plankton. We use w, and wy from 
Table 2 with F, = 0.50. Particle phase func- 
tions C, M, and T have FP = 0.98 19,0.9856, 
and 0.9880, so FP is chosen to be 0.985. The 
relative concentration of particles, as mea- 
sured by c/c, is then varied from 0 to 1. 
The true value of ( K)/Do, (K) JDo, is com- 
puted from Eq. 9 using the value of woF for 
the mixture, i.e. with 

o,F = qF&I> + %Fwcw 
c,+c, - 

The Lambert-Beer law value, ( K),/Do, is 
computed from 

(WB _ (Ww + (K), - - 

Do Do Do 
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Particle Fraction ( c,, I c ) 

Fig. 10. Relative error (%) in (KjB as a function of 
the relative concentration of particles. 

with (K) wlDo and (K),lD, individually de- 
termined by Eq. 9 using w,,,.Fw and opFp, re- 
spectively. This procedure can be visualized 
graphically by considering Fig. 7. The value 
of (K),/cD, falls on a straight line between 
two points on the least-squares curve lo- 
cated at woF = owFw and woF = a$“, while 
(K),/cD, is on the curve itself. The relative 
error in (K),lD, is then computed by means 
of 

(& - (WT 

This error is shown in Fig. 10 as a function 
of (c,/c). We see that the maximum error 
at 440 nm is ~3%, and the maximum error 
at 550 nm is ~66%. Had w,(440) = 0.80 been 
used in this example the error at 440 nm 
would have been <2%. Since ~~(440) = 0.86 
is near the upper limit for phytoplankton 
[e.g. Bricaud et al. 1983 measured 0,(440) 
= 0.88 for the coccolithophore Emiliana 
huxleyi which is known to be a very strong 
scatterer], it is believed that the error at 440 
nm will typically be < 3% and often -K 2%. 
With Eq. 7, c,/c can be related to the pig- 
ment concentration for this two-component 
example. The maximum error in the Lam- 
bert-Beer law at 440 nm occurs when C M 
0.09 mg m-3, while at 550 nm it occurs 
when C z 1.70 mg m-3. These errors are 
to a certain extent dependent on the use of 
Eq. 9. Had a different fit to the simulations 
been used, e.g. a higher order polynomial 

in (1 - uoF) to better fit the computed (K)/ 
Do near 1 - w,F = 1, a different error dis- 
tribution with c,/c would result. To assess 
the true error .the reader should sketch what 
he or she believes to be the “best” smooth 
curve (or segmented curve) through the 
points in Fig. 7 and then use the graphical 
method above to assess the error in the 
Lambert-Beer law, including the scatter of 
the points about the “best” line. When I do 
this for the model values of c+,, Fp, ww, and 
F,, I find the maximum error to be about 
5% for 440 nm and about 10% for 550 nm 
for Case 1 waters. 

The optical model developed for this work 
is strictly applicable to Case 1 waters only; 
however, it is of interest to consider the 
possible extension of these results to Case 
2 waters (i.e. Case 1 waters subjected to high 
concentration of suspended sediment and/ 
or absorbing yellow substances). The basic 
relationships between K/Do and ( K)/Do and 
the IOPs provided in Figs. 6 and 7 are ex- 
pected to be valid in Case 2 waters since 
one of the particle phase functions used in 
the simulations was measured in Case 2 
waters and additional values of op (0.50, 
0.70, and 0.99) over and above those in 
Table 2 were used in the computations and 
have been included in the analysis. 

The Case 1 example concerned adding 
strong scatterers (plankton and their detri- 
tus) to a strongly absorbing medium (sea- 
water). If very weak scatterers (wp < I), or 
nonscatterers such as yellow substances (wp 
= 0), are added to pure seawater, the error 
in the Lambert-Beer law can be assessed by 
examination of the region of Fig. 7 near 1 
-ypz 1. Since water has o. 50.30, the 
error in the Lambert-Beer law is essentially 
the error in the “best” fit to the simulations 
in this region, i.e. about +2%. If particles 
that scatter more weakly than phytoplank- 
ton, i.e. wp ~0.8, are added to water, the 
Lambert-Beer law should be even better sat- 
isfied than for Case 1 waters at 440 nm. 
Only the extreme case of adding nonab- 
sorbing particles wp = 1 to pure seawater 
remains to be considered. For this the Lam- 
bert-Beer law always predicts a (K) value 
that is too small, and the error can become 
excessive (-30%) in the region 1 - ooF s 
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0.3. In fact, the error is ~20% when oOF 5 
0.8 at 440 nm and when wOF 5 0.7 at 550 
nm. Thus, the Lambert-Beer law will fail in 
Case 2 waters dominated by high concen- 
trations of nonabsorbing suspended mate- 
rials; however, if high concentrations of yel- 
low substances occur simultaneously with 
the nonabsorbing particles, wOF for the mix- 
ture may be sufficiently low so the error in 
the Lambert-Beer law is not excessive. Un- 
fortunately, the Lambert-Beer law will also 
fail in certain coccolithophore blooms in 
Case 1 waters as well. For example, the op- 
tical properties of blooms of E. huxleyi have 
been observed (Holligan et al. 1983) to be 
dominated at times by nonabsorbing de- 
tached coccoliths (uP = 1). The same diffi- 
culties with the Lambert-Beer law that oc- 
cur in sediment-dominated Case 2 waters 
w’ill also apply to such blooms even though 
they satisfy the definition of Case 1 waters, 
i.e. the optical properties are determined by 
water and by phytoplankton and their im- 
mediate detrital material. 

It is important to understand that the near- 
validity of the Lamb&-Beer law rests 
squarely on the near-linearity of the rela- 
tionships shown in Figs. 6 and 7, i.e. that 
the quantities involved must bc inherent 
optical properties is a necessary but not suf- 
ficient condition for the validity of the law. 
For example, if all particles in Case 1 waters 
were sufficiently small to scatter light with 
the same phase function as pure seawater, 
the dependence of K/CD, and (K)/cD, on 1 
- q,F would be given by Fig. 8. In such a 
case, if phytoplankton and detritus were 
mixed with water at 550 nm, the Lambert- 
Beer law value of K for the resulting mixture 
would fall along a straight lint from 1 - 
oOF x 0.54 to 1 - wOF x 1, while the actual 
K values would fall along the curve. Clearly, 
very large departures from Lambert-Beer 
law would be seen for all values of c,/c in 
such an ocean. Thus, the near-validity of 
the Lambert-Beer law in the case of a re- 
alistic ocean is seen to result from the in- 
terplay of three independent facts: the de- 
pendence of the diffuse attenuation 
coefficients on the geometric structure of the 
light field can be removed (division by DO); 
pure seawater is a much better absorber than 

scatterer at optical frequencies (1 - FWo, 
2 0.85); and the phase functions for par- 
ticles suspended in the ocean differs signif- 
icantly from that of pure seawater (Fig. 1). 

Finally it is of interest to determine the 
accuracy with which one can estimate the 
diffuse attenuation coefficient of an ocean 
consisting solely of pure seawater through 
extrapolation of Kd values measured in a 
real ocean to the limit of zero particle con- 
centration. As mentioned earlier, this is the 
scheme that Smith and Baker and others 
have used to estimate Kd for pure water 
(Baker and Smith 1982; Smith and Baker 
1978a,b, 198 1). For this purpose we have 
computed (K) as a function of c at 480 nm 
by letting C in Eq. 13 range from 0 to 4.5 
mg m-3. Figure 11 shows the results for Go 
= O”, 60°, and for overcast skies. The lines 
on the graph correspond to linear least- 
squares fits to the computed points with C 
>O (c, > 0 or c > c,), i.e. the point on each 
line corresponding to pure water was left 
out of the fit. The least-squares line was then 
extrapolated to cP = 0 to determine (K) in 
the absence of particles, which corresponds 
to extrapolating C to zero pigment concen- 
tration. As seen from the figure, the extrap- 
olated line falls very close to the computed 
values of (K) for pure seawater. In fact, the 
difference between the computed and ex- 
trapolated values of (K), are, respectively, 
3.8, 1.9, and 1.5%. In this example, the in- 
cident illumination is the same for each val- 
ue of c along the individual least-squares 
lines, and the linearity of the (K) - c re- 
lationship again verifies that the Lambert- 
Beer law is valid for (K) in Case 1 waters 
when the mode of illumination is held fixed. 

In practice it would be impossible to ar- 
range this experimentally. In the field, each 
data point would likely correspond to a dif- 
ferent incident light field. However, we have 
seen that dividing (K) by D,, removes most 
of the effects of the geometric structure of 
the light field. To assess the efficacy of de- 
termining (K), from extrapolation to cP = 
0 in more realistic situations, I applied the 
above extrapolation procedure to (K)lD,, 
obtained from all of the simulations (i.e. all 
illumination conditions were treated equal- 
ly and included in the analysis). Figure 12 
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Fig. 11. (K) at 480 nm as a function of c for particle 
phase function M. The lower and upper lines are for 
6, = 0” and 60”, and the center line is for an overcast 
sky. 

shows the results of the extrapolation at 480 
nm, and Table 5 compares the extrapolated 
value of (K) JDO with the inherent value of 
(K), (i.e. (K);,), the value of (K) for an 
ocean composed of pure seawater computed 
with the atmosphere removed and with the 
sun at zenith. Table 5 suggests that the ex- 
trapolation procedure can yield (K)‘, to 
within -2%. Note, however, that Fig. 12 
shows that large errors in (K)‘, are possible 
if it is determined from a small amount of 
data with cP % c,. For example, if the high- 
est value of (K)lD,, at c E 0.27 m-’ and the 
lowest value at c e 0.42 m-l were used, the 
extrapolated value of ( K),lDo would be 
M 0.038 m-l -an error of nearly a factor of 
2. Thus, as we would expect, the experi- 

0.00 I 1 ’ 1 ’ 1 ’ ’ ’ 
0.1 0.2 0.3 0.4 

c (m-9 

Fig. 12. (IQ/Do as a function c at 480 nm. The 
points are Monte Carlo simulations for various values 
of lYo; the line is a least-squares fit to the points with 
c, > c,. 

Table 5. The inherent (K)!, and the extrapolated 
value of (K),JD, in m-l for the three wavelengths. 

440 nm 480 nm 550 nm 

(KkL 0.0182 0.0202 0.0652 
UOw’Do 0.0178 0.0202 0.0667 

mental determination of (K)‘, must be car- 
ried out by excluding turbid waters from the 
analysis. 

From the extrapolated values of K, and 
(K),, it is natural to try to estimate a,,,. In 
fact, the values of a, used here were com- 
puted by Smith and Baker (198 1) from their 
estimated values of K,,, using 

K, = aM, + (b&,, = a, + 0.5b, 

where (bJw is the backscattering coefficient 
of pure seawater, along with Morel’s labo- 
ratory measurements of b, (Morel 1974). 
However, Fig. 8 shows that, for w,F near 1, 
better approximations are 

K’, = a, + 0.62b, 

and 

(K)‘, = a, + 0.72b,, 

leading to values of a,,, that are slightly lower 
than Smith and Baker’s in the spectral re- 
gion below 550 nm. By looking at the vari- 
ation of Kd with a and 19 in the asymptotic 
light field for isotropic scattering, Bohren 
(1984) suggested that the Smith and Baker 
a, values were too low and proposed larger 
values based on using K, = a, + b,. My 
computations here support Bohren’s con- 
tention; however, the true correction is less 
than half as large at the surface as he pro- 
posed. 

My conclusions concerning the validity 
of the Lambert-Beer law are in conflict with 
those of Stavn (1988). He suggested that 
there is a systematic error in the Lambert- 
Beer law and that this error can lead to large 
errors in partitioning absorption between 
water and plankton. Briefly, Stavn based his 
objections on the exact relationship 

Kd = ; (1 - R) + RK, 

where R = E,,IEd and Ku = -(l/E,) clE,/ 
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dz, which can be derived in a straightfor- 
ward manner from Gershun’s law and is 
valid for all z. If R K 1 and Ku x Kd, which 
are usually excellent approximations in Case 
1 waters or yellow substance-dominated 
Case 2 waters, then Kd M al& The identity 
a = a, + aP can be rewritten 

where &, and j&, are the values of p in an 
ocean with the same radiance distribution 
incident on the sea surface and the same 
surface roughness, but for which cp = 0 and 
CW = 0, respectively. Note that the values of 
p, and &, at a given depth are fixed (i.e. they 
do not depend on c,Ic,J. Using Kd e a/j& 
Kv x a,+,/&,, etc., we have 

K/(z) = 

+ i&(z) [ 1 - &J(z). x4 
This equation shows that the Lambert-Beer 
law applied to Kd(z) is approximately valid 
only when p(z) M i&,,(z) z i&(z), which oc- 
curs near the surface where the value of p 
is determined mostly by the radiance dis- 
tribution incident on the sea surface and on 
surface roughness. In fact, near the surface 
i&3 = iL(z> = i&m x l/D,. As we move 
deeper into the water column, F deviates 
systematically from fi,,, and & with &(z) < 
p(z) < J&,(Z). On this basis, we expect that 
the Lambert-Beer law should work reason- 
ably well near the surface but should lead 
to systematic errors as depth is increased. 

The present paper quantitatively assesses 
these errors, showing that the law applied 
to K and (K) works well for z sz,,. Stavn 
on the other hand suggested that large errors 
are possible even near z = 0. His analysis, 
however, was based on the Smith and Baker 
(198 1) estimations of K, and a,, which we 
have seen are inconsistent with one another. 
Stavn also assumed that K,,, is independent 
of the distribution of radiance incident on 

the sea surface and independent of depth. 
When the revised values of a, determined 
from KL are used along with the actual val- 
ues of K, near the surface (K, = D,K’,) and 
the small increase of KI, with depth is con- 
sidered, the errors on which Stavn based his 
objection to the Lambert-Beer law vanish 
(within his error limits) in the upper 20 m 
of the water column in three of the four cases 
he examined. Note that this occurs even 
without considering the rather large uncer- 
tainties Smith and Baker give for their es- 
timated K, values. Below this surface layer, 
it appears that Stavn’s conclusion becomes 
valid, i.e. the Lambert-Beer law may lead 
to significant systematic errors when ap- 
plied to Kd(z) at a given depth z for z ?zlo. 
Determination of these errors, a question 
which is very important for the interpre- 
tation of measurements from moorings, will 
require further study both through mea- 
surement with modern instrumentation and 
through simulation. Only the application of 
the Lambert-Beer law to K and (K) has been 
addressed here. 

Concluding remarks 
By simulating the transport of radiation 

in a realistic ocean-atmosphere system and 
treating the results as experimental data ob- 
tained under carefully controlled condi- 
tions, it has been shown that K and (K), 
when modified through division by Do are, 
to a high degree of accuracy, inherent optical 
properties. A simple scheme for estimating 
Do for individual experimental situations is 
provided. Furthermore it is shown that for 
Case 1 waters K/Do and (K)/Do satisfy the 
Lambert-Beer law to a reasonable degree of 
accuracy (maximum error z 5-lo%, de- 
pending on wavelength). The errors are not 
significantly increased for Case 2 waters as 
long as waters for which the IOPs are dom- 
inated by nonabsorbing suspended particles 
are avoided. The near-validity of the Lam- 
bert-Beer law in this situation, where there 
are compelling reasons to believe that it 
should fail, is traced to three independent 
facts: the dependence of the diffuse atten- 
uation coefficients on the geometric struc- 
ture of the light field can be removed; pure 
seawater is a much better absorber than 
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scatterer at optical frequencies; and the phase 
functions for particles suspended in the 
ocean differs significantly from those of pure 
seawater. If any of these facts were false the 
Lambert-Beer law would fail. Finally, it is 
shown that extrapolation of K/Do and (K)l 
Do to the limit c -+ c, yields quantities that 
are within 2% of KL and (K)i, i.e. the value 
of K and (K) that would be measured for 
an ocean consisting of pure seawater with 
the sun at zenith and the atmosphere re- 
moved. 

When Do is left out of the analysis, the 
result is a rather large additional error in 
the Lambert-Beer law (e.g. see Figs. 4 and 
5). However, Table 3 shows that when mea- 
surements are restricted to situations where 
0 I Go 5 40” the total variation in Do is 
only from 1 to about 1.16, a + 8% variation 
around 1.08. An analysis of (K) so restrict- 
ed shows that in Case 1 waters the error 
doubles over that when Do is included. Thus, 
when measurements are restricted to clear 
skies near noon, the Lambert-Beer law ap- 
plied to (K) itself should be in error by no 
more than lo-20%. This may account for 
the success of the law for in situ observation 
and analysis of phytoplankton absorption 
(i.e. investigators may have restricted the 
analysis to data taken under “ideal” con- 
ditions similar to these). 

The analysis of oceanic properties with 
Kd is useful because of the relative simplic-. 
ity of the instrumentation required for its 
measurement. The near-validity of the 
Lambert-Beer law for all but the most 
strongly scattering of natural waters allows 
the partial diffuse attenuation coefficients, 
in the sense of Eq. 1, 15, and 16, to be 
determined. Since the partial, as well as the 
total, Kd functions (K and (K)) are in the 
first approximation proportional to a + bb 
for those species for which a B bb (e.g. 
phytoplankton and dissolved organic ma- 
terial), measurement of K or (K) provides 
a direct estimate of a from KilDo or (K)il 
Do. Thus, until the development of an in 
situ spectral absorption meter, measure- 
ment of Kd appears to be the only available 
in situ means of estimating a(X). Note, how- 
ever, that in general the medium will con- 
tain more than two components (e.g. water, 

plankton and detritus, yellow substances, 
etc.) and separation of the components can 
only be carried out in a statistical sense. 

Application of these results to field ex- 
periments presents several difficulties. The 
first stems from the fact that K/Do, which 
satisfies the Lambert-Beer law better than 
( K)lDo, is very difficult to measure in prac- 
tice due to the strongly fluctuating irradi- 
ance at the surface resulting from the pres- 
ence of surface capillary waves and the 
difficulty of accurately determining the depth 
of the instrument near the surface due to 
the presence of surface gravity waves. Thus, 
measurement of (K)/Do, which is signifi- 
cantly less influenced by the surface effects, 
is preferred from an experimental point of 
view; however, in the case of oceanic water, 
the mixed layer must be sufficiently deep so 
that .zlo = ~~~/c is within the mixed layer 
and the water can be treated as homoge- 
neous. For the limiting case of an ocean .free 
of particles, this would require a mixed layer 
of = 125, 115, and 35 m at 440, 480, and 
550 nm. A second difficulty concerns the 
determination of Do in the presence of bro- 
ken clouds. In this case Eq. 12 will not apply 
and the only viable method is to photograph 
the sky with a fisheye lens. Finally, 
the presence of whitecaps on the sea surface 
will further modify the internal geometry of 
the light field and influence DO. Their effect 
cannot be discussed further without knowl- 
edge of their optical properties. 
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