Particulate backscattering from BB9 Darling Marine Center - Ocean Optics Summer 2013

Instrument Details

Name: Scattering Meter

Model: ECO BB-9

Contact Information

Javier A. Concha
Digital Imaging and Remote Sensing Lab (DIRS)
Rochester Institute of Technology (RIT)
Rochester, NY
jxc4005@rit.edu

Document Version 1.0, July 31, 2013

Particulate VSF

To convert from raw data (counts) to the total Volume Scattering Function ($\beta_t(\theta)$ in sr⁻¹m⁻¹) at $\theta = 124^\circ$, we use the following equation:

$$\beta_t(\lambda, \theta) = (signal\ measured - dark\ counts) * scale\ factor\ \left[\frac{1}{sr\cdot m}\right]$$

Where the dark counts and scale factor values were:

Channel	Dark counts	Scale Factor
407	49.0	4.533E-05
439	56.1	1.999E-05
485	52.1	1.946E-05
507	54.6	1.615E-05
527	54.0	1.682E-05
594	54.0	1.047E-05
651	51.7	9.738E-06
715	53.0	8.375E-06
878	51.5	8.375E-06

The effect of seawater was removed using the following equation (see Optics Express, 5698-5710):

$$\beta_p(\lambda, \theta) = \beta(\lambda, \theta) - \beta_{sw}(\lambda, \theta) \left[\frac{1}{sr \cdot m} \right]$$

The VSF of seawater was calculated using the "betasw_ZHH2009.m" Matlab function by Xiaodong Zhang, 2009. Also, to correct the VSF for absorption along the path we used:

$$\beta_p(\lambda, \theta) = \beta_p(\lambda, \theta) e^{L \cdot a(\lambda)} \left[\frac{1}{sr \cdot m} \right]$$

where a is the absorption coefficient and L is the path length of the instrument (see ECO BB9 User's Guide).

Particulate Backscattering (b_{bp})

To convert from particulate VSF to a particulate backscatter coefficient, we used:

$$b_{bp}(\lambda) = 2\pi\chi\beta_p(\theta,\lambda)\left[\frac{1}{m}\right]$$

with χ = 1.14 and θ = 124° (see Boss and Pegau, 2001).