### **Goals of Laboratory**

To experiment with reflectance model inversion by examining the output sensitivity to basis vectors, initialization, reflectance models.

### **Code Supplied**

### 1. Main programs (run one at a time)

Rrs\_inversion\_comparison\_MODIS.m (compares RP95, GSM, QAA at MODIS wavelengths) Rrs\_inversion\_comparison\_SeaWiFS.m (compares RP95 and QAA at SeaWiFS wavelengths) Rrs\_inversion\_RP95.m (runs Roesler Perry 1995 with variable wavelengths, data sets) Rrs\_inversion\_RB03.m (runs Roesler Boss 2003 with variable wavelengths, data sets) Rrs\_inversion\_RPFG.m (runs Roesler Perry 1995 with variable wavelengths, data sets, 4

- phytoplankton absorption spectra –functional groups)
- GIOP (in folder GIOP, you will find the General IOP model inversion from Jeremy Werdell. See details below in #6 in assignments for more details AFTER you have run the programs above).

Linear Matrix Inversion with uncertainty (Boss and Roesler 2008, see #7 under assignments)

### 2. Inversion Model programs called by main programs

GSM01\_invert and GSM01\_cost [*Garver et al. 2002*] QAA4\_MODIS and QAA4\_SeaWIFS [*Lee et al. 2002*] RP95\_invert and RP95\_cost [*Roesler and Perry 1995*] RB03\_invert and RB03\_cost [*Roesler and Boss 2003*] RPFG\_invert and RPFG\_cost [*Roesler et al. 2004*]

### 3. eigenvector functions provided

water\_iops\_PF\_TScorr (called by all inversions, does varying T/S matter?)

phyto\_avg\_abs (implemented in RP95)

phyto\_species\_abs (implemented in *Roesler et al. 2004* and *Roesler and Boss 2003*)) phyto\_Lee (try using it) Also, try Bricaud et al 1995 (see next page);

 $a_{CDOM}$  and  $a_{nap}$  separate with slopes of 0.018+/- 0.002 or 0.01+/- 0.002, respectively or combined  $a_{cdm}$  with combined slope of 0.0145+/-0.002

 $b_{bp}$  with variable spectral slope (+0.5 to -1.5)

### 4. Regression function

Fminsearch (not Levenberg-Marquardt, does have some differences)

### 5. Data files supplied for experimentation and then your data sets to be loaded by you

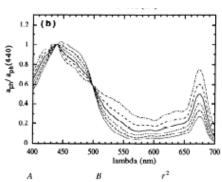
 Subsurface irradiance reflectance from Roesler and Perry 1995 (JGR) Rrs\_E\_PugetSound.dat (11 spectra, Puget Sound) Rrs\_E\_GulfMaine (8 spectra, Gulf of Maine)

| Rrs_E_DabobBay  | (8 spectra, Dabob Bay north of Puget Sound)           |
|-----------------|-------------------------------------------------------|
| Rrs_E_WestCoast | (8 spectra, transect off Oregon gyre waters to coast) |

- 2. R\_L\_HL\_simulation.dat Simulated hyperspectral reflectances that Curt provided from Hydrolight runs, see excel file for details of runs
- 3. Your measured reflectance spectra from cruise (load in format of column 1 is wavelength, columns 2 to n are reflectance spectra 1 to (n-1)
- 4. Your reflectance spectra from Hydrolight simulation

# Assignment (this is an exploratory laboratory exercise, get as far as you can so you can ask questions)

- 1. Using the provided data sets (from Roesler and Perry 1995 and Curt's simulations), experiment by
  - a. comparing the various models on the same data sets
  - b. comparing retrieved IOPs as a function of wavelength resolution
  - c. comparing retrieved IOPs with inputs from Hydrolight
  - d. looking at sensitivity of retrievals to input parameters  $(a_{phyt}, S_{cdom}, S_{nap}, n_{bb}, Temperature and/or Salinity of water...)$
- 2. Once you are comfortable running the models, load your data sets into the models:
  - a. Various ways of determining reflectance
  - b. Hydrolight simulations using IOPs from cruise
- 3. Run supplied inversion models to retrieve IOPs  $(a_{phytp}, a_{cdom}, b_{bp})$
- 4. How do the retrieved IOPs depend upon
  - a. the phytoplankton absorption eigenvector
  - b. the slope of  $a_{cdm}$  (or the separation of the two)
  - c. the slope of  $b_{bp}$
  - d. the number of wavelengths (try hyperspectral, then degrade to SeaWiFS, then MODIS wavelengths; what can be done with 3 wavelengths
  - e. the model chosen
- 5. Test the QSSA. Using your IOPs from the cruise,
  - a. compute  $b_b/(b_b+a)$
  - b. compute R = Lu(0-)/Ed(0+) from Hydrolight
  - c. how do the spectral shapes of the two compare?
  - d. Given  $R_{QSSA} \cong (f/Q) b_b/(b_b+a)$  and  $R_{HL} = Lu/Ed$ , what is f/Q? Does it vary spectrally?
  - e. People often approximate to  $R_{QSSA} \cong (f/Q) b_b/a$ , what do your results suggest?
- 6. The General IOP Model The purpose of this code is to allow the user to change both choice of eigen-functions for IOPs as well as relationship of Rrs to IOPs (using literature models) to invert a spectra or Rrs. This approach is similar to 'ensemble forcasting' in atmospheric science. Run many different models. The likely solution is somewhere in between.
  - a. Run 'run\_giop.m'.
  - b. Look at 'giop.m' for the different option you could be using. Modify one of them to see how much impact it has on the inversion.
- In the folder 'chapter\_08\_syn' you will invert ZP Lee's synthetic data set using the a code of Boss and Roesler (all can be downloaded from: http://ioccg.org/groups/lee.html). The advantage of this code is in that it provides for


error bars in inverted parameters, based on varying the eigen-functions in the range observed and finding all the solution within the uncertainty in Rrs.

- a. run 'IOCGG\_ZPL\_data\_inversion'
- b. run the same code but on a field dataset at 'chapter\_08\_insitu'. There it is called 'IOCGG\_in\_situ\_data\_inversion.m'.
- c. try to modify these codes to invert a reflectance spectra of your choice

Reference:

- Boss, E., W. Peng and C. S. Roesler. 2005. Uncertainties of inherent optical properties obtained from semi-analytical inversions of ocean color. Applied Optics 44: 4074-4085.
- Boss, E. and C. Roesler, 2006. Chapter 8, Over Constrained Linear Matrix Inversion with Statistical Selection. In: IOCCG (2006). Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications. Lee, Z.-P. (ed.), Reports of the International Ocean-Colour Coordinating Group, No. 5, IOCCG, Dartmouth, Canada.
- Garver, S.A., and D.A. Siegel. 1997. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: I. Time series from the Sargasso Sea. *Journal of Geophysical Research.*, 102, 18,607-18,625.
- Hoge, F. and P. Lyon. 1996. Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: An analysis of model and radiance measurement errors. J. Geophys Res, 101(C7): 16631–16648, DOI: 10.1029/96JC01414
- Maritorena S, Siegel DA, Peterson AR. 2002. Optimization of a semianalytical ocean color model for global-scale applications. Appl Optics 41 (15):2705-2714
- Lee ZP, Carder KL, Arnone RA. 2002. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. *APPLIED OPTICS*. 20 September 2002 Vol. 41, No. 27 5755-5772
- Lee, ZP and C. Hu. 2006. Global distribution of Case-1 waters: An analysis from SeaWiFS measurements. *Remote Sensing of Environment* 101 (2006) 270 276.
- Roesler, C. S., and E. Boss. 2003. Spectral beam attenuation coefficient retrieved from ocean color inversion, Geophys. Res. Lett., 30(9), 1468-1472, doi:10.1029/2002GL016185.
- Roesler, C. S., S. M. Etheridge and G. C. Pitcher. 2004. Application of an ocean color algal taxa detection model to red tides in the Southern Benguela, pp.303-305. *In*: Steidinger, K. A., Lansdberg, J. H., Tomas, C. R., and Vargo, G. A. [eds.]. Harmful Algae 2002. Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography, and Intergovernmental Oceanographic Commission of UNESCO.
- Roesler, C. S. and M. J. Perry. 1995. *In situ* phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance. J. Geophys. Res. 100(C7): 13,279-13,294.
- Werdell, P. J., B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, ZP Lee, H.Loisel, S. Maritorena, F. Mélin, T. S. Moore, T. J. Smyth, D. Antoine, E. Devred, O. H. Fanton d'Andon, and A. Mangin, 2013. Generalized ocean color inversion model for retrieving marine inherent optical properties. Appl. Opt. 52, No. 10, 2019-2037.

## Phytoplankton absorption eigenvector from Bricaud et a. 1995 Variable spectral shape in $a^*{}_{ph}(\lambda)$



 $a_{ph}^{*}(\lambda) = A(\lambda) \langle chl \rangle^{-B(\lambda)}$ 

|            |                  |                |                |            | 400 45           | 0 500 550      | 600 650        |
|------------|------------------|----------------|----------------|------------|------------------|----------------|----------------|
|            |                  |                |                |            |                  |                | da (nm)        |
| λ.nm       | A                | В              | r <sup>2</sup> | λ. nm      | Α                | В              | r <sup>2</sup> |
| 400        | 0.0263           | 0.282          | 0.702          | 402        | 0.0271           | 0.281          | 0.702          |
| 404<br>408 | 0.0280<br>0.0301 | 0.282<br>0.282 | 0.706 0.710    | 406<br>410 | 0.0290<br>0.0313 | 0.281<br>0.283 | 0.707<br>0.713 |
| 412        | 0.0323           | 0.286          | 0.718          | 414        | 0.0313           | 0.291          | 0.723          |
| 416        | 0.0342           | 0.293          | 0.725          | 418        | 0.0349           | 0.296          | 0.729          |
| 420        | 0.0356           | 0.299          | 0.733          | 422        | 0.0359           | 0.306          | 0.739          |
| 424        | 0.0362           | 0.313          | 0.746          | 426        | 0.0369           | 0.316          | 0.747          |
| 428        | 0.0376           | 0.317          | 0.749          | 430        | 0.0386           | 0.314          | 0.746          |
| 432<br>436 | 0.0391<br>0.0399 | 0.318          | 0.750<br>0.757 | 434<br>438 | 0.0395<br>0.0401 | 0.324<br>0.332 | 0.754<br>0.761 |
| 440        | 0.0403           | 0.332          | 0.762          | 442        | 0.0398           | 0.339          | 0.767          |
| 444        | 0.0390           | 0.348          | 0.774          | 446        | 0.0383           | 0.355          | 0.779          |
| 448        | 0.0375           | 0.360          | 0.783          | 450        | 0.0371           | 0.359          | 0.781          |
| 452        | 0.0365           | 0.362          | 0.783<br>0.789 | 454        | 0.0358           | 0.366          | 0.788          |
| 456<br>460 | 0.0354<br>0.0350 | 0.367<br>0.365 | 0.789          | 458<br>462 | 0.0351<br>0.0347 | 0.368<br>0.366 | 0.791<br>0.791 |
| 464        | 0.0343           | 0.368          | 0.792          | 466        | 0.0339           | 0.369          | 0.793          |
| 468        | 0.0335           | 0.369          | 0.793          | 470        | 0.0332           | 0.368          | 0.792          |
| 472        | 0.0325           | 0.371          | 0.792          | 474        | 0.0318           | 0.375          | 0.793          |
| 476        | 0.0312           | 0.378          | 0.793          | 478        | 0.0306           | 0.379          | 0.793          |
| 480<br>484 | 0.0301<br>0.0290 | 0.377<br>0.376 | 0.791<br>0.788 | 482<br>486 | 0.0296<br>0.0285 | 0.377<br>0.373 | 0.790          |
| 488        | 0.0290           | 0.369          | 0.783          | 480        | 0.0285           | 0.361          | 0.779          |
| 492        | 0.0267           | 0.356          | 0.774          | 494        | 0.0258           | 0.349          | 0.770          |
| 496        | 0.0249           | 0.341          | 0.763          | 498        | 0.0240           | 0.332          | 0.756          |
| 500        | 0.0230           | 0.321          | 0.747          | 502        | 0.0220           | 0.311          | 0.735          |
| 504        | 0.0209           | 0.300          | 0.722          | 506        | 0.0199           | 0.288          | 0.706          |
| 508<br>512 | 0.0189<br>0.0171 | 0.275<br>0.249 | 0.686<br>0.641 | 510<br>514 | 0.0180<br>0.0163 | 0.260<br>0.237 | 0.664<br>0.615 |
| 516        | 0.0156           | 0.224          | 0.578          | 518        | 0.0149           | 0.211          | 0.541          |
| 520        | 0.0143           | 0.196          | 0.498          | 522        | 0.0137           | 0.184          | 0.459          |
| 524        | 0.0131           | 0.173          | 0.417          | 526        | 0.0126           | 0.162          | 0.374          |
| 528        | 0.0121           | 0.151          | 0.332          | 530        | 0.0117           | 0.139          | 0.287          |
| 532        | 0.0113           | 0.129          | 0.248          | 534        | 0.0108           | 0.119          | 0.211          |
| 536<br>540 | 0.0104<br>0.0097 | 0.109<br>0.090 | 0.176<br>0.116 | 538<br>542 | 0.0100<br>0.0093 | 0.100<br>0.081 | 0.147<br>0.092 |
| 544        | 0.0090           | 0.073          | 0.074          | 546        | 0.0086           | 0.066          | 0.052          |
| 548        | 0.0083           | 0.059          | 0.044          | 550        | 0.0080           | 0.052          | 0.033          |
| 552        | 0.0076           | 0.044          | 0.023          | 554        | 0.0072           | 0.036          | 0.014          |
| 556        | 0.0068           | 0.027          | 0.007          | 558        | 0.0065           | 0.016          | 0.002          |
| 560        | 0.0062           | 0.016          | 0.002          | 562        | 0.0059           | 0.013          | 0.001          |
| 564<br>568 | 0.0057<br>0.0054 | 0.010<br>0.007 | 0.001<br>0.000 | 566<br>570 | 0.0055<br>0.0053 | 0.007<br>0.005 | 0.000          |
| 572        | 0.0053           | 0.011          | 0.001          | 574        | 0.0052           | 0.018          | 0.003          |
| 576        | 0.0052           | 0.022          | 0.004          | 578        | 0.0052           | 0.028          | 0.007          |
| 580        | 0.0053           | 0.035          | 0.013          | 582        | 0.0054           | 0.040          | 0.016          |
| 584        | 0.0055           | 0.050          | 0.028          | 586        | 0.0055           | 0.056          | 0.033          |
| 588        | 0.0056           | 0.065          | 0.043          | 590        | 0.0056           | 0.073          | 0.058          |
| 592<br>596 | 0.0057           | 0.081          | 0.072<br>0.097 | 594<br>598 | 0.0056           | 0.088          | 0.084<br>0.098 |
| 600        | 0.0056<br>0.0054 | 0.093<br>0.092 | 0.086          | 602        | 0.0055<br>0.0051 | 0.095<br>0.088 | 0.078          |
| 604        | 0.0055           | 0.086          | 0.083          | 605        | 0.0055           | 0.082          | 0.078          |
| 608        | 0.0056           | 0.076          | 0.067          | 610        | 0.0057           | 0.071          | 0.060          |
| 612        | 0.0059           | 0.069          | 0.063          | 614        | 0.0060           | 0.066          | 0.062          |
| 616        | 0.0062           | 0.063          | 0.056          | 618        | 0.0063           | 0.064          | 0.061          |
| 620<br>624 | 0.0065           | 0.064<br>0.071 | 0.063<br>0.083 | 622<br>626 | 0.0066<br>0.0058 | 0.068          | 0.073          |
| 628        | 0.0069           | 0.076          | 0.099          | 630        | 0.0071           | 0.078          | 0.104          |
| 632        | 0.0073           | 0.080          | 0.109          | 634        | 0.0074           | 0.084          | 0.119          |
| 636        | 0.0075           | 0.088          | 0.128          | 638        | 0.0076           | 0.093          | 0.138          |
| 640        | 0.0077           | 0.098          | 0.149          | 642        | 0.0078           | 0.105          | 0.164          |
| 644        | 0.0079           | 0.113          | 0.177          | 646        | 0.0080           | 0.119          | 0.189          |
| 648        | 0.0081           | 0.123          | 0.195          | 650<br>654 | 0.0083           | 0.124          | 0.197<br>0.203 |
| 652<br>656 | 0.0085           | 0.125<br>0.122 | 0.200<br>0.206 | 658        | 0.0089 0.0104    | 0.124<br>0.120 | 0.203          |
| 660        | 0.0095           | 0.122          | 0.235          | 662        | 0.0129           | 0.120          | 0.218          |
| 664        | 0.0144           | 0.131          | 0.308          | 666        | 0.0161           | 0.137          | 0.345          |
| 668        | 0.0176           | 0.143          | 0.377          | 670        | 0.0189           | 0.149          | 0.404          |
| 672        | 0.0197           | 0.153          | 0.424          | 674        | 0.0201           | 0.157          | 0.439          |
| 675        | 0.0201           | 0.158          | 0.445          | 676        | 0.0200           | 0.159          | 0.445          |
| 678<br>682 | 0.0193<br>0.0166 | 0.158<br>0.148 | 0.444<br>0.406 | 680<br>684 | 0.0182<br>0.0145 | 0.155<br>0.138 | 0.433<br>0.368 |
| 682<br>686 | 0.0166           | 0.148          | 0.315          | 688        | 0.0145           | 0.138          | 0.247          |
| 690        | 0.0083           | 0.086          | 0.164          | 692        | 0.0067           | 0.065          | 0.094          |
| 694        | 0.0054           | 0.042          | 0.036          | 696        | 0.0044           | 0.015          | 0.004          |
| 698        | 0.0036           | -0.016         | 0.003          | 700        | 0.0030           | -0.034         | 0.012          |
|            |                  |                |                |            |                  |                |                |