
Estimating the uncertainties in the products of inversion algorithms 
or, how do we set the error bars for our inversion results? 

Emmanuel Boss, U. of Maine. 



• In science there are no quantities that have no uncertainties associated with 
them.  

• The way we present uncertainties graphically is with error bars. 

• Sometimes error bars are either too small to be noticed or simply neglected.  

• In the least, uncertainties should be reported so significance in reported 
relationship can be evaluated. 



Sources of uncertainties in empirical inversion algorithms: 
 
• Uncertainties in the training set (e.g. biases in the data set).  

• Data inverted not covered by the training set (application of open 
ocean algorithm in coastal environment). 

• Uncertainties in the inverted data (e.g. uncertainties in value of 
reflectance). 

Sources of uncertainties in semi-analytical algorithms: 
 
• Uncertainties in the relationship between Rrs and IOPs (e.g. 
BRDF, non-elastic scattering).  

• Uncertainties in assumed shapes of IOPs (e.g. phytoplankton 
absorption). 

• Uncertainties in the inverted data (e.g. uncertainties in the value 
of Rrs(λ)).  



Quantifying uncertainties in empirical inversion algorithms: 
 
• Use a testing data set collected in the environment of interest to 
evaluate the likely uncertainties of the inversion algorithm (e.g. 
how well can we obtain [chl] for the Gulf of Maine in January from 
SeaWIFS?). 

• Quantify the statistics*of the difference between inverted value 
and measured value to obtain: 

• Bias- how accurate are the inverted values on average? – if a 
bias exist, re-evaluate the inversion parameters.  

• Precision- what is the absolute (or relative) difference 
between predicted values and inverted values? – use this as 
your estimate for error bars. 

* If the underlying statistics are not known nonparametric 
statistics are safest. 

What do you do if you don’t have a testing set? 



Quantifying uncertainties in semi-analytical algorithms: 
 
Part I: Uncertainties in the relationship between Rrs and IOPs. 
 
 Use a testing set (IOP and Rrs measured closed by) to validate 

the inversion where Cloud cover/sun angle/surface conditions 
varied in an area with relatively constant IOP. 

 
Evaluate the contribution of inelastic scattering by incorporating 

the following iteration (inspired by Pozdnyakov and Grassl, 
2003): 

 
1.  Once you obtained aCDOMand aphyto, recalculate their likely 

fluorescence (as well as the contribution of Raman scattering), 
by e.g., inputing the IOP retrieved into Hydrolight. Note: one 
needs to choose the fluorescence quantum yields for CDOM and 
CHL. Residuals will help with estimating Φchl. 

2.  Rrs_new=Rrs_inverted-(Rrs_Hydrolight-Rrs_inverted). Invert 
again, until a convergence criteria is reached (e.g. values change 
by less than x% between iterations).  



Raman effect on semi-empirical inversions 

Westberry et al., in press 



Raman effect on semi-empirical inversions 

Westberry et al., in press 

Raman scattering coefficient: 

Raman ‘absorption’ coefficient: 
Bartlett et al., 1998 

IOPs from first iteration w/o Raman 

µu=0.5 µd=cos(θs,w) 



Raman effect on semi-empirical inversions 

Westberry et al., in press 
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Raman effect on semi-empirical inversions 

Westberry et al., in press 



Quantifying uncertainties in semi-analytical algorithms: 
 
Part II: Uncertainties in assumed shapes of IOPs (e.g. 

phytoplankton absorption, spectral slopes of backscattering and 
aCDM). 

 
 A sensitivity analysis is performed looking at how the output 

varies with shapes of IOPs (e.g. Roesler and Perry, 1995, Lee et 
al., 1996, Hoge and Lyons, 1996, Garver and Siegel, 1997). 

 
 
 
Roesler iterative method for optimizing aφ(λ): look at the residuals 

(Rrs_measured-Rrs_modeled). If they look like pigments peaks, 
modify aφ to include pigment in those wavelengths (e.g. from a 
library of spectra one has established ahead of time).  



Quantifying uncertainties in semi-analytical algorithms: 
 
Part III: Uncertainties in the inverted data (e.g. uncertainties in 

the value of Rrs(λ)).  
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Note:  
For Rrs obtained from a satellite, the uncertainties are very likely to 
vary spectrally (e.g. due to atmospheric correction). 



Quantifying uncertainties in semi-analytical algorithms: 
 
The Wang/Boss/Roesler approach: 

  
Inversion Scheme 

Output: 
Inverted IOPs (apg(λ), bbp(λ), aph(λ), adg(λ)) & 
Uncertainties in inverted IOPs 

Estimate Uncertainty of 
criterion of Inversion 

Uncertainties in 
Shapes of IOPs 

Uncertainties in IOP- rrs(λ) 
Relationship 

Input rrs(λ) Uncertainties in rrs(λ) 
Measurement (nonexistence 

in simulated dataset) 



Quantifying uncertainties in semi-analytical algorithms: 
 
The Wang/Boss/Roesler approach: 
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Shape of component IOPs: 

Phytoplankton: Ciotti et al., 2002. 
acm with exponential slope varying from 0.01 to 0.02 
bbp with spectral slope varying from 0 to 2. 

Choose one combination of shapes and invert linearly (total of 113=1331 
combinations). Solve for 3 amplitudes (bbp, acm, aφ), for each choice of 3 shape 
parameters. 



Quantifying uncertainties in semi-analytical algorithms: 
 
The Wang/Boss/Roesler approach: 
Evaluating uncertainties 
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1. Uncertainties in shapes of IOPs (ZP Lee dataset) 
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2. Uncertainties in relation of 
IOPs and rrs. 

3. Stability of radiometers<2% 

à Any solution within 10% rrs at all λ is kept. 
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Quantifying uncertainties in semi-analytical algorithms: 
 
The Wang/Boss/Roesler approach, example: 
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Quantifying uncertainties in semi-analytical algorithms: 
 
The Wang/Boss/Roesler approach: Results for 31 field matchups 
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Note the error bars!!! 



Quantifying uncertainties in semi-analytical algorithms: 
 
The Wang/Boss/Roesler approach: Results for 31 field matchups 
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Roesler and Boss, 2008 

Other possible eigenfunctions: 



Quantifying uncertainties, summary: 
 
•  It is possible to put error bars on inversion products, so lets do it 

(and on global scales provide maps of uncertainties). 

•  Error bars will get smaller the more we know about the environment 
(e.g. limit the shape of the component IOP). 

•  The magnitude of the uncertainty may make the data useless for 
some application while still very useful for other. 

•  Another approach is to use the difference between observed rrs and 
that from the inverted parameters to derive the uncertainties. This 
approach fails to take into account the inherent uncertainties in the: 
1. measured rrs, 2. IOP-rrs relationships and 3. assumed shapes for 
IOPs. 

•  A fundamental difference between the empirical and semi-analytical 
approaches is that one is a statistical interpolation scheme, while the 
other is based on the fundamental physics of remote sensing 
supplemented by empirical knowledge of component IOP shape. 



Some useful Links and references: 
 
Press W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 1988. Numerical 
Recipes, Cambridge University Press. 
 
Taylor, J., 1996. An Introduction to Error Analysis: The Study of Uncertainties in 
Physical Measurements. University Science Books.  
 
http://en.wikipedia.org/wiki/Propagation_of_uncertainty 
 
http://badger.physics.wisc.edu/lab/manual/node4.html 
 
 


