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Derivation of the RTE

To derive the time-independent RTE for horizontally homogeneous
water, we consider the radiance at a given depth z, traveling in a
given direction (8, ¢), at a given wavelength . We then add up the
various ways the radiance L(z,6,¢,A) can be created or lost in a
distance Ar along direction (8, ¢), going from depth z to z+Az
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Losses of Radiance

The loss due to absorption is dL(z 2\
proportional to how much ((j D.0.0) _ a(z,A) L(z,0,0,1)
radiance there is: !

Likewise for loss of radiance due  dL(z,0.0.\) _
to scattering out of the beam: dr ' =-b(z,1) L(z,0,¢,2)
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Sources of Radiance

Scattering into the beam from all other directions increases the radiance:

dL(z.0.0.A) _ [
dr

See www.oceanopticsbook.info/view/radiative _transfer_theory/
deriving_the_radiative _transfer_equation for more detail
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Add up the Losses and Sources

dLézr,G,(I),M = - a(z)) L(z,6.0.0)

- b(z,A) L(z,0,0,7)
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Finally, note that a + b = ¢ and that dz = dr cosB to get

dz




The 1D RTE, Geometric-depth Form
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This is the RTE that HydroLight solves.

The VSF B(z; 0',6'—06,; 1) is usually written as B(z, g, A) in terms
of the scattering angle g, where

cosy = cosB’ cosB + sinB’ sinb cos(¢'-¢)



The 1D RTE, Optical-depth Form

Define the increment of dimensionless optical depth ¢ as dC = c dz
and write the VSF as b times the phase function, 3,
and recall that o, = b/c to get

cosB dL((f;e’d’*M = - L(£0.0.0)
+ @ |, L(0',0",0) BC; 07,0'—0,d; A) dQY

+ 5(£,9,0,A)/c(C,\)

Can specify the IOPs by ¢ and the VSF B, or by w, and the phase
function 3 (and also c, if there are internal sources)

Note that a given geometric depth z corresponds to a different
optical depth ¢(\) = J,2¢c(z’,A) dz’ at each wavelength



The 1D RTE, Geometric-depth Form
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NOTE: The RTE has the TOTAL c and TOTAL VSF. Only
oceanographers (not light) care how much of the total absorption
and scattering are due to water, phytoplankton, CDOM, minerals,

etc.

The RTE is a linear (in the unknown radiance), first-order (only a
first derivitive) integro-differential equation. Given the green
(plus boundary conditions), solve for the red. This is a two-point
(surface and bottom) boundary value problem.



Solving the RTE

A unique solution of the RTE requires:

Radiance incident onto sea
surface is known

Region of 7]\ 71\ 71\
Interest:
|OPs are :>

known Stretch out the IOPs are known as a

CI[OQROENELER function of depth
a horizontally
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A 3-D problem A 1-D problem

Given the IOPs within the region and the incident radiances, we can
solve for the radiance within and leaving the region



A trivial solution:

 Homogeneous water (IOPs do not depend on z)

* No path radiance : Either no scattering (VSF3=0,soc=a+b=a),
or no light other than the initial collimated beam.

* No internal sources (S = 0)

* Infinitely deep water (no radiance coming from the bottom boundary,
soL—>0asz—> «)

* Incident radiance L(z=0) is known just below the sea surface
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Note that this L satisfies the RTE, the surface boundary condition, and
the bottom boundary condition L(z=<) = 0.



Start with the 1D, source-free, RTE.
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The —cL term becomes
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Collecting terms,

Gershun’s law can be used to retrieve the absorption coefficient from
measured in-water irradiances (at wavelengths where inelastic
scattering effects are negligible).

Gershun’s law is a nontrivial “solution of the RTE,” but in terms of
irradiances. We haven't solved for the radiance L(z,0,$,A), which is
what we really want.



The rate of heating of water depends on how much irradiance there is
and on how much is absorbed:
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where T = / r(A)d

0

c, = 3900 J (kg deg C)! is the specific heat of sea water
o = 1025 kg m3 is the water density



Solving the RTE

Exact analytical (i.e., pencil and paper) solutions of the RTE can be
obtained only for very simple situations, such as no scattering.
There Is no function (that anyone has ever found) that gives

L(z,0,9,A) = f(a, VSF, sun angle, bottom reflectance, etc.)

even for very simple situations such as homogenous water with
Isotropic scattering. Even the extremely simple geometry of an
Isotropic point light source in an infinite homogeneous ocean is
unsolved (a very complicated solution for E (r) around a point
source with isotropic scattering does exist). This is because of the
complications of scattering (which don’t exist for problems like the
gravitational field around a point mass).



Solving the RTE

Approximate analytical solutions can be obtained for idealized
situations such as single scattering in a homogeneous ocean.
(This is where R, = b, /(a + b,) comes from.)

See

www.oceanopticsbook.info/view/radiative transfer theory/level 2/
the_singlescattering_approximation for a discussion of the single-
scattering approximation (SSA), and see
www.oceanopticsbook.info/view/radiative transfer theory/level 2/
the guasisinglescattering_approximation

for the related quasi-single scattering approximation.

We don’t have time to discuss these approximate solutions, and
they are not very useful anyway.


http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_singlescattering_approximation
http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_singlescattering_approximation
http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_quasisinglescattering_approximation
http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_quasisinglescattering_approximation

Solving the RTE

The solution of the RTE for any realistic conditions of scattering or
geometry must be done numerically. Three widely used exact
numerical methods are seen in the literature (in RT theory, “exact”
means that we don’t make approximations such as single scattering.
Given accurate inputs and enough computer time, you can get the
correct answer as closely as you wish.)

* Discrete ordinates: often used in atmospheric optics
* highly mathematical
« difficult to program
« doesn’t handle highly peaked phase functions well
» most codes need a level sea surface
* models the medium as homogeneous layers
« fast for irradiances and homogeneous systems
* slow for radiances and inhomogeneous systems
* therefore, not much used in oceanography



Solving the RTE

* Invariant Imbedding: what Hydrolight uses
* highly mathematical (see Light and Water, Chaps 7 and 8;
causes cosmic dissolution of brain cells for polarization)
» difficult to program
1D (depth dependence) problems only
* run time increases linearly with optical depth
« computes radiances accurately (no statistical noise)
 extremely fast and accurate even for radiances and large depths

 Monte Carlo: widely used
 simple math, easy to program
« can solve 3D problems; polarization relatively easy
* run time increases exponentially with optical depth
* have to trace many photons to get accurate radiance estimates
(solutions have statistical noise)
* very long run times for radiances and/or great depths
» more useful for irradiance computations and/or shallow depths



Sea Kayaking in SE Greenland, 2005 & 2009
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