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The Radiative Transfer 

Equation (RTE) 

 
• expresses conservation of 

energy in terms of the 

radiance 

 

• connects the IOPs, 

boundary conditions, and 

light sources to the radiance 

 

All other radiometric 

variables (irradiances) and 

AOPs can be derived from 

the radiance. 

 

If you know the radiance, you 

know everything there is to 

know about the light field 



Derivation of the RTE 

To derive the time-independent RTE for horizontally homogeneous 

water, we consider the radiance at a given depth z, traveling in a 

given direction (, ), at a given wavelength .  We then add up the 

various ways the radiance L(z,,,) can be created or lost in a 

distance Δr along direction (, ), going from depth z to z+Δz 



Losses of Radiance 

The loss due to absorption is 

proportional to how much 

radiance there is: 

dL(z,q,f,) 

    dr 
= - a(z,) L(z,q,f,) 

Likewise for loss of radiance due 

to scattering out of the beam: 
dL(z,q,f,) 

    dr 
= - b(z,) L(z,q,f,) 



Scattering into the beam from all other directions increases the radiance: 

dL(z,q,f,) 

    dr 
= 4p L(z,q,f,) b(z; q,fq,f ;) dW 

Sources of Radiance 

There can be internal 

sources of radiance 

S(z,q,f,), such as 

bioluminescence  

dL(z,q,f,) 

    dr 
= S(z,q,f,) 

See www.oceanopticsbook.info/view/radiative_transfer_theory/ 

deriving_the_radiative_transfer_equation for more detail 



+ 4p L(z,q,f,) b(z; q,fq,f; ) dW 

Add up the Losses and Sources 

+ S(z,q,f,) 

dL(z,q,f,) 

    dr 
= - a(z,) L(z,q,f,) 

   - b(z,) L(z,q,f,) 

Finally, note that a + b = c and that dz = dr cos to get 

 
dz 

dr 



The 1D RTE, Geometric-depth Form 

This is the RTE that HydroLight solves.   

+ 4p L(z,q,f,) b(z; q,fq,f; ) dW 

+ S(z,q,f,) 

dL(z,q,f,) 

    dz 
= - c(z,) L(z,q,f,) cos 

The VSF b(z; q,fq,f; ) is usually written as b(z, ψ, ) in terms 

of the scattering angle ψ, where 

 

cosψ = cos cos + sin sin cos(f-f) 



The 1D RTE, Optical-depth Form 

Note that a given geometric depth z corresponds to a different 

optical depth z(λ) = 0
z
 c(z,) dz at each wavelength 

Define the increment of dimensionless optical depth z as dz = c dz  

and write the VSF as b times the phase function,   , 

and recall that o = b/c to get 

b 
~ 

Can specify the IOPs by c and the VSF b, or by ωo and the phase 

function     (and also c, if there are internal sources) b 
~ 

+ o 4p L(z,q,f,)   (z; q,fq,f; ) dW 

+ S(z,q,f,)/c(z,) 

dL(z,q,f,) 

    dz 
= - L(z,q,f,) cos 

b 
~ 



+ 4p L(z,q,f,) b(z; q,fq,f; ) dW 

+ S(z,q,f,) 

dL(z,q,f,) 

    dz 
= - c(z,) L(z,q,f,) cos 

NOTE:  The RTE has the TOTAL c and  TOTAL VSF.  Only 

oceanographers (not light) care how much of the total absorption 

and scattering are due to water, phytoplankton, CDOM, minerals, 

etc. 

The 1D RTE, Geometric-depth Form 

The RTE is a linear (in the unknown radiance), first-order (only a 

first derivitive) integro-differential equation.  Given the green 

(plus boundary conditions), solve for the red.  This is a two-point 

(surface and bottom) boundary value problem. 



A unique solution of the RTE requires: 

Region of 
interest: 
IOPs are 
known 

Radiance incident onto all 
boundaries from outside  
the region is known 

A 3-D problem 

IOPs are known as a  
function of depth 

Bottom (can be at ) 

Radiance incident onto sea  
surface is known 

A 1-D problem 

Stretch out the 
region to make 
a horizontally 
homogeneous 
ocean 

Solving the RTE 

Given the IOPs within the region and the incident radiances, we can 

solve for the radiance within and leaving the region 



Solving the RTE:  The Lambert-Beer Law 

A trivial solution:   

• Homogeneous water (IOPs do not depend on z) 

• No path radiance :  Either no scattering (VSF β = 0, so c = a + b = a), 

or no light other than the initial collimated beam. 

• No internal sources (S = 0) 
• Infinitely deep water (no radiance coming from the bottom boundary, 

 so L  0 as z  ∞) 

• Incident radiance L(z=0) is known just below the sea surface 

Note that this L satisfies the RTE, the surface boundary condition, and 

the bottom boundary condition L(z=∞) = 0. 



Solving the RTE:  Gershun’s Law 

Start with the 1D, source-free, RTE. 

Integrate over all directions.  The left-hand-side becomes 



Solving the RTE:  Gershun’s Law 

The – cL term becomes 

The elastic-scatter path function becomes 



Solving the RTE:  Gershun’s Law 

Collecting terms, 

or 

Gershun’s law can be used to retrieve the absorption coefficient from 

measured in-water irradiances (at wavelengths where inelastic 

scattering effects are negligible). 

 

This is an example of an explicit inverse model that recovers an IOP 

from measured light variables. 

 

Gershun’s law is a nontrivial “solution of the RTE,” but in terms of 

irradiances.  We haven’t solved for the radiance L(z,q,f,), which is 

what we really want. 



Water Heating and Gershun’s Law 

The rate of heating of water depends on how much irradiance there is 

and on how much is absorbed: 

cv = 3900 J (kg deg C)-1 is the specific heat of sea water   

ρ = 1025 kg m-3 is the water density  

This is how irradiance is used in coupled physical-biological-optical 

ecosystem models to couple the biological variables (which, with 

water, determine the absorption coefficient and the irradiance) to the 

hydrodynamics (heating of the upper ocean water) 



Solving the RTE 

Exact analytical (i.e., pencil and paper) solutions of the RTE can be 

obtained only for very simple situations, such as no scattering.  

There is no function (that anyone has ever found) that gives 

 

L(z,q,f,) = f(a, VSF, sun angle, bottom reflectance, etc.) 

 

even for very simple situations such as homogenous water with 

isotropic scattering.  Even the extremely simple geometry of an 

isotropic point light source in an infinite homogeneous ocean is 

unsolved (a very complicated solution for Eo(r) around a point 

source with isotropic scattering does exist).  This is because of the 

complications of scattering (which don’t exist for problems like the 

gravitational field around a point mass). 



Solving the RTE 

Approximate analytical solutions can be obtained for idealized 

situations such as single scattering in a homogeneous ocean. 

(This is where Rrs = bb/(a + bb) comes from.) 

 

See 

www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/

the_singlescattering_approximation for a discussion of the single-

scattering approximation (SSA), and see 

www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/

the_quasisinglescattering_approximation 

for the related quasi-single scattering approximation. 

 

We don’t have time to discuss these approximate solutions, and 

they are not very useful anyway. 

http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_singlescattering_approximation
http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_singlescattering_approximation
http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_quasisinglescattering_approximation
http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_quasisinglescattering_approximation


Solving the RTE 

The solution of the RTE for any realistic conditions of scattering or 

geometry must be done numerically.  Three widely used exact 

numerical methods are seen in the literature (in RT theory, “exact” 

means that we don’t make approximations such as single scattering.  

Given accurate inputs and enough computer time, you can get the 

correct answer as closely as you wish.) 

 

• Discrete ordinates:  often used in atmospheric optics 

• highly mathematical 

• difficult to program 

• doesn’t handle highly peaked phase functions well 

• most codes need a level sea surface 

• models the medium as homogeneous layers 

• fast for irradiances and homogeneous systems 

• slow for radiances and inhomogeneous systems 

• therefore, not much used in oceanography 

 



Solving the RTE 

• Invariant Imbedding:  what Hydrolight uses 

• highly mathematical (see Light and Water, Chaps 7 and 8;  

       causes cosmic dissolution of brain cells for polarization) 

• difficult to program 

• 1D (depth dependence) problems only 

• run time increases linearly with optical depth 

• computes radiances accurately (no statistical noise) 

• extremely fast and accurate even for radiances and large depths 

 

• Monte Carlo:  widely used 

• simple math, easy to program 

• can solve 3D problems; polarization relatively easy 

• run time increases exponentially with optical depth 

• have to trace many photons to get accurate radiance estimates 

   (solutions have statistical noise) 

• very long run times for radiances and/or great depths 

• more useful for irradiance computations and/or shallow depths 

 



Sea Kayaking in SE Greenland, 2005 & 2009 

photo by Curtis Mobley 


