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The Radiative Transfer 

Equation (RTE) 

 
• expresses conservation of 

energy in terms of the 

radiance 

 

• connects the IOPs, 

boundary conditions, and 

light sources to the radiance 

 

All other radiometric 

variables (irradiances) and 

AOPs can be derived from 

the radiance. 

 

If you know the radiance, you 

know everything there is to 

know about the light field 



Derivation of the RTE 

To derive the time-independent RTE for horizontally homogeneous 

water, we consider the radiance at a given depth z, traveling in a 

given direction (, ), at a given wavelength .  We then add up the 

various ways the radiance L(z,,,) can be created or lost in a 

distance Δr along direction (, ), going from depth z to z+Δz 



Losses of Radiance 

The loss due to absorption is 

proportional to how much 

radiance there is: 

dL(z,q,f,) 

    dr 
= - a(z,) L(z,q,f,) 

Likewise for loss of radiance due 

to scattering out of the beam: 
dL(z,q,f,) 

    dr 
= - b(z,) L(z,q,f,) 



Scattering into the beam from all other directions increases the radiance: 

dL(z,q,f,) 

    dr 
= 4p L(z,q,f,) b(z; q,fq,f ;) dW 

Sources of Radiance 

There can be internal 

sources of radiance 

S(z,q,f,), such as 

bioluminescence  

dL(z,q,f,) 

    dr 
= S(z,q,f,) 

See www.oceanopticsbook.info/view/radiative_transfer_theory/ 

deriving_the_radiative_transfer_equation for more detail 



+ 4p L(z,q,f,) b(z; q,fq,f; ) dW 

Add up the Losses and Sources 

+ S(z,q,f,) 

dL(z,q,f,) 

    dr 
= - a(z,) L(z,q,f,) 

   - b(z,) L(z,q,f,) 

Finally, note that a + b = c and that dz = dr cos to get 



The 1D RTE, Geometric-depth Form 

This is the RTE that HydroLight solves.   

+ 4p L(z,q,f,) b(z; q,fq,f; ) dW 

+ S(z,q,f,) 

dL(z,q,f,) 

    dz 
= - c(z,) L(z,q,f,) cos 

The VSF b(z; q,fq,f; ) is usually written as b(z, ψ, ) in terms 

of the scattering angle ψ, where 

 

cosψ = cos cos + sin sin cos(f-f) 



The 1D RTE, Optical-depth Form 

Note that a given geometric depth z corresponds to a different 

optical depth z(λ) = 0
z
 c(z,) dz at each wavelength 

Define the increment of dimensionless optical depth z as dz = c dz  

and write the VSF as b times the phase function,   , 

and recall that o = b/c to get 

b 
~ 

Can specify the IOPs by c and the VSF b, or by ωo and the phase 

function     (and also c, if there are internal sources) b 
~ 

+ o 4p L(z,q,f,)   (z; q,fq,f; ) dW 

+ S(z,q,f,)/c(z,) 

dL(z,q,f,) 

    dz 
= - L(z,q,f,) cos 

b 
~ 



+ 4p L(z,q,f,) b(z; q,fq,f; ) dW 

+ S(z,q,f,) 

dL(z,q,f,) 

    dz 
= - c(z,) L(z,q,f,) cos 

NOTE:  The RTE has the TOTAL c and  TOTAL VSF.  Only 

oceanographers (not light) care how much of the total absorption 

and scattering are due to water, phytoplankton, CDOM, minerals, 

etc. 

The 1D RTE, Geometric-depth Form 

The RTE is a linear (in the unknown radiance), first-order (only a 

first derivitive) integro-differential equation.  Given the green 

(plus boundary conditions), solve for the red.  This is a two-point 

(surface and bottom) boundary value problem. 



A unique solution of the RTE requires: 

Region of 
interest: 
IOPs are 
known 

Radiance incident onto all 
boundaries from outside  
the region is known 

A 3-D problem 

IOPs are known as a  
function of depth 

Bottom (can be at ) 

Radiance incident onto sea  
surface is known 

A 1-D problem 

Stretch out the 
region to make 
a horizontally 
homogeneous 
ocean 

Solving the RTE 

Given the IOPs within the region and the incident radiances, we can 

solve for the radiance within and leaving the region 



Solving the RTE:  The Lambert-Beer Law 

A trivial solution:   

• Homogeneous water (IOPs do not depend on z) 

• No path radiance :  Either no scattering (VSF β = 0, so c = a + b = a), 

or no light other than the initial beam. 

• No internal sources (S = 0) 
• Infinitely deep water (no radiance coming from the bottom boundary, 

 so L  0 as z  ∞) 

• Incident radiance L(z=0) is known just below the sea surface 

Note that this L satisfies the RTE, the surface boundary condition, and 

the bottom boundary condition L(z=∞) = 0. 



Solving the RTE:  Gershun’s Law 

Start with the 1D, source-free, RTE. 

Integrate over all directions.  The left-hand-side becomes 



Solving the RTE:  Gershun’s Law 

The – cL term becomes 

The elastic-scatter path function becomes 



Solving the RTE:  Gershun’s Law 

Collecting terms, 

or 

Gershun’s law can be used to retrieve the absorption coefficient from 

measured in-water irradiances (at wavelengths where inelastic 

scattering effects are negligible). 

 

This is an example of an explicit inverse model that recovers an IOP 

from measured light variables. 

 

Gershun’s law is a “solution of the RTE,” but in terms of irradiances.  

We haven’t solved for the radiance L(z,q,f,), which is what we really 

want. 



Water Heating and Gershun’s Law 

The rate of heating of water depends on how much irradiance there is 

and on how much is absorbed: 

cv = 3900 J (kg deg C)-1 is the specific heat of sea water   

ρ = 1025 kg m-3 is the water density  

This is how irradiance is used in coupled physical-biological-optical 

ecosystem models to couple the biological variables (which, with 

water, determine the absorption coefficient and the irradiance) to the 

hydrodynamics (heating of the upper ocean water) 



Solving the RTE 

Exact analytical (i.e., pencil and paper) solutions of the RTE can be 

obtained only for very simple situations, such as no scattering.  

There is no function (that anyone has ever found) that gives 

 

L(z,q,f,) = f(a, VSF, sun angle, bottom reflectance, etc.) 

 

even for very simple situations such as homogenous water with 

isotropic scattering.  Even the extremely simple geometry of an 

isotropic point light source in an infinite homogeneous ocean is 

unsolved (a very complicated solution for Eo(r) around a point 

source with isotropic scattering does exist).  This is because of the 

complications of scattering (which don’t exist for problems like the 

gravitational field around a point mass). 



Solving the RTE 

Approximate analytical solutions can be obtained for idealized 

situations such as single scattering in a homogeneous ocean. 

(This is where Rrs = bb/(a + bb) comes from.) 

 

See 

www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/

the_singlescattering_approximation for a discussion of the single-

scattering approximation (SSA), and see 

www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/

the_quasisinglescattering_approximation 

for the related quasi-single scattering approximation. 

 

We don’t have time to discuss these approximate solutions, and 

they are not very useful anyway. 

http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_singlescattering_approximation
http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_singlescattering_approximation
http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_quasisinglescattering_approximation
http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_quasisinglescattering_approximation


Solving the RTE 

The solution of the RTE for any realistic conditions of scattering or 

geometry must be done numerically.  Three widely used exact 

numerical methods are seen in the literature (in RT theory, “exact” 

means that we don’t make approximations such as single scattering.  

Given accurate inputs and enough computer time, you can get the 

correct answer as closely as you wish.) 

 

• Discrete ordinates:  often used in atmospheric optics 

• highly mathematical 

• difficult to program 

• doesn’t handle highly peaked phase functions well 

• most codes need a level sea surface 

• models the medium as homogeneous layers 

• fast for irradiances and homogeneous systems 

• slow for radiances and inhomogeneous systems 

• therefore, not much used in oceanography 

 



Solving the RTE 

• Invariant Imbedding:  what Hydrolight uses 

• highly mathematical (see Light and Water, Chaps 7 and 8;  

       causes cosmic dissolution of brain cells for polarization) 

• difficult to program 

• 1D (depth dependence) problems only 

• run time increases linearly with optical depth 

• computes radiances accurately (no statistical noise) 

• extremely fast and accurate even for radiances and large depths 

 

• Monte Carlo:  widely used 

• simple math, easy to program 

• can solve 3D problems; polarization relatively easy 

• run time increases exponentially with optical depth 

• have to trace many photons to get accurate radiance estimates 

   (solutions have statistical noise) 

• very long run times for radiances and/or great depths 

• more useful for irradiance computations and/or shallow depths 

 



Hey Curt,  

wanna go to 

my place and,  

uh, talk about  

radiative  

transfer theory? 
Not tonight. 

I’m still 

debugging 

my new  

Monte Carlo 

code 



Monte Carlo Techniques for Solving the RTE 

•  The basic idea is to mimic nature in the generation and tracing of photons 

 

•  Build up a solution to the RTE one photon at a time 

 

• The tools for doing this are basic probability theory and a random number 

generator 

Points to be covered: 

• PDFs and CDFs 

 

• Random number generators 

 

• Using CDFs to randomly select distances, angles, etc. 

 

• Monte Carlo noise 

 

There are web book pages on Monte Carlo techniques starting at 

http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/ 

monte_carlo_techniques_introduction 

http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/monte_carlo_techniques_introduction
http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/monte_carlo_techniques_introduction
http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/monte_carlo_techniques_introduction
http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/monte_carlo_techniques_introduction


Probability Density Functions 

A probability density function (PDF) is a non-negative function p(x) such that 

the probability that its variable x is between x and x+dx is p(x)dx. 

 

Example: x = height of humans 

0 1 2 3 
x [m] 

p
(x

) 
[1

/m
] 

Prob that a person selected at 

random from all humans is between 

1.0 and 1.3 m tall is 

 

 𝑝 𝑥 𝑑𝑥
1.3

1.0

 

Normalization:   𝑝 𝑥 𝑑𝑥 = 1
∞

0
     That is, the prob is one that a 

person will have some height between 0 and ∞ 

 

Units of p(x) are always 1/[x] 



Cumulative Distribution Functions 

A cumulative distribution function (CDF) is a non-negative function CDF(x) 

such that the probability that its variable has a value <= x is CDF(x).  For the 

human height example, 

  

CDF(x) =  𝑝 𝑥′ 𝑑𝑥′
𝑥

0
 

 

Prob that a person selected at 

random from all humans is between 

1.0 and 1.3 m tall is 

 

CDF(1.3) – CDF(1.0) 

Note that CDF(∞) = 1.     That is, the prob is one that a person will have 

some height less than ∞ 

 

0 

1 

2 3 
x [m] 

C
D

F
(x

) 
 

0 

1 



U(0,1) Random Number Generators 

A Uniform 0-1 random number 

generator is anything (usually a 

computer program) that when called 

returns a number  between 0 and 

1 with equal probability of returning 

any value 0 <  < 1.  ~ U(0,1)  

0 1  

p
(

) 
 

1 

0 

0.6314325330 

0.2641695440 

0.7653187510 

0.3009850980 

0.9278188350 

0.0138932914 

0.3010187450 

0.1198131440 

0.3243462440 

0.3493790630 

0.1154079510 

0.1382016390 

0.1065650730 



Random Determination of Photon Path Lengths 

Recall Beer’s law (collimated beam in a dark ocean): 

 

L(r) = L(0) exp (-cr) = L(0) exp(-) 

 

The exponential decay of radiance can be explained if the individual photons 

have a probability of being absorbed or scattered out of the beam between  

and +d that is 

 

p()d = exp(-) d  p() = exp(-)  

 

We want to use our U(0,1) random number generator to randomly determine 

photon path lengths  that obey the pdf p() = exp(-).  Going from  to  is a 

change of variables: 
p()d = p()d 

 

 p(′)d′


0

=  p(′)d′


0

 

 

 = CDF() = 1 – exp(-) 

 

 

 



Random Determination of Photon Path Lengths 

Solving 

  

= 1 – exp(-) for   

 

gives 

  

 = - ln(1- ) = -ln  

 

Draw a U(0,1) random number , and then the 

corresponding photon path is 

 

 = -ln  

or  

r = -(1/c) ln  for distances r in meters. 



Fundamental Principle of MC Simulation 

The equation  = CDF(x) 

uniquely determines x 

such that x obeys the 

corresponding pdf p(x)  

1 

x 

C
D

F
(x

) 
 

0 

 

x 

General procedure: 
 

1. Figure out the pdf p(x) that governs the variable of interest, x 

2. Compute the corresponding CDF(x) 

3. Draw a U(0,1) random number  

4. Solve  = CDF(x) for x 

5. Repeat steps 3 and 4 many, many, many times to generate a 

sample of x values that reproduces the behavior of x in nature 



Photon Mean Free Path 

The pdf for the distance a photon travels is p() = exp(-).   

What is the average distance  that a photon travels?   

Called the mean free path. 

𝜏 ≡  𝜏 𝑝 𝜏 𝑑𝜏 =   𝜏 𝑒−𝜏 𝑑𝜏
∞

0

∞

0
 = 1 

or, since  = cr,  

 

𝒓 = 1/c (meters) 

 

What is the variance about the mean distance traveled? 
 

 𝜎2(𝜏) ≡  [𝜏 − 𝜏]2𝑒−𝜏𝑑𝜏 = 
∞

0
 1 

so the standard deviation is also 1/c (meters) 



Random Determination of Scattering Angles 

Scattering is inherently 3D: 

 

ψ is polar scattering angle 

 

χ is azimuthal scattering angle 

phase functions can be 

interpreted as pdfs for 

scattering from (ψ, χ) 

to (ψ, χ) 



Random Determination of Scattering Angles 

For isotropic media and unpolarzed light, ψ and χ are independent, 

so the bivariate pdf is the product of 2 pdfs:  

Any azimuthal angle 0  χ < 2 is equally likely: 

√ 

solve for ψ 

(usually must solve 

numerically)  



Isotropic Scattering 

For isotropic scattering,  

which gives 

Isotropic means equally likely to scatter into any element of solid angle, not 

equally likely to scatter through any polar scattering angle ψ  



Tracing Photon Packets 

The albedo of single scattering, ωo = b/c, is the probability that a photon 

will be scattered, rather than absorbed in any interaction 

 

What nature does: 

• draws a random number and gets the distance 

• draws another random number and compares with ωo :  

 if  > ωo the photon is absorbed; start another one 

 if   ωo the photon is scattered; compute the scattering angles   

Any photon that is absorbed never contributes to the answer and is 

wasted computation.  Nature can afford to waste photons; scientists 

can’t. 



Tracing Photon Packets 

Rather that lose some photons to absorption, consided each “photon” 

to be a packet of many photons starting with power w = 1 W.  At each 

interaction, multiply the current packet weight w by ωo to account for 

loss of  some of the original power to absorption.  This increases the 

number of photon packets that contribute to the answer (although 

some may still miss the target). 

Usually kill the photon packet when w < 10-8, for example, if it hasn’t 

hit the target. 



Visualizing Photon Paths 



Visualizing Photon Paths 

Monte Carlo simulation gives 

understanding at the photon 

level, which can’t be obtained 

from radiance (e.g., from 

HydroLight) 



Statistical Noise 

The answer you get depends on random numbers and on the number 

of photons collected, so has statistical noise, aka Monte Carlo noise. 

Repeated runs 

(different sequences 

of random numbers) 

with the same 

number of photons 

per run. 

 

Note that as more 

runs are done, the 

distribution of 

computed values 

approaches a 

Gaussian:  

 

The Central Limit 

Theorem in action 



Statistical Noise 

Standard error of the mean too large?  Trace more photons... 

The same numbers 

of runs , but with 

more photons per 

run. 

 

The variance in the 

computed values is  

1/N, N = number 

of photons detected 

 

std dev 1/sqrt(N) 

 

To reduce the std 

dev of the estimate 

by a factor of 10, 

must detect 100 

times more photons 



Variance Reduction 

We now know enough to do the Monte Carlo lab. 

 

However, before writing a MC code to do extensive simulations, read 

about other ways to get more photons onto the target without more 

computer time.  These are generally called “variance reduction” 

techniques, and there are many (“Importance sampling,” “Backward 

ray tracing”, “forced collisions”,...) 

 

In general: 

 

• First, figure out how to simulate what nature does 

 

• Then figure out how to redo the calculations to maximize the 

number of photons detected (i.e., solve a different problem that has 

the same answer as the original problem—variance reduction) 

 

• The goal (seldom attained) is to Never Waste a Photon 



Sea Kayaking in SE Greenland, 2005 

photo by Curtis Mobley 


