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Data Resolution

The quality of remote sensing data is determined by the spatial, spectral,
radiometric and temporal resolutions.

 Spatial resolution: The “ground” size of a pixel, typically ~1 m for
airborne to ~1000 meters for satellite systems

« Spectral resolution: The number and width of the different wavelength
bands recorded.

« Radiometric resolution: The number of different intensities of radiation
the sensor is able to distinguish. Typically ranges from 8 to 14 bits,
corresponding to 28 =256 to 214 = 16,384 levels or "shades" of color in
each band. Useable resolution depends on the instrument noise.

« Temporal resolution: The frequency of flyovers by the sensor. Relevant
for time-series studies, or if cloud cover over a given area makes it
necessary to repeat the data collection.



Spectral Resolution

Monochromatic:
1 very narrow wavelength band, e.g. at a laser wavelength

Panchromatic:
1 very broad wavelength band, usually over the visible range (e.g., a
black and white photograph)

Multispectral: sampiing
Several (typically 5-10) wavelength nterval |
bands, typically 10-20 nm wide

Hyperspectral:

30 or more bands with 10 nm
or better resolution

Typically have >100 bands with
~5 nm resolution wavelengih

[
[72)
-
o
o
[}
[0}
hud
e
o}
w
c
[
w




Data Processing Levels

Level O: Unprocessed instrument data at full resolution (volts, digital counts)

Level 1a: Unprocessed instrument data at full resolution, but with information such as
radiometric and geometric calibration coefficients and georeferencing parameters
appended, but not yet applied, to the Level O data.

Level 1b: Level 1a data that have been processed to TOA sensor units (e.g., radiance
units), and geo-located. Level O data are not recoverable from level 1b data. Science
starts with Level 1b data.

Level 2: Intermediate and derived geophysical variables after atmospheric correction
(e.g., R, chlorophyll concentration, bottom depth) at the same resolution and location
as Level 1 data.

Level 3: Variables mapped onto uniform space-time grids, usually with missing points
interpolated, complete regions mosaiced together from multiple orbits, etc.

Level 4: Model output or results from analyses of lower level data (i.e., variables that
were not measured by the instruments but instead are derived from these
measurements).



The Radiative Transfer Forward Problem

known boundary

condtions
fundamental info
such as particle Y
index of refraction, |IOPs that The RTE: a very
particle size dist, | parameterize | complcated model that
absorption '| the fundamental relates IOPs and
properties of info boundary conditions to
dissolved the radiance
substances

The radiance
distribution

This is a solved problem: We know how to solve the RTE. All you
need is accurate inputs and computer time.



The Remote-Sensing Inverse Problem

constraints on the
allowed solution

Imperfect atmospheric
correction, unknown
boundary condtions

|

iIncomplete light
measurements: e.g.,
only R, at selected
wavelengths

A relatively simple
math model relating

| the available light
measurements to the

|OPs, Chl, bottom
depth, etc.

an estimate of what
we want: IOPs, Chl,
depth, etc




Explicit and Implicit Inverse Problems

Explicit solutions are formulas that give the desired IOPs as
functions of measured radiometric quantities or AOPs. A simple
example is Gershun's law, a = -(1/E,) d(E, — E)/dz, when solved for
the absorption in terms of the irradiances.

Implicit solutions are obtained by solving a sequence of direct or
forward problems. In crude form, we can imaging having a measured
remote-sensing reflectance (or set of underwater radiance or
irradiance measurements). We then solve direct problems to predict
the reflectance for each of many different sets of IOPs. Each
predicted reflectance is compared with the measured value. The
|OPs associated with the predicted reflectance that most closely
matches the measured reflectance are then taken to be the solution
of the inverse problem. Such a plan of attack can be efficient if we
have a rational way of changing the IOPs from one direct solution to
the next, so that the sequence of direct solutions converges to the

measured reflectance or radiance.



Statistical Inverse Models

One family of simple math models relating the available measurements
to what we want is statistical models.

These models are essentially just correlational models obtained from
Inspection of data sets containing both the inputs (R,;) and outputs
(Chl, water depth, etc). The models are not necessarily based on any
physical insight as to why the correlation exists.

The general forms of the models contain unknown parameters
(proportionality constants, weighting functions, fitting coefficients). The
parameter values are determined by forcing the model to fit data
containing both the inputs and outputs. That is, the parameter values
give the statistical best-fit of the model to the data, hence the name
“statistical” or “empirical” models.

After the parameters have been determined using known inputs and
outputs, the model with the same parameter values can be applied to
new input data, to obtain new outputs.



Statistical methods are how ocean color
remote sensing got started 40 years ago

Two examples:
* band-ratio algorithms
* neural networks




Where It All Started

107

wavelength A (nm)

Fig. 10.1. Water-leaving radiances L,, as a function of wavelength for four
chlorophyll concentrations C, in case 1 waters. The shaded regions labeled
1-4 indicate the detector bandwidths of the CZCS sensor. [redrawn from
Gordon, et al., (1985), by permission]

The seminal
Idea of ocean
color remote
sensing: Chl
concentration
and water-
leaving
radiance are
correlated.



R(1,3) = L, (,=443)/L, (A,=550) vs Chl

Note: only 33 data
points were initially
available!
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This suggests the band-ratio model:
log,,(Chl) = C, + C,log,, [L,(443)/L,(550)]

C, and C, are the unknown model parameters whose values are
determined by a best fit to the data






Examples of Recent Band-Ratio Algorithms

SeaWIiFS OC4v4 for Chl:
= log,,{max[R,s(443)/R(555), R,{(490)/R (555), R,s(510)/R(555)]}
Chl = 107(0.366 - 3.067X + 1.930X? + 0.649X3 - 1.532X%)

MODIS for K4(490):

X=1,(488)/L,(551)

K4(490) = 0.016 + 0.156445X"(-1.5401)
MODIS for acpou(400) and a,,,(675):
= Ioglo[Rrs(412)/Rrs(551)]
= Ioglo[Rrs(443)/Rrs(551)]

10 |

r35 Ioglo[Rrs(488)/Rrs(551)] L
acpon(400) = 1.5%107(-1.147 + 1.963r,c - 1.01r,2 - 0.8567,¢ + 1.02r,2)
a,,(675) = 0.328 [ 10°(-0.919 + 1.037r,g - 0.407r,2 -

3.531r, + 1.702r,:2 - 0.008)]

and so on, for dozens more....



A Fun Project

Use HydroLight to generate
some R, spectra for various
case 1 and case 2 IOPs. Then
run these R, through various
band-ratio algorithms to see
how the retrieved values
compare with each other and
with what went into HydroLight.
You can find more on the web.

Darieki and Stramski, RSE, 2004

4R M. Darecki, 1. Stramski ¢ Remote Sensing of Environment 89 (1004) 326330

Inadequate in-water bic-optical algorithms are one possi-
ble source of ermor in satellite-derived ocean color data
products. Another source of error is associated with the
atmospheric comection procedure, in which the water-leav-
ing radiance is reirieved from radiance measured by a
satellite sensor by subtracting the effects due to atmosphene
and sea surface. Part of our database from measurements in
the Baltic was used for direct comparisons with satellite-
derived water-lcaving radiances and other satellite-derived
data products. Although our match-up data set is limited in
its size, it is sufficient to reveal a consistently poor agreement
between in site-measured water-leaving radiances, Lyq(2),
and satellite-derived L. (4) from the MODIS/Terra and
SeaWiFS sensors. Assuming that the in situ determinations
are reasonably accurate, these match-up comparisons indi-
cate that the current atmospheric correction for MODIS and
SeaWiFS usually fails to retrieve Ly,(4) in the Baltic. This
problem is especially well pronounced in the blue speetral
bands (412, 443, and 488 nm) where we observed no
covariation between in situ and satellite values of L (4}
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Appendix A
Standard MODIS and SeaWiFS in-water bio-optical
algorithms examined in this smdy

TERRAMODIS prodect number MOD 1%, parumeter numbser 13
CZCS total pigment concentration - CZCS_pigm
(Clask. 1997; K. Kilpatrick, privaic communication, April 2002},

f‘iféz@s Chl

a=— 14443, b= IIH'.I' c=— L5283, d= — 00433, end e =1,

5 -].!9'52 o= —0.5069, d=— 01126, and e= 1,
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(Clark, 1997; K. Kilpatrick, privabe communication, April 3'!1?}
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Atmospheric Correction Effects

Good News: Band-ratio algorithms can be less sensitive to bad
atmospheric correction than some other techniques such as
spectrum matching

Rrs Good and Bad Atmos Correction

Rrs (good)

':'
un
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—
[

Rrs(490)/Rrs(550)
Good: 1.072
I Over: 1.082

e
Under: 1.068

400 450 500 550 600 650 700

wavelength [nm]



Nonunigueness

Bad News: Band-ratio algorithms are vulnerable to non-uniqueness
problems because the R ratioing throws out magnitude information
that makes spectra unique. Every unigue spectrum below has
R..(490)/R ((555) = 1.71+0.01, which gives Chl = 0.59 mg/m? by the
SeaWiFS OC2 algorithm; all of these spectra had Chl < 0.2 mg/m3
(the spectra are influenced by bottom reflectance).

450

500 550
wavelength A (nm)

600

Frgurs 3. CHerophyll concentraton lgorthms designed for mukispecoal insoumenta-
chon may nae be useful for shallow, opeically dear waters Shown here ars one hundrad
twanty two Hydrolight-generated remots sansing reflectance (R, ) specera for Bahamian
watsrs using varkas combinacions of nine different secs of K0P, 32 dfferant boom

: reflacances, and 22 depthe beewesn 55 and 50 m. These spactra are dearly urigus.

< Howewsr, avery specoum has rearly dw same remots sensing reflectance wavslength

~ rackx R 4900V/R(555) = 1.71 £001(490 and 355 nm are Indicaced by the vertical black
1 dashad lines) Ifehis ratio wers appliad to the commenly used SeaWiFS band. rato

1 algorkhm (OC2; ORailly s¢ al, 1938), & would gve a chicrophyll concentranon of 0.59

+001 mg Chl m™ In other words, the same chirophyl conceneration would be decer-

.: miad for all 22 spectra daspke the face that theza dmulated water bodies have 10P:
| comesponding to chiorophyll concencratiors beewsan Q0 (pure water ) and 02 mg Chi

m. The OC2 agorthm falls here because of boctom effects n opeically chiar waters.

Oa:ano_.yrqlpr | Tune 2004 27




Nonunigueness

Dierssen et al. (Limnol. Oceanogr. 41(1), 444-455, 2003) developed a
band-ratio algorithm for bottom depth in clear Bahamas waters:
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R,5(555)/R5(670)

x = log,, [R.(555)/R.(670)].

log,, (z,) = -0.1706 x> + 0.8913 x - 0.2316



Nonunigueness

grass The Dierssen algorithm did OK

LI © over shallow sand bottoms,
" buttotally failed over deeper
4 sea grass bottoms. Why?

Algol RGS_5750_wl_UnS

y pixle (line #)

200 300 400 . - 200 300 400
x pixel (sample #) x pixel (sample §)




Nonunigueness

HydroLight simulations of R,((555)/R,,(670) for two sets
of IOPs and two different bottoms (sand and grass), as a
function of bottom depth. Nonuniqueness for z, > 5 m

and grass bottom.

IOP1, sand

10P4, sand
IOP1, grass

10134; grass
Eq. D2

ratio = 25

10 100
Rrs(566)/Rrs(670)




Nonunigueness

The R, spectra for z, = 4 and 9 m depth, grass bottom.
Both spectra have R, ((555)/R,((670) =25+ 0.1. The
Dierssen model gives z, = 4.8 m.

400 450 500 S50 B00 850
wavelength (nm)

Heads up: spectrum matching algorithms see these two spectra as much
different, so no nonuniqueness problem



Model Selection

In some situations, you can figure
out (from intuition, theoretical
guidance, or data analysis) the
general mathematical form of the
model that links the input and output
(e.g., the polynomial functions that
relate the band ratios to Chl). You
can then use the available data e
(e.g., simultaneous measurements BRIty AL
of R,((A) and Chl) to get best-fit

coefficients in the model via least-

squares fitting.
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But what if you don’t have any idea what the mathematical
form of the model is?



Neural Networks

Neural networks are a form of multiprocessor computation,
based on the parallel architecture of animal brains, with

e simple processing elements

e a high degree of connection between elements

e simple input and output (real numbers)

e adaptive interaction between elements
Neural networks are useful

e where we don’t know the mathematical form of the
model linking the input and output

e Where we have lots of examples of the behavior we
require (lots of data to “train” the NN)

e Where we need to determine the model structure from
the existing data



Biological Neural Networks

AXxon

&F  processing

Synapse
rﬂ-.'?;

ﬂ endrite

—_—
I

from www.qub.ac.uk/mgt/intsys/nnbiol.html



A Simple Artificial Neural Network

Input synaptic hidden layer output
layer weights (neurons) layer

X,W; + X,W, + b <t
output =0, else Output

output =1

In the neuron, b is the bias, t is the threshhold value

The neuron (processor) does two simple things:

(1) it sums the weighted inputs

(2) compares the biased sum to a threshhold value to
determine its output



Training the Neural Network (1)

The essence of a neural network is that it can “learn” from
available data. This is called training the NN. The NN has
to learn what weighting functions will generate the desired
output from the input.

Training can be done by backpropagation of errors when
known inputs are compared with known outputs. We feed
the NN various inputs along with the correct outputs, and
let the NN objectively adjust its weights until it can
reproduce the desired outputs.

The Java applet at www.qub.ac.uk/mgt/intsys/perceptr.html
llustrates how a simple NN is trained by backpropagation.



run the NN applet



Things to Note

The NN was able to use the training data to determine
a set of weights so that the given input produced the
desired output. After training, we hope (in more
complex networks) that new inputs (not in the training
data set) will also produce correct outputs.

The “knowledge” or “memory” of a neural network is
contained in the weights.

In a more complicated situation, you must balance
having enough neurons to capture the science, but not
so many that the network learns the noise in the
training data.



Training the Neural Network (2)

Another way to train a NN is to view the NN as a
complicated mathematical model that connects the inputs
and outputs via equations whose coefficients (the weights)
are unknown.

Then use a non-linear least squares fitting/search algorithm
(e.g., Levenberg-Marquardt) to find the “best fit” set of
weights for the given inputs and outputs (the training data).

This makes it clear that NNs are just fancy regression
models whose coefficients/weights are determined by fancy
curve fitting to the available data (not a criticism!)



An Example NN

From Ressom, H., R. L. Miller, P. Natarajan, and W. H. Slade,
1995. Computational Intelligence and its Application in Remote

Sensing, iIn Remote Sensing of Coastal Aquatic Environments,
R.L. Miller, C.E. Del Castillo, B.A. McKee, Eds.

» Assembled 1104 sets of corresponding R, spectra and Chl
values from the SeaBAM, SeaBASS, and SIMBIOS databases.

» Construced a NN with 5 inputs (R, at 5 wavelengths) and two
hidden layers of 6 neurons each, and one output (Chl).

 Partitioned the 1104 data points into 663 for training, 221 for
validation, and 221 for testing the trained NN.

« The NN predictions of Chl using the testing data were compared
with the corresponding Chl predictions made by the SeaWiFS
OC4v4 band-ratio algorithm.



The Ressom et al. NN

input {0) hidden 36 hidden 6 output
layer weights layer 1 weights layer 2 weights layer

R.(410 @
\\\V W

N.B. not all connections
are shown; all neurons
in a layer are connected
to all in the preceeding
and following layers



The Ressom et al. NN

Used two layers of 6 neurons, rather than one layer of
12, (for example), so that neurons can talk to each
other (gives greater generality to the NN).

Training uses the training set for weigh adjustments,
and the validation set to decide when to stop adjusting
the weights.

- optimum

°S=> 2 X weights

O 27T 5|\ : :

oc g o N\ e - validation set
v o - 46 ~ ’/

S 28 L g

= 525 training set

training cycle (epoch)



NN vs. OC4v4 Performance

(n=662)

Training Data

Validation Data
(n=221)
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NN vs. OC4v4 Performance
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from Slade, et al. Ocean Optics XVI



Takehome Messages

Statistical methods for retrieving environmental
Information from remotely sensed data have been highly
successful and are widely used, but...

« An empirical algorithm is only as good as the underlying data used
to determine its parameters.

» This often ties the algorithm to a specific time and place. An
algorithm tuned with data from the North Atlantic probably won’t work
well in Antarctic waters because of differences in the phytoplankton,
and an algorithm that works for the Yellow Sea in summer may not
work there in winter.

« The statistical nature of the algorithms often obscures the
underlying biology or physics.



Takehome Messages

Band-ratio algorithms remain operationally useful, but
they have been milked for about all they are worth
intellectually (IMHO). Note that band ratio algorithms
throw away magnitude information in the R, spectra, and
they may not use information at all available wavelengths.

New statistical techniques such as neural networks are
proving to be very powerful, as are other techniques such
as spectrum matching and semi-analytical technigues.






