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The quality of remote sensing data is determined by the spatial, spectral, 

radiometric and temporal resolutions. 

 

• Spatial resolution: The “ground” size of a pixel, typically ~1 m for 

airborne to ~1000 meters for satellite systems 

 

• Spectral resolution: The number and width of the different wavelength 

bands recorded.  

 

• Radiometric resolution: The number of different intensities of radiation 

the sensor is able to distinguish. Typically ranges from 8 to 14 bits, 

corresponding to 28 = 256 to 214 = 16,384 levels or "shades" of color in 

each band.  Useable resolution depends on the instrument noise. 

 

• Temporal resolution: The frequency of flyovers by the sensor.  Relevant 

for time-series studies, or if cloud cover over a given area makes it 

necessary to repeat the data collection. 

Data Resolution 



Monochromatic: 

1 very narrow wavelength band, e.g. at a laser wavelength 

 

Panchromatic: 

1 very broad wavelength band, usually over the visible range (e.g., a 

black and white photograph) 

 

Multispectral: 

Several (typically 5-10) wavelength  

bands, typically 10-20 nm wide 

 

Hyperspectral:   

30 or more bands with 10 nm  

or better resolution 

Typically have >100 bands with  

~5 nm resolution 

Spectral Resolution 



• Level 0:  Unprocessed instrument data at full resolution (volts, digital counts) 

 

• Level 1a:  Unprocessed instrument data at full resolution, but with information such as 

radiometric and geometric calibration coefficients and georeferencing parameters 

appended, but not yet applied, to the Level 0 data. 

  

• Level 1b:  Level 1a data that have been processed to TOA sensor units (e.g., radiance 

units), and geo-located.  Level 0 data are not recoverable from level 1b data.  Science 

starts with Level 1b data. 

 

• Level 2:  Intermediate and derived geophysical variables after atmospheric correction 

(e.g., Rrs, chlorophyll concentration, bottom depth) at the same resolution and location 

as Level 1 data. 

 

• Level 3:  Variables mapped onto uniform space-time grids, usually with missing points 

interpolated, complete regions mosaiced together from multiple orbits, etc. 

 

• Level 4: Model output or results from analyses of lower level data (i.e., variables that 

were not measured by the instruments but instead are derived from these 

measurements). 

Data Processing Levels 



The Radiative Transfer Forward Problem 

fundamental info 

such as particle 

index of refraction, 

particle size dist, 

absorption 

properties of 

dissolved 

substances 

The RTE: a very 

complcated model that 

relates IOPs and 

boundary conditions to 

the radiance 

The radiance 

distribution 

known boundary 

condtions 

IOPs that 

parameterize 

the fundamental 

info 

This is a solved problem:  We know how to solve the RTE.  All you 

need is accurate inputs and computer time. 

 



The Remote-Sensing Inverse Problem 

incomplete light 

measurements: e.g., 

only Rrs at selected 

wavelengths 

A relatively simple 

math model relating 

the available light 

measurements to the 

IOPs, Chl, bottom 

depth, etc. 

an estimate of what 

we want: IOPs, Chl, 

depth, etc 

imperfect atmospheric 

correction, unknown 

boundary condtions constraints on the 

allowed solution 



Explicit solutions are formulas that give the desired IOPs as 

functions of measured radiometric quantities or AOPs. A simple 

example is Gershun's law, a = -(1/Eo) d(Ed – Eu)/dz, when solved for 

the absorption in terms of the irradiances. 

 

Implicit solutions are obtained by solving a sequence of direct or 

forward problems. In crude form, we can imaging having a measured 

remote-sensing reflectance (or set of underwater radiance or 

irradiance measurements). We then solve direct problems to predict 

the reflectance for each of many different sets of IOPs. Each 

predicted reflectance is compared with the measured value. The 

IOPs associated with the predicted reflectance that most closely 

matches the measured reflectance are then taken to be the solution 

of the inverse problem. Such a plan of attack can be efficient if we 

have a rational way of changing the IOPs from one direct solution to 

the next, so that the sequence of direct solutions converges to the 

measured reflectance or radiance.  

Explicit and Implicit Inverse Problems 



Statistical Inverse Models 

One family of simple math models relating the available measurements 

to what we want is statistical models. 

 

These models are essentially just correlational models obtained from 

inspection of data sets containing both the inputs (Rrs) and outputs 

(Chl, water depth, etc). The models are not necessarily based on any 

physical insight as to why the correlation exists. 

 

The general forms of the models contain unknown parameters 

(proportionality constants, weighting functions, fitting coefficients). The 

parameter values are determined by forcing the model to fit data 

containing both the inputs and outputs.  That is, the parameter values 

give the statistical best-fit of the model to the data, hence the name 

“statistical” or “empirical” models. 

 

After the parameters have been determined using known inputs and 

outputs, the model with the same parameter values can be applied to 

new input data, to obtain new outputs. 



Statistical methods are how ocean color 

remote sensing got started 40 years ago 

Two examples: 

•  band-ratio algorithms 

•  neural networks 



Where It All Started 

The seminal 

idea of ocean 

color remote 

sensing:  Chl 

concentration 

and water-

leaving 

radiance are 

correlated. 
443 

670 

520 

550 



R(1,3) = Lw(1=443)/Lw(3=550) vs Chl 

This suggests the band-ratio model: 

   

log10(Chl) = C1 + C2log10 [Lw(443)/Lw(550)] 

 

C1 and C2 are the unknown model parameters whose values are 

determined by a best fit to the data 

Note:  only 33 data 

points were initially 

available! 



CZCS Image 

Coastal Zone Color 

Scanner (CZCS) 

 

1978-1986 

 

4 visible, 2 IR bands 

 

66,000 images 

 

revolutionized 

oceanography with 

very simple band 

ratio algorithms 

Chl = 0.2 in blue to 30 in red  



SeaWiFS OC4v4 for Chl: 

X = log10{max[Rrs(443)/Rrs(555), Rrs(490)/Rrs(555), Rrs(510)/Rrs(555)]} 

Chl = 10^(0.366 - 3.067X + 1.930X2 + 0.649X3 - 1.532X4) 

 

MODIS for Kd(490): 

X = Lw(488)/Lw(551) 

Kd(490) = 0.016 + 0.156445X^(-1.5401) 

 

MODIS for aCDOM(400) and aphy(675): 

r15 = log10[Rrs(412)/Rrs(551)] 

r25 = log10[Rrs(443)/Rrs(551)] 

r35 = log10[Rrs(488)/Rrs(551)] 

aCDOM(400) = 1.5*10^(-1.147 + 1.963r15 - 1.01r15
2 - 0.856r25 + 1.02r25

2) 

aphy(675) = 0.328 [ 10^(-0.919 + 1.037r25 - 0.407r25
2 -  

3.531r35 + 1.702r35
2 - 0.008)] 

 

and so on, for dozens more…. 

Examples of Recent Band-Ratio Algorithms 



Use HydroLight to generate 

some Rrs spectra for various 

case 1 and case 2 IOPs.  Then 

run these Rrs through various 

band-ratio algorithms to see 

how the retrieved values 

compare with each other and 

with what went into HydroLight. 

You can find more on the web. 

A Fun Project 

CZCS Chl 

MODIS Chl 

Case 1 

MODIS 

Kd(490) 

MODIS Chl 

Case 2 

MODIS Chl 

Case 2 

MODIS a

(675) 

& aCDOM(400) 

SeaWiFS Chl 

Darieki and Stramski, RSE, 2004 



Good News: Band-ratio algorithms can be less sensitive to bad 

atmospheric correction than some other techniques such as 

spectrum matching 

Atmospheric Correction Effects 



Bad News: Band-ratio algorithms are vulnerable to non-uniqueness 

problems because the Rrs ratioing throws out magnitude information 

that makes spectra unique.  Every unique spectrum below has 

Rrs(490)/Rrs(555) = 1.710.01, which gives Chl = 0.59 mg/m3 by the 

SeaWiFS OC2 algorithm; all of these spectra had Chl < 0.2 mg/m3 

(the spectra are influenced by bottom reflectance).  

Nonuniqueness 



Dierssen et al. (Limnol. Oceanogr. 41(1), 444-455, 2003) developed a 

band-ratio algorithm for bottom depth in clear Bahamas waters:  

Nonuniqueness 



Nonuniqueness 

sand grass 

OK wrong 

The Dierssen algorithm did OK 

over shallow sand bottoms, 

but totally failed over deeper 

sea grass bottoms.  Why? 



Nonuniqueness 

HydroLight simulations of Rrs(555)/Rrs(670) for two sets 

of IOPs and two different bottoms (sand and grass), as a 

function of bottom depth.  Nonuniqueness for zb > 5 m 

and grass bottom. 

ratio = 25 

4 m 

9 m 



Nonuniqueness 

The Rrs spectra for zb = 4 and 9 m depth, grass bottom.  

Both spectra have Rrs(555)/Rrs(670) = 25 ± 0.1.  The 

Dierssen model gives zb = 4.8 m. 

Heads up: spectrum matching algorithms see these two spectra as much 

different, so no nonuniqueness problem 



Model Selection 

In some situations, you can figure 

out (from intuition, theoretical 

guidance, or data analysis) the 

general mathematical form of the 

model that links the input and output 

(e.g., the polynomial functions that 

relate the band ratios to Chl).  You 

can then use the available data 

(e.g., simultaneous measurements 

of Rrs() and Chl) to get best-fit 

coefficients in the model via least-

squares fitting. 

O’Reilly et al., JGR, 1998 

But what if you don’t have any idea what the mathematical 

form of the model is? 



Neural networks are a form of multiprocessor computation, 

based on the parallel architecture of animal brains, with  

 simple processing elements  

 a high degree of connection between elements 

 simple input and output (real numbers) 

 adaptive interaction between elements 

Neural networks are useful  

 where we don’t know the mathematical form of the  

model linking the input and output  

 where we have lots of examples of the behavior we 

require (lots of data to “train” the NN)  

 where we need to determine the model structure from 

the existing data 

Neural Networks 



Biological Neural Networks 

from www.qub.ac.uk/mgt/intsys/nnbiol.html 

inputs 

outputs 
processing 



A Simple Artificial Neural Network 

x1 

x2 

w1 

w2 

If 

x1w1 + x2w2 + b < t 

output = 0, else 

output = 1 

Output 

input 

layer 

synaptic 

weights 

hidden layer 

(neurons) 

output 

layer 

The neuron (processor) does two simple things: 

(1) it sums the weighted inputs 

(2) compares the biased sum to a threshhold value to 

determine its output 

In the neuron, b is the bias, t is the threshhold value 



Training the Neural Network (1) 

The essence of a neural network is that it can “learn” from 

available data.  This is called training the NN.  The NN has 

to learn what weighting functions will generate the desired 

output from the input. 

 

Training can be done by backpropagation of errors when 

known inputs are compared with known outputs.  We feed 

the NN various inputs along with the correct outputs, and 

let the NN objectively adjust its weights until it can 

reproduce the desired outputs. 

 

The Java applet at www.qub.ac.uk/mgt/intsys/perceptr.html 

illustrates how a simple NN is trained by backpropagation. 



run the NN applet 



Things to Note 

The NN was able to use the training data to determine 

a set of weights so that the given input produced the 

desired output.  After training, we hope (in more 

complex networks) that new inputs (not in the training 

data set) will also produce correct outputs. 

 

The “knowledge” or “memory” of a neural network is 

contained in the weights. 

 

In a more complicated situation, you must balance 

having enough neurons to capture the science, but not 

so many that the network learns the noise in the 

training data. 



Training the Neural Network (2) 

Another way to train a NN is to view the NN as a 

complicated mathematical model that connects the inputs 

and outputs via equations whose coefficients (the weights) 

are unknown.   

 

Then use a non-linear least squares fitting/search algorithm 

(e.g., Levenberg-Marquardt) to find the “best fit” set of 

weights for the given inputs and outputs (the training data). 

 

This makes it clear that NNs are just fancy regression 

models whose coefficients/weights are determined by fancy 

curve fitting to the available data (not a criticism!) 



An Example NN 

From Ressom, H., R. L. Miller, P. Natarajan, and W. H. Slade, 

1995.  Computational Intelligence and its Application in Remote 

Sensing, in Remote Sensing of Coastal Aquatic Environments, 
R.L. Miller, C.E. Del Castillo, B.A. McKee, Eds. 

 

•  Assembled 1104 sets of corresponding Rrs spectra and Chl 

values from the SeaBAM, SeaBASS, and SIMBIOS databases. 

 

•  Construced a NN with 5 inputs (Rrs at 5 wavelengths) and two 

hidden layers of 6 neurons each, and one output (Chl). 

 

•  Partitioned the 1104 data points into 663 for training, 221 for 

validation, and 221 for testing the trained NN. 

 

•  The NN predictions of Chl using the testing data were compared 

with the corresponding Chl predictions made by the SeaWiFS 

OC4v4 band-ratio algorithm. 



The Ressom et al. NN 

Rrs(410) 

Rrs(443) 

Rrs(490) 

Rrs(510) 

Rrs(555) 

n1 

n2 

n3 

n4 

n5 

n6 

m1 

m2 

m3 

m4 

m5 

m6 

output Chl 

input 

layer 
30 

weights 

hidden 

layer 1 

hidden 

layer 2 
36 

weights 

output 

layer 
6 

weights 

N.B.  not all connections 

are shown; all neurons 

in a layer are connected 

to all in the preceeding 

and following layers 



The Ressom et al. NN 

Used two layers of 6 neurons, rather than one layer of 

12, (for example), so that neurons can talk to each 

other (gives greater generality to the NN). 

 

Training uses the training set for weigh adjustments, 

and the validation set to decide when to stop adjusting 

the weights. 
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NN vs. OC4v4 Performance 



NN vs. OC4v4 Performance 

Chl in the Gulf of Maine 

generated by applying a NN 

to SeaWiFS data 

Difference in the NN and 

OC4 Chl values (NN-OC4) 

from Slade, et al. Ocean Optics XVI 



Takehome Messages 

Statistical methods for retrieving environmental 

information from remotely sensed data have been highly 

successful and are widely used, but... 

 
•  An empirical algorithm is only as good as the underlying data used 

to determine its parameters. 

 

•  This often ties the algorithm to a specific time and place.  An 

algorithm tuned with data from the North Atlantic probably won’t work 

well in Antarctic waters because of differences in the phytoplankton, 

and an algorithm that works for the Yellow Sea in summer may not 

work there in winter. 

 

•  The statistical nature of the algorithms often obscures the 

underlying biology or physics. 



Takehome Messages 

Band-ratio algorithms remain operationally useful, but 

they have been milked for about all they are worth 

intellectually (IMHO).  Note that band ratio algorithms 

throw away magnitude information in the Rrs spectra, and 

they may not use information at all available wavelengths. 

 

New statistical techniques such as neural networks are 

proving to be very powerful, as are other techniques such 

as spectrum matching and semi-analytical techniques. 



Muav limestone (early-mid Cambrian, 505-525 Myr old) boulder with fossil 

algal mats, Grand Canyon, photo by Curt Mobley 


