Lecture 3 IOPs: Absorption physics and absorbing materials

Collin Roesler 9 July 2013

Lecture Overview

- Overview of the electromagnetic spectrum
- What is absorption?
- Who are the absorbers?

Electromagnetic Spectrum

- Charged particles create electric fields (oscillation between +,-)
- When a charged particle moves, it creates a magnetic field
- The electromagnetic field oscillates as the energy propagates
- the range of oscillation frequencies is described by the EM spectrum

http://wps.prenhall.com/wps/media/objects/610/625137/Chaisson

What is absorption?

- since electromagnetic radiation is energy propagation, when materials absorb radiation, they absorb energy
- the energy associated with each part of the spectrum given by hc/λ
- what happens to the molecule depends upon the energy, hence wavelength (frequency)

Interactions between energy and matter

The amount of energy required to move an electron to another orbital shell is quantized

- The atom/molecule can only absorb visible radiation of this specific quantized energy or wavelength
- This determines the wavelength of the absorption peak

quantized energy states

- Each orbital shell is associated with a series of higher excited states, which are also quantized ^E
- These determine the wavelengths of the absorption side peaks which are higher (lower) energy but have a lower probability for absorption

interatomic distance

400 450 500 550 600 650 700

quantized vibrational states

- Each excited state, has vibrational and rotational states, also quantized
- These result in the smoothing of the absorption peaks

400 450 500 550 600 650 700

The chlorophyll *a* molecule has two higher energy orbital shells associated with the energy equivalent of a

blue (443 nm) and a red (676 nm) photon

http://www.mie.utoronto.ca/labs

http://plantphys.info/plant_physiology/light.shtml

Now that we know the physics of absorption

Let's meet the main absorbers in the ocean

Example of absorption spectra for three environments

- what do the spectra have in common?
- all have strong red absorption
- How do they differ?
 variable blue absorption

Absorption is a conservative property so total absorption is equal to the sum of the individual absorbing constituents

$$a_T = a_w + \Sigma a_{dissolved compounds} + \Sigma a_{particles}$$

And because of Beer's Law, the absorption coefficients are proportional to the concentration of absorbing matter, therefore absorption is a proxy for concentration It is impractical to measure the absorption spectrum for each constituent

so we group components by their common absorption properties (and our inability to separate them)

Absorbing matter

 $a_T = a_w + a_{CDM} + a_{\phi} + a_{NAP} + a_{MIN}$

water colored dissolved (organic) matter phytoplankton (in vivo pigments) non-algal particles (organic) minerals (inorganic particulate matter)

Absorbing Components: Water

Fig. 1. Absorption coefficient of pure water as measured or compiled by several investigators.^{1,2,11,18,19,21,26–33} The discrepancy in the estimated absorption coefficients is largest at short wavelengths where absorption by organic contaminants is significant. At wavelengths longer than 550 nm the standard deviation of the estimates is between 5 and 10% of the mean value.

W. Scott Pegau, Deric Gray, and J. Ronald V. Zaneveld

Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity

20 August 1997 / Vol. 36, No. 24 / APPLIED OPTICS

Compendium and data http://omlc.ogi.edu/spectra/water/abs/

Absorbing Components: Water

Temperature

Fig. 3. Absorption coefficient from 550 to 800 nm adjusted at 685 nm to the value of Tam and Patel (1979). The curves represent absorption at temperatures of 5, 10, 15, 21, 25, and 30°C as read from bottom to top at 750 nm.

Pegau and Zaneveld 1993 Limnol Oceanogr.

natural variations

Absorbing Components: Water

Salinity

Fig. 6. Attenuation coefficient at 715 nm as a function of salinity. This figure illustrates the linear dependence of the attenuation coefficient on salinity. Pegau etal. 1997 Appl.Opt.

natural variations

Dissolved inorganic matter

 basis for UV detection of nitrate, ISUS

Johnson, K. S. and L. J. Coletti. 2002

http://www.mbari.org/chemsensor/ISUShome.htm

Absorbing Components: Colored Dissolved (Organic) Matter

Fig. 3.5. Absorption spectra of soluble vellow material (gilvin) in

http://www.clarklittlephotogra phy.com/

D

Absorbing Components: Colored Dissolved (Organic) Matter

Kirk 1983

Carder et al. 1989 L&O

Absorbing Components: Colored Dissolved (Organic) Matter

 $a_{CDOM}(\lambda) = a_{CDOM}(\lambda_o) \exp(-S_{CDOM}(\lambda - \lambda_o))$ Equatorial Pacific

Carder et al. 1989 L&O

Absorbing Components: Colored Dissolved Organic Matter

Table 1. Ranges for the exponential coefficient, $C2_x$, for gelbstoff and detritus for Eq. 6. Where coefficients were not listed, values were approximated from published spectra using an exponential model.

Reference	Site	Avg C2 _x (nm ⁻¹)
Gelbstoff		
Kalle 1966	Baltic, North Sea	0.018
Jerlov 1968	r	0.015
Kirk 1976	Lakes, coast	0.015
Lundgren 1976	Baltic	0.014
Kopelevich and Burenkov 1977	Indo-Pacific	0.017
Bricaud et al. 1981	Baltic	0.018
	Mauritania	0.015
	Gulf of Guinea	0.014
	Mediterranean	0.014
Okami et al. 1982	East Pacific	0.017
Kishino et al. 1984	Lake Kizaki	010.0
	Nabeta Bay	0.015
	East Pacific	0.014
Carder and Steward 1985	Gulf of Mexico	0.014
Davies-Colley and Vant 1987	Lakes	0.019
Maske and Haardt 1987	Kiel Harbor	0.016
Published mean \pm SD		0.016 ± 0.002
This study mean ± SD	San Juan Islands	0.017±0.003
Carder et al. 1989	Marine humic acid	0.011
Jatritus	Marine fulvie acid	0.018
Kishino et al. 1986	NW Pacific Ocean	0.006
Maske and Haardt 1987	Kiel Harbor	0.014
Iturriaga and Siegel 1988	Sargasso Sea	0.011
Cleveland and Perry in prep.	Sargasso Sea	0.013
Morrow et al. 1989	Sargasso Sea	0.009
Published mean ± SD	2	0.011 ± 0.002
This study mean ± SD	San Juan Islands	0.011 ± 0.002

Roesler et al. 1989

Babin et al. 2003 European coastal waters

Absorbing Components: Particles

Individual cells, microphotometry

Pigment Packaging impact on absorption

Fig. 2. Change in spectral absorption values with variable cell size (diameter, d, in μ m) whereas the cell material forming the cells remains unchanged. The spectral absorption values of this material, somewhat arbitrarily adopted, are shown as the dotted curve. All curves are normalized, at $\lambda = 430$ nm, to evidence the progressive deformation. The variations with size of the specific absolute value at 430 nm (m² mg⁻¹ Chl a) are shown in inset, under the same assumption of a constant absorption of the cell material ($a_{cm} = 2 \times 10^5$ m⁻¹ at 430 nm) and with the additional assumption of a constant intracellular pigment concentration ($c_i = 2.86 \times 10^6$ mg Chl a m⁻³).

Morel and Bricaud 1981 DSR

(1) vary size, maintain constant intracellular pigment concentration

or

(2) maintain size, vary intracellular pigment concentration

Absorbing Components: other protists

Morel and Ahn 1990 JMR

Absorbing Components: Non-algal Particles →organic detrital particles

Iturriaga and Siegel 1989 L&O

photobleaching natural light levels

Absorbing Components: Non-algal Particles $a_{NAP}(\lambda) = a_{NAP}(\lambda_o) \exp(-S_{NAP}(\lambda - \lambda_o))$

Table 1. Ranges for the exponential coefficient, $C2_x$, for gelbstoff and detritus for Eq. 6. Where coefficients were not listed, values were approximated from published spectra using an exponential model.

Reference	Site	Avg C2 _s (nm ⁻¹)
Gelbstoff		
Kalle 1966	Baltic, North Sea	0.018
Jerlov 1968		0.015
Kirk 1976	Lakes, coast	0.015
Lundgren 1976	Baltic	0.014
Kopelevich and Burenkov 1977	Indo-Pacific	0.017
Bricaud et al. 1981	Baltic	0.018
	Mauritania	0.015
	Gulf of Guinea	0.014
	Mediterranean	0.014
Okami et al. 1982	East Pacific	0.017
Kishino et al. 1984	Lake Kizaki	0.016
	Nabeta Bay	0.015
	East Pacific	0.014
Carder and Steward 1985	Gulf of Mexico	0.014
Davies-Colley and Vant 1987	Lakes	0.019
Maske and Haardt 1987	Kiel Harbor	0.016
Published mean ± SD		0.016±0.002
This study mean ± SD	San Juan Islands	0.017±0.003
Carder et al. 1989	Marine humic acid	0.011
Detritus	Marine fulvic acid	0.018
Kishino et al. 1986	NW Pacific Ocean	0.006
Maske and Haardt 1987	Kiel Harbor	0.014
Iturriaga and Siegel 1988	Sargasso Sea	0.011
Cleveland and Perry in prep.	Sargasso Sea	0.013
Morrow et al. 1989	Sargasso Sea	0.009
Published mean \pm SD		0.011 ± 0.002
This study mean ± SD	San Juan Islands	0.011 ± 0.002

Roesler et al. 1989

European coastal waters Babin et al. 2003

Absorbing Components: non-algal or mineral particles

iron oxide minerals

Figure 3.10. Second derivatives of mass-specific absorption spectra. Black lines denote freshwater samples and gray lines denote marine samples. Bracketed arrows labeled " $\Delta a_{2d}(382)$ " and " $\Delta a_{2d}(435)$ " show locations of second-derivative maxima and minima used to compute iron absorption peak heights plotted in Figure 3.11. Light gray vertical bars highlight approximate ranges for electronic transition bands of various iron oxide minerals (Sherman and Waite, 1985).

Estapa 2011

Absorbing Components: inorganic particles

Fig. 5. Absorbance spectra of natural assemblages of mineral particles from three different environments.

Babin and Stramski 2003

Fig. 8. Imaginary index of refraction for Saharan aerosols from each of the collection locations. The solid line represents the Tenerife sample; the dashed line, the Meteor sample: the dotted line, the Barbados sample; and the dashed-dotted line, the Sal Island sample.

800

Patterson et al. 1977 JGR

To model the impacts of absorbing constituents...add them up

Morel and Prieur 1977

Wavelength (nm)

- which component dominates?
 - blue waters
 - green waters
 - phytoplankton (V-type) case I
 - inorganic particles (U-type) case II

More on absorption

- Phytoplankton
 - next Lecture
- CDOM absorption methods
 - Lab today
- Particulate absorption methods
 - Lab Wednesday