Revised Schedule

Day 4 (Thu) = July 11
Labs:  Scattering by particulate material (b and b,)
After dinner data lab: walk through ac-9 calculations

Day 5 (Fri) —July 12
Lab report: Temperature corrections ac-9, ac-s
Labs:  Fluorescence of CDOM and chlorophyll

Day 6 (Sat) — July 13 (start at 0900)

Lab report: Scattering lab synthesis and summary (moved from Friday)
Synthesis of first week: critique process of learning, Q&A on any topic; tie up
loose ends (staff)

Student U tube project (building on 2011 portfolio)

Chlorophyll fluorescence in-class exercise: without answers and with answers
Finish chlorophyll analyses from Friday lab

Day 1 (Mon) —July 15
Lab report: Fluorescence report
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What's a proxy?



What’'s a proxy?

prox- y

/'praksée/ 4

Noun

1. The authority to represent someone else, esp. in voting.
2. A person authorized to act on behalf of another.

Synonyms
deputy - representative - agent - substitute



SUrrogad te
1Sl:ll"l'()‘gate W) transitive verb \'sor-a-gat, 'sa-ra-\

sur-ro-gat-ed sur-ro-gat-ing

Definition of SURROGATE 3 +1) [Like
: to put in the place of another:
a : to appoint as successor, deputy, or substitute for oneself

b : SUBSTITUTE

Origin of SURROGATE

Latin surrogatus, past participle of surrogare to choose in
place of another, substitute, from sub- + rogare to ask —
more at RIGHT

First Known Use: 1533



Why we might want to develop optical proxies ?

One big advantage of in situ & remotely sensed optics is
high resolution sampling — in space and time. To understand
biogeochemisty & ecology, must sample at same scales as physics.

For example: measuring phytoplankton species by microscopy is very
expensive (time and personnel), while
ac-s profiles or underway sampling is relatively inexpensive.

A ‘proxy’, developed from analysis of absorption spectra, can be
used to ‘project’ detailed information from microscopy and project
to broader spatial /temporal scales.

What real entities, that can’t be measured at large spatial
and temporal scales, might be candidates for

optical proxies?



A few examples of optical proxies and real entities

Phytoplankton — Chl, HPLC pigments, Chl fluorescence,
remote sensing reflectance, a(676)
PFT — HPLC, a_phyt(A), reflectance spectra, *a(676)

Primary productivity — function ofphytoplankton, species or
phytoplankton carbon; F /F

Phytoplankton carbon — Chl, Chl fluorescence

Particulate organic carbon (POC) — ¢, and by,

SPM —c,and by,

Phytoplankton vs. mineral particles — bbp/b or bbp/cp
Particle size or size distribution — ¢, or by, slope

CDOM — CDOM fluorescence

Dissolved organic carbon — CDOM and slope, fluorescence



Kostadinov et al., 2012, Applied Optics

Optical assessment of particle size and composition

Particle Size/Composition
Parameter or Proxy Symbol Calculated from Notes
Slope of the particle size I3 PSD data (LISST 100-X) A fit of the actual PSD to a power law
distribution over a certain size range [Eq. (1)].
Can also be modeled from y,,
and 5 (see below)
Number concentration at N, PSD data (LISST 100-X) See [Eq. (1)]; here 2 ym is used as reference
reference diameter diameter. Can also be modeled from
n and by, (440) (see below)
Real index of refraction n, N/A Modeled from PSD slope £ and particle
relative to seawater backscattering probability by, [30]
Slope of the particle beam Yep AC-9 beam attenuation Related to § via § =y, + 3 [29]
attenuation spectrum, c,(4) data and CDOM
absorption data,
¢p(2) = ¢(2) — ay(2).
Slope of the particle n Hydroscat-6 data Related to § and N, [31]
backscattering spectrum, by, (1)
Phytoplankton Functional PFT’s Can be based on: PFTs are related to size and can
Types . characterize the entire
* HPLC pxgr(rinenF dau;_n;f 5 particle assemblage if it is
pico-, nano-, and micropia ton [5] of marine biogenic origin
*  ap,(4) data—Ciotti et al.Sy
parameter [62,63]
® Measured or modeled ¢ [7]
Particulate backscattering l_)bp Hydroscat-6 and AC-9 data Function of the complex index of refraction
probability (composition)
and the PSD. Can be used to estimate
the real index of refraction together with
PSD slope data/estimates [30]
Ratio of phytoplankton Jedt g, Discrete hyperspectral Indicates particle composition, i.e., fraction

absorption to total
particulate absorption

spectrophotometric
data of component IOPs.

Calculated as ay,(443)/a, (443)

of living
phytoplankton cells in the total particle
assemblage [38]




Lecture 4 — Phytoplankton
“Chlorophyll a is most common entity used to denote presence
of phytoplankton and attempt to quantify concentration (mass)”

Chlorophyll a

Chlorophyll fluorescence (active, solar passive),

Pigment absorption (ac-s, QFT),

Chlorophyll extract (Friday’s lab, HPLC),

Spectral reflectance (remote sensing, above water, in water),
etc.



Abstract. Probably because it is a readily available ocean
color product, almost all models of primary productivity use
chlorophyll as their index of phytoplankton biomass. As

other variables become more readily available, both from re- C h IO ro p h yl I iS
mote sensing and in situ autonomous platforms, we should

ask 1if other indices of biomass might be preferable. Herein, t h e ba SIS Of
we compare the accuracy of different proxies of phytoplank- .

ton biomass for estimating the maximum photosynthetic rate p rima ry

(Pmax) and the initial slope of the production versus irradi- . .
ance (P vs. E) curve («). The proxies compared are: the total p rOd u Cth|ty
chlorophyll a concentration (Tchla, the sum of chlorophyll m Od e | S

a and divinyl chlorophyll), the phytoplankton absorption co-

efficient, the phytoplankton photosynthetic absorption coef-

ficient, the active fluorescence in situ, the particulate scat-

tering coefficient at 650 nm (b, (650)). and the particulate

backscattering coefficient at 650 nm (bpp, (650)). All of the

data (about 170 P vs. E curves) were collected in the South

Pacific Ocean. We find that when only the phytoplanktonic

biomass proxies are available, b, (650) and Tchla are respec-

tively the best estimators of Ppax and «. When additional

variables are available, such as the depth of samoline. the

urradiance at depth, or the temperature, Tc Relationship between photosynthetic parameters and different

timator of both Pmax and a. proxies of phytoplankton biomass in the subtropical ocean

Y. Huot!, M. Babin!, F. Bruyantz, C.Grob*, M.S. Twardowski3, and H. Claustre!

Biogeosciences, 4, 853—868, 2007



A few examples from North Atlantic spring bloom — NAB 2008

1) 4 Seagliders, 1 Lagrangian float, 1 set of ship sensors that were rigorously
intercalibrated (chose ship sensors as the gold standard).

2) careful biogeochemical measurements on ship = develop optical proxies
(project expensive ship measurements to broader spatial/temporal scales.
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Chlorophyll fluorescence to chlorophyll concentration

(Friday’s lab)

Chi F (V)
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Chlorophyll fluorescence to chlorophyll concentration
(Friday’s lab)
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What do you get from a calibrated proxy of chlorophyll?
Validated multiplatform data shows patchy development of bloom.
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Particulate organic carbon and inherent optical properties
during 2008 North Atlantic Bloom Experiment

Ivona Cetini¢,’ Mary Jane Perry,l Nathan T. Briggs,1 Emily Kallin,! Eric A. D’Asaro,’
and Craig M. Lee®

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, C06028, doi:10.1029/2011JC007771, 2012



Table 1. Comparison of POC vs. ¢, Slopes and Methodologies®

POC vs. Y-axis DOC
Author (Sample Size) Area /Season Depth (m) ¢p Slope Intercept Correction Instrument /Angle ¢p Sampling
Gardner et al. [2006] (n = 3462) World /all seasons 0-6000 381 +£33 9.4+ 06 No Sea Tech /1.03° CTD rosette, upcast
Gardner et al. [2006] (n = 165) NE Atlantic / Spring 0-2000 34 +7 33+21 No Sea Tech /1.03° CTD rosette, upcast
Marra et al. [195] (n = 15) NE Atlantic / Summer <200 m 367 +39.5 312 +£13.8 No Sea Tech /1.03° CTD rosette, cast direction ?
Stramski et al. [2008] (n = 54, 59°) Pacific, Atlantic / Oct-Nov 0-10 458 (662)° 10.7 (=22)° No® C-Star /1.2° CTD rosette, averaged upcast
and downcast
Bishop et al. [2004] (n = 145) SOFeX + Pacific / Spring-Summer 0-1000 251 (193)* 0 (0)* No® C-Rover /1.5° CTD rosette, downcast
(Sea Tech /0.5°)¢
Oubelkheir et al. [2005] (n = 135, 5%) Mediterrancan + Atlantic® / Fall 0-200 574 (429)° —74 (=537 No ac-9 /0.93° CTD rosette, cast direction ?
Behrenfeld and Boss [2006] (n = 67) Equatorial Pacific / Oct-Nov surface 585 7.6 Yes C-Star /1.2° Flow-through
NABOS, this study (n = 296) NE Atlantic / Spring 0-600 391 £ 19 —58+55 Yes C-Star /1.2° CTD rosette, downcast

*All wavelengths are nominally 660 nm. Units of slope are mg C m % ? for ¢ sampling denotes lack of documentation about whether downcast or upcast data were used.
*POC vs. ¢p slope (mg C m~?) developed using the entire dataset, including upwelling data; see Table 6 in Stramski et al. [2008).

“Contribution of DOC adsorption was minimized with large filtration volume.

"c‘, measured by C-Rover and converted to simulate 1-m pathlength Sea Tech measurement (described in text).

“POC vs. ¢, slope and y-intercept for a small subset of the data (five samples) collected in waters in Moroccan upwelling region with relatively high concentrations of diatoms.
fOubelkheir et al. [2005] report only the slope and not the y-intercept for their Mediterranean POC vs. ¢p(660) regression; we report their intercept for POC vs. ¢,(555) instead.



POC vs. ¢, slope
(mg C m?)
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c,(C—Star) (m 1)

area concentration, [AC] (left column) and mass concentration (SPM)
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Observations of the sensitivity of beam attenuation to particle size
in a coastal bottom boundary layer
P. S. Hill,' E. Boss,? J. P. Newgmd,l B. A. Law,’ and T. G. Millig,am3
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(mg Cpm‘z)
H
8

c_p /SPM

700

600

500

300

200

100

[
P POC
underEST overEST
c
P

overEST 4
POC

underEST ]

05 1 1.5 2 25 3 35 .

Maximum c,, (660) (m™")



POC (mg m)

POC vs. side scatter
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Particulate backscattering (bbp) to POC (> 300 samples and >240 blanks)
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Table 2. Comparison of POC vs. b, Slopes and Methodologies®

Author (Sample Size)

POC vs. by(A)° (% Increase for A = 700 nm)

DOC
Correction

Instrument / Angle/
Wavelength

by, Sampling

Stramski et al. [2008] (n = 54, 59°)

Stramski et al. [1999] (n = 33)
Stramski et al. [1999] (n = 24)
Balch et al. [2010] (binned to n = 18)

Loisel et al. [2001]

NABOS, this study (n = 321)

Arca /Season Depth (m)
Pacific, Atlantic / Oct-Nov 4-8
APFZ / Summer-Fall 0-15
Ross sea / Summer 0-15
North and South Atlantic/ 5

all seasons
Mediterranean / N'A NA
North Atlantic / Spring 0-600

53607.0 by, + 2.5 7085.01 by, — 9.1° (10%)
17069.0 +1.3*p2559 20096 (1504)

476935.8 + 1.5% 2701 (159,
841*57%% (12%)

37550.0 by, + 1.3 (10%)

35422 £1754 by, gopn—14.4 + 5.8°
43317 + 2092 by, ,, —18.4 £ 58

Nod

£¢%

Yes

Hydroscat-6 /140°/ 555 nm

Hydroscat-6 /140°/ 510 nm

Hydroscat-6 /140°/ 510 nm

EcoVSF 3 /110, 125, 150° /
532 nm

merged from multiple
sources/555 nm

FLNTU /140°/700

CTD rosette, averaged
upcast and downcast

CTD rosette, cast direction ?

CTD rosette, cast direction ?

Ship flow- through,
un-acidified by,

N/A

CTD rosette, downcast®
or upcast

*Literature POC vs. by, slopes are reported for original wavelength; the percentage increase in the slope is for by, recalculated to 700 nm, 77 = 0.41. Units of slope are mg C m ™2,

PPOC vs. by, slope (mg C m™2) with measured wavelength, as published.
“POC vs. by, slope developed using the entire dataset, including upwelling data; see Table 6 in Soramski et al. [2008].
“Contribution of DOC adsorption was minimized with large filtration volume.
“The recommended NABO8 POC vs. by, relationship uses downcast data; upcast data is presented for comparison only.

by,

Changing calibration

0 is a real mess

Conversion of measurement at one A to another (spectra of slope?)

bbp downcast vs. bbp upcast
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Net community productivity from float measurements of NO3 drawdown and
02 evolution, corrected for air/sea flux
(Advection minimized by Lagrangian water-following float)
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What do you get from a calibrated proxy of POC?

An estimate of export flux:
Net Community Productivity from NO3 & O2 — Net Community Productivity from POC.

0 - 100 m integrated C flux at float

2, ~1.5Mol-C/m2 ~ OXygen

L PreBloom Bloom Peak Pos f8/<

100 110 120 130 140
Yearday 2008




Optical Indices of Planktonic Community

Biology: Chlorophyll:Carbon ratio plankton varies with type of plankton
(diatoms > picoplankton > heterotrophs ) and with their physiological state

Optics: Fluorescence ~ Chl Backscatter ~ POC

Tool: Fluorescence : Backscatter ratio = Optical Index = Ol

% Pico/Nano
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Novel use of optical spikes to develop proxy for sinking aggregates
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What do you get from a
calibrated proxy of spikes?

Flux attenuation of aggregates .
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depth (m)

Novel use of optics to estimate mean particle size

particulate backscatter ( m™)
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The mean contains information about concentration,
but the variance to mean ratio contains size information

Detector ‘

Chl'Forb,,

Time (or space)

not just noise!

b

Detector ‘

Chl'Forb,,

Briggs — in revision, Applied Optics Time (Or Space)
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What do you get out of a validated estimate of size?
Changes in mean phytoplankton and particle size from pre- to post-
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Optical-proxies of Particulate Iron swemis: (3 L0 L) oo &
Formation Kinetics in Hydrothermal

Plumes: A Proof-of-concept Study for Future In-situ
Measurements

Margaret Estapa, Marine Chemistry and Geochemistry
John Breier, Marine Chemistry and Geochemistry

*Funded through the Ocean Ridge Initiative and the DOEI
Abstract

Iron fluxes to the ocean through hydrothermal vents may be similar in size to river inputs. The biogeochemical fate of this
hydrothermal iron depends, in part, on how far currents transport it before particulate forms precipitate and grow to sizes
where they settle out of the water column. Particle formation and evolution under rapidly changing conditions near plumes
occur rapidly such that high spatiotemporal-resolution observations are required to determine the reaction timescales.
Currently available discrete sampling technologies cannot achieve this resolution, although the samples returned can be
analyzed in great detail to determine mineral particle composition. However, the light-absorption and -scattering properties of
these particles can be measured rapidly and directly at depth using commercially available sensors. Such optical properties
are used routinely as proxy measurements for particle concentration and composition in surface ocean environments. Here,
we propose a series of shipboard laboratory experiments that will (I) measure the kinetics of hydrothermal particle formation
and (Il) test the utility of these sensors in plume environments. At a vent site characterized by high iron concentration, we
will collect and return filtered plume water to the shipboard lab. Spectral beam attenuation, absorption and angular scattering,
as well as particle composition and mineral phase, will be monitored simultaneously as the plume water oxidizes and particles
form. Optical and compositional properties from the experimental timeseries will be analyzed to quantify characteristic optical
properties of different forms of particulate iron. This study will provide new insight into hydrothermal plume chemistry and
demonstrate the feasibility of rapid, in situ proxy measurements of particles as they form in vent plumes. Final results from
this lab study will also include estimates of in situ detection limits, which can guide future field deployments, as well as
modification of sensors for future hydrothermal plume applications, if necessary.



bbp/bp gives information on particle composition (Boss and
Twardowski)
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Particulate backscatering ratio

bbp/cp vs. depth is lowest at deep chlorophyll
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Optical Characterization of an Eddy-induced Diatom Bloom

West of the Island of Hawaii

F. Nencioli!, G. C hangz, M. Twardowski>, and T.D. Dickey1

Biogeosciences, 7. 151-162_. 2010



CDOM and fluorescence; CDOM and dissolved organic carbon (DOC)
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EUTROPHICATION IN LAKES

Chromophoric dissolved organic matter (CDOM)
absorption characteristics in relation to fluorescence
in Lake Taihu, China, a large shallow subtropical lake

Yunlin Zhang - Bogiang Qin - Guangwei Zhu -
Lu Zhang +- Longyuan Yang
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Figure 1. The relationship between in situ FDOM measurements
and methylmercury concentrations in surface water of a tidal
wetland across three seasons (Bergamaschi et al., in prep.)



A few examples of optical proxies and real entities

Phytoplankton — Chl, HPLC pigments, Chl fluorescence,
remote sensing reflectance, a(676)
PFT — HPLC, a_phyt(A), reflectance spectra, *a(676)

Primary productivity — function ofphytoplankton, species or
phytoplankton carbon; F /F

Phytoplankton carbon — Chl, Chl fluorescence

Particulate organic carbon (POC) — ¢, and by,

SPM —c,and by,

Phytoplankton vs. mineral particles — bbp/b or bbp/cp
Particle size or size distribution — ¢, or by, slope

CDOM — CDOM fluorescence

Dissolved organic carbon — CDOM and slope, fluorescence
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