Some basic statistics and
curve fitting techniques

Some 1mportant concepts:

e Data

» Statistical description of data
(data reduction, independence)

* The use of statistics to make a
point;
1. Statistics never proves a
point.
2. If you need fancy statistic to
support a point, your point
1S, at best, weak...



Statistical description of data

Statistical moments (15 and 2"9):

1 N
e Mean: X=— M X ;
N
e variance: Var = : i(x X )2
et
e Standard deviation: o=+ Var

* Average deviation:

o 2
Adev=N;‘xj —x‘

- o/JN

e Standard error:

Serror



e Standard error:

sl

When 1s the uncertainty not reduced by
sampling more?

Serror

Low random error High mndom error
good precision poor precision
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Statistical description of data

Probability distribution:
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Fig. 1-2 Histogram of frequency distribution of stature of 24,404 U.S. Army males.
Adapted from data of Newman and White.



Non-normal probability distribution:
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Fig. 1-3 U.S., female, 1965: percent dying in each 5-year age interval (the 100-105
interval includes all deaths after 100 rather than only those occurring in the interval).
Data from N. Keyfitz and W. Flieger, World Population: An Analysis of Vital Data.
Chicago: University of Chicago Press, 1968, p. 45.



Statistical description of data

Nonparametric statistics (when the
distribution 1s unknown):

e rank statistics
S 9B D A e IO
*Median

* percentile

e Deviation estimate

* The mode

Issue: robustness



Statistical description of data

Robust: “insensitive to small
departures form the 1dealized
assumptions for which the estimator
is optimized.”
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Figure 14.6.1. Examples where robust statistical methods are desirable: (a) A one-dimen-
sional distribution with a tail of outliers; statistical fluctuations in these outliers can prevent
accurate determination of the position of the central peak. (b) A distribution in two di-
mensions fitted to a straight line; non-robust techniques such as least-squares fitting can
have undesired sensitivity to outlying points.
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Statistical description of data

Examples from COBOP:
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Relationship between 2 variables

Linear correlation:
E(xl- -y, -7)
- B 3057

Rank-order correlation:

Y (& -R)S.-S5)

- \/Z(;{i—R)Z\/Z(Si—S)z




Regressions of type I and type II

Uncertainties in y only:

y(x)= ax +b
2
A yi_a_bxi
“ l;\f O;

Minimize ¥’ by taking the derivative of ¥? wrt a
and b and equal it to zero.

What if we have errors in both x and y?

Press et al.” s approach:

y(x)= ax +b

2

i (yi—axi_b)
¥ oy 2 2N
l-=1:NO' yi+a O «xi

2 2z
Var(yl. — ax; —b)=(7 yi +a 0 i

Minimize ¥’ by taking the derivative of x> wrt a
and b and equal 1t to zero.



The coefficient of determination
R? = 1- MSE/Var(y).
What variance does it explain?
Can 1t reveal cause and effect?
How 1s 1t affected by dynamic range?

When is R related to the correlation coefficient?
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LIE WITH
STATISTICS
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Regressions of type I and type II
Classic type II approach (Ricker, 1973):

The slope of the type II regression i1s the
geometeric mean of the slope of y vs. x and the
inverse of the slope of x vs. y.

y(x)= ax + b
x(y)=cy+d

G \/T/C g iay/gx
+ =Sign{zixl.yi}



Smoothing of data
Filtering noisy signals.
What 1s noise?

e instrumental (electronic) noise.

e Environmental ‘noise’ .

(11 ? .
one person s noise may be another
person’ s signal’

Matlab:; filtfilt



Modeling of data

Condense/summarize data by fitting
it to a model that depends on
adjustable parameters.

Example, CDM spectra:
a,(M)=a, exp(-s(h-1,))

particulate attenuation spectra:



Modeling of data
Example: CDM spectra.

a (\)=a, exp(-s(h-1,))
= q = \_Zig,SJ

Merit function:

0,0)-3, expl-s(h-3,)

9
X =y -

1=l i

*For non-linear models, there 1s no
guarantee to have a single minimum.
*Need to provide an 1nitial guess.

Matlab: fminsearch



Modeling of data

[ ets assume that we have a model

y=yha)

A more robust merit function:

= i ¥\ )= y(hza)

i=1 O,

l

Problem: derivative is not
continuous. Can be used to fit lines.




Statistical description of data
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Figure 14.6.1. Examples where robust statistical methods are desirable: (a) A one-dimen-
sional distribution with a tail of outliers; statistical fluctuations in these outliers can prevent
accurate determination of the position of the central peak. (b) A distribution in two di-
mensions fitted to a straight line; non-robust techniques such as least-squares fitting can
have undesired sensitivity to outlying points.



Monte-Carlo/Bootstrap methods

Need to establish confidence
intervals 1n:

1. Fitting-model parameters (e.g.
CDM fit).

2. Model output (e.g. Hydrolight).

k : out




When there 1s an uncertainty (or
possible error) associated with the
input:

Vary inputs with random errors and
observe effect on output:

in] Outl

in, out,

1N, out;

Ny outy




Fitting Ka to ‘noisy downwelling
irradiance data:

Depth (m)

Ed(490)
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Oregon coast, Wind<2m/sec



Model results:

contour plot of irradiance
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Fitting Kd to ‘noisy downwelling
irradiance data:

Assume:

<Ed (Z )> W <Ed (O)> CXP(_ K,z )

K ;1s what we are after.

Detfine:

1(z)= [, (2} -
<Ed (O)> [

< lexpl- K7, )- exp(- K,2)]
d

Where z, 1s 1n the zone of no/little fluctuations.



Fitting Kd to ‘noisy downwelling
irradiance data:

Nonlinearly fit to the integrated irradiance data:

I(z:[4,B.K,])= A+ Bexp(- K,z)



