Estimating phytoplankton functional types & particle size classes from satellite ocean color

Jeremy Werdell NASA Goddard Space Flight Center

UMaine Ocean Optics Summer Course Jul 7 – Aug 3, 2013

1

UMaine Ocean Optics Summer Course, PJW, NASA

rationale

changes in the Earth's climate

can lead to changes in phytoplankton species composition

which can alter regional & global C budgets & food webs

large spatial & temporal scales required to study broad, long-term environmental changes on species assemblages

microscopic enumeration of phytoplankton cells alone insufficient

in practice, remote (including space-based) tools required

ocean color satellites provide daily, synoptic views of Earth SeaWiFS – 1997 to 2010 MERIS – 2002 to 2010 MODIS-Aqua – 2002 to present

UMaine Ocean Optics Summer Course, PJW, NASA

PFT – phytoplankton functional type

"function" can mean many things (see Lecture 4 from week 1)

often class/genus-ish levels – diatom vs. dinoflagellate vs. cyano, etc. sometimes functions like "nitrogen fixers" or "calcifiers"

perspective

the faithful & the skeptical surround us

this is pushing the limits of existing satellite instruments

many methods have been proposed, most fall into 2 classes

spatially, temporally diverse validation data are, um, …

like it or not, this is our future – already big in our community HUGE science driver for PACE (Pre-Aerosols, Clouds, and ocean Ecosystems) this presentation will walk through methods & issues

measuring PSCs & PFTs in the field

microscopy flow cytometry coulter counters video imaging continuous plankton recorder spectroscopy pigment analyses etc. most ocean color

PFT/PSC algorithms tuned & validated using this proxy method

phytoplankton accessory pigments

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 106, NO. C9, PAGES 19,939-19,956, SEPTEMBER 15, 2001

Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter

DPA = Diagnostic Pigment Analysis

Francesca Vidussi¹, Hervé Claustre¹, Beniamino B. Manca², Anna Luchetta³, and Jean-Claude Marty¹

Vol. 144: 265-283, 1996

MARINE ECOLOGY PROGRESS SERIES Mar Ecol Prog Ser

Published December 5

CHEMTAX— a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton

M. D. Mackey^{1, 2}, D. J. Mackey^{2,*}, H. W. Higgins², S. W. Wright³

¹University Chemical Laboratory, Lensfield Rd, Cambridge CB2 1EW, United Kingdom ²CSIRO Division of Oceanography, PO Box 1538, Hobart, Tasmania 7001, Australia ³ Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia

phytoplankton accessory pigments

Appendix A. Diagnostic Pigment Analyses

Vidussi et al. (2001) described a common method for diagnostic pigment analyses. Uitz et al. (2006) updated this method. Dominant phytoplankton groups are always assigned to the most significant contributor (often >45 or $>50\%$ relative presence required). A list of the biomarker pigments is provided below, as well as the sums and ratios suggested by both authors.

Vidussi et al. (2001) $DP = Fuco + Perid + Hex$ -fuco + But-fuco + Allo + TChl-b + Zea $micro = (Fuco + Perid) / DP$ $nano = (Hex-fuco + But-fuco + Allo)/DP$ $pico = (TChl-b + Zea) / DP$

Modifications by Uitz et al. (2006) $DP_w = 1.41$ Fuco + 1.41 Perid + 1.27 Hex-fuco + 0.35 But-fuco + 0.60 Allo + 1.01 TChl-b +0.86 Zea $f_{micro} = (1.41$ Fuco + 1.41 Perid) / DP_w $f_{\text{nano}} = (1.27 \text{ Hex-fuco} + 0.35 \text{ But-fuco} + 0.60 \text{ Allo}) / \text{DP}_{w}$ adjusted chl-to-accessory $f_{\text{pico}} = (1.01 \text{ TChl-b} + 0.86 \text{ Zea}) / \text{DP}_{w}$ pigment ratios – link to micro-Chl-a = f_{micro} Chl-a fractional chl for each PSC nano-Chl-a = f_{nano} Chl-a pico-Chl-a = f_{pico} Chl-a

methods

two flavors of algorithms:

abundance

- exploit observed relationships between the trophic status of the environment & the type of phytoplankton expected to be present
- assign empirically-derived thresholds on [chl], $b_b(\lambda)$, $a_{\text{ph}}(\lambda)$, etc.

spectral

- exploit variations realized in the spectral shape of $R_{rs}(\lambda)$ with varying community structure
- use unique optical signatures of specific PFTs or PSCs to distinguish between groups

varied inputs to the algorithms:

• $R_{rs}(\lambda)$, Chl, b_{bp}(λ), a(λ), a_{ph}(λ), combinations of these

abundance methods

assume that a given phytoplankton biomass, defined by either Chl or IOPs – in particular, $a_{ph}(\lambda)$ – covaries with the dominance of or fraction of a particular PFT or PSC

abundance – Chl as input

Biogeosciences, 8, 311-327, 2011 www.biogeosciences.net/8/311/2011/ doi:10.5194/bg-8-311-2011 © Author(s) 2011. CC Attribution 3.0 License.

Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types

T. Hirata^{1,2,*,**}, N. J. Hardman-Mountford^{1,2}, R. J. W. Brewin^{1,3}, J. Aiken¹, R. Barlow^{4,5}, K. Suzuki⁶, T. Isada⁷, E. Howell⁸, T. Hashioka^{9,10}, M. Noguchi-Aita^{7,10}, and Y. Yamanaka^{6,9,10}

provide estimate of %Chl for each PFT/PSC in a pixel

abundance – Chl as input

Table 2. Equations to estimate fractions [0.0-1.0] of PSCs (Micro-, Nano- and Picoplankton) and PFTs (other). Set PFT fraction to 1.0 if >1.0 , and 0 if <0. To get % Chl-a, multiply 100 to the fractions derived.

 $x = log_{10}(Chl-a); y = Chl-a$

UMaine Ocean Optics Summer Course, PJW, NASA

abundance – Chl as input

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, C08005, doi:10.1029/2005JC003207, 2006

Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll

Julia Uitz,¹ Hervé Claustre,¹ André Morel,¹ and Stanford B. Hooker²

provide estimate of relative presence (%) of 3 PSCs

abundance – Chl as input

Table 3. Trophic Categories Defined With Respect to the Chlorophyll a Concentration Within the Surface Layer, [Chla]_{surf}, and the Associated Parameters^a

		Stratified Waters									Mixed Waters				
	S1	S ₂	S3	S4	S5	S6	S7	S8	S9	M1	M ₂	M ₃	M ₄	M5	
[Chla] _{surf} range, mg m ⁻³	$< 0.04^b$	$0.04 - 0.08$	$0.08 - 0.12$	$0.12 - 0.2$	$0.2 - 0.3$	$0.3 - 0.4$	$0.4 - 0.8$	$0.8 - 2.2$	$2.2 - 4^c$	$\leq 0.4^d$	$0.4 - 0.8$	$0.8 - 1$	$1 - 4$	$>4^{\circ}$	
Number of profiles	109	268	269	320	287	180	260	110	18	155	153	53	182	55	
Average [Chla] _{surf} , mg m ⁻³	0.032	0.062	0.098	0.158	0.244	0.347	0.540	1.235	2.953	0.244	0.592	0.885	1.881	6.320	
	(0.005)	(0.012)	(0.012)	(0.023)	(0.030)	(0.028)	(0.106)	(0.403)	(0.520)	(0.092)	(0.112)	(0.051)	(0.753)	(2.916)	
Average $\overline{\text{Chla}}_{\text{Zeu}}$, mg m ⁻³	0.0910	0.151	0.185	0.250	0.338	0.410	0.578	.206	2.950	0.280	0.591	0.872	2.059	7.574	
	(0.025)	(0.067)	(0.088)	(0.144)	(0.152)	(0.153)	(0.229)	(0.526)	(1.191)	(0.130)	(0.175)	(0.189)	(0.996)	(3.700)	
Average $\langle \text{Chla} \rangle_{\text{Zeu}}$, mg m ⁻²	10.54	14.15	15.98	18.79	22.09	24.70	29.72	44.05	71.98	19.90	30.27	37.57	58.64	120.00	
	(1.84)	(3.31)	(3.29)	(4.08)	(4.99)	(4.64)	(5.88)	(10.46)	(15.28)	(4.70)	(4.73)	(4.44)	(15.30)	(26.75)	
Average \langle Chla \rangle _{1.5} z _{cu} , mg m ⁻²	18.27	22.13	24.74	27.19	29.42	31.83	38.22	58.18	101.33	28.46	40.22	51.49	85.42	178.37	
	(3.97)	(5.18)	(6.35)	(8.29)	(8.58)	(8.76)	(9.57)	(19.9)	(26.59)	(7.52)	(8.17)	(8.13)	(26.80)	(44.55)	
Average Z_{cu} , m	119.1	99.9	91.0	80.2	70.3	63.4	54.4	39.8	26.1	77.1	53.2	44.0	31.5	16.9	
	(12.2)	(15.4)	(11.8)	(12.6)	(11.9)	(9.3)	(8.2)	(8.0)	(4.5)	(14.3)	(6.8)	(4.6)	(6.8)	(2.4)	

^aThese parameters are derived from the calculations involving the complete database 1 and are presented as averages and standard deviations (the latter shown in parentheses).

^bMinimum value 0.015 mg m⁻³.

 C Maximum value 3.97 mg m⁻³

^dMinimum value 0.047 mg m⁻³.

 C Maximum value 23.9 mg m⁻³.

use range of Chl & estimate of mixed layer depth (MLD) to assign each pixel to 1 of 14 trophic categories

empirically parameterized vertical profiles of PSCs for 9 stratified & 5 mixed water categories

used to infer column-integrated phytoplankton biomass, its vertical distribution, & community size composition

abundance – IOPs as input

Remote Sensing of Environment 112 (2008) 3153-3159

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

An absorption model to determine phytoplankton size classes from satellite ocean colour

T. Hirata a,b,*, J. Aiken a,b, N. Hardman-Mountford a,b, T.J. Smyth a,b, R.G. Barlow c

assign a dominant PSC to each satellite pixel

lemote Sensinį
Environment

abundance – IOPs as input

Fig. 1. Phytoplankton absorption spectra for a range of Chla (24.6, 18.9, 13.0, 1.91, 0.68, 0.21 mg m⁻³) and taxonomic size classes (pico, nano and micro) with decreasing slope from high to low $a_{ph}(\lambda)$ and Chla; inset spectra of pico and nanoplankton at expanded range.

```
premise – slope of a_{ph}(443) to a_{ph}(510) &
magnitude of a_{ph}(443) vary with PSC
```
abundance – IOPs as input

b) 03/2004

f) 11/2004

micro when $a_{\text{ph}}(443) > 0.069$ m⁻¹

pico when $a_{ph}(443) < 0.023$ m⁻¹

nano otherwise

Longitude [deg.]

90

180

 $.90$

spectral methods

exploit variations realized in the spectral shape of $R_{rs}(\lambda)$ or IOPs with varying phytoplankton community structure

unlike abundance approaches, these can detect different PFTs/PSCs with common total biomass, provided the groups have contrasting optical signatures

but, often confounded by variations of spectral characteristics of the same PFT/PSC due to growth conditions, nutrient availability, & ambient light regimes

Remote Sensing of Environment 114 (2010) 2403-2416

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Remote sensing of phytoplankton pigment distribution in the United States northeast coast

Xiaoju Pan ^{a,*}, Antonio Mannino ^a, Mary E. Russ ^a, Stanford B. Hooker ^a, Lawrence W. Harding Jr. ^b

^a NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

^b Horn Point Laboratory, University of Maryland Center for Environmental Science, Box 775, Cambridge, MD 21613, USA

provide estimate of phytoplankton accessory pigment concentration (mg m^{-3}) for each satellite pixel

lemote Sensing
Environment

Fig. 4. Algorithm development for peridinin concentration ([Perid]). See Fig. 3 for detailed description.

Table 4

Derived coefficients for pigment algorithms from Eq. (1): $log[$ Pigment] = $A_0 + A_1X + A_2X^2 +$ A_3X^3 , where $X = \log[R_{rs}(\lambda_1)/R_{rs}(\lambda_2)] - 1.5\log(T_w)$ for Zea, but $X = \log[R_{rs}(\lambda_1)/R_{rs}(\lambda_2)]$ for other pigments. Total data points $N = 196$. A set of 2nd-order polynomial functions replaced the 3rd-order polynomial functions for Fuco due to their similar regression results and more reasonable performance.

DEEP-SEA RESEARCH PART II

PERGAMON

Deep-Sea Research II 49 (2002) 107-121

www.elsevier.com/locate/dsr2

Detecting *Trichodesmium* blooms in SeaWiFS imagery

Ajit Subramaniam^{a,*}, Christopher W. Brown^b, Raleigh R. Hood^c, Edward J. Carpenter^d, Douglas G. Capone^a

3.4. Classification scheme

Based upon these empirical observations and model results, we propose the following classification scheme to identify the presence of *Trichodesmium* at moderate chlorophyll concentrations $(0.5-3.0 \,\text{mg/m}^3)$ in SeaWiFS imagery: A pixel was flagged as dominated by *Trichodesmium* if the following three criteria were satisfied:

1. nLw(490) > 1.3 mW cm²/µm/sr and nLw(490) > nLw(412), nLw(443), nLw(555)

2. $nLw(510) > nLw443$

3. $0.4 <$ [nLw(490)-nLw(443)]/[nLw(490)-nLw(555)] <0.6

Criteria #1 and #2 represent absolute and relative magnitude thresholds, while criterion #3 depends on spectral shape. The threshold for $nLw(490)$ was employed because it was a

Available online at www.sciencedirect.com

DEEP-SEA RESEARCH PART I

Deep-Sea Research I 52 (2005) 1989-2004

www.elsevier.com/locate/dsr

Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery

S. Alvain^a, C. Moulin^{a,*}, Y. Dandonneau^b, F.M. Bréon^a

provide estimate of dominant PFT for each pixel

average satellite $nL_w(\lambda)$ for a range of Chl

Fig. 5. Spectral signatures of nLw^{*} of the four different phytoplankton assemblages, dominated by (a) haptophytes, (b) Prochlorococcus, (c) SLC and (d) diatoms. Individual SeaWiFS nLw* are depicted by the grey lines. Bold plain lines show the minimum and maximum spectral values of nLw^{*} defined in Table 5 to characterize phytoplankton groups.

$nL_w(\lambda)$ anomalies for each PFT

LIMNOLOGY and **OCEANOGRAPHY: METHODS**

Limnol. Oceanogr.: Methods 4, 2006, 237-253 C 2006, by the American Society of Limnology and Oceanography, Inc.

Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil

Aurea M. Ciotti¹ and Annick Bricaud²

¹UNESP-CLP/SV, Campus do Litoral Paulista, Praça Infante Dom Henrique s/nº, São Vicente (SP), Brazil ²CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer; Université Pierre et Marie Curie-Paris, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France

estimate the relative fraction of 2 PSCs for each pixel

deconvolve $a_{\text{ph}}(\lambda)$ from an inversion algorithm into contributions by two size classes

$$
a_{\phi}(\lambda) = a_{\langle \phi \rangle}(\lambda) \cdot \{ [S_f \cdot \overline{a}_{\langle \text{pico} \rangle}(\lambda)] + [(1 - S_f) \cdot \overline{a}_{\langle \text{micro} \rangle}(\lambda)] \}
$$
(1)

where $\bar{a}_{\text{spico}}(\lambda)_{\text{spico}}(\lambda)$ and $\bar{a}_{\text{emico}}(\lambda)_{\text{smicro}}(\lambda)$ are the "basis" vectors" (or absorption spectra normalized by their own average over the visible spectrum) corresponding to picoplankton and microplankton, respectively, and $a_{\text{obs}}(\lambda)$ is the scaling factor to be applied to the normalized absorption spectrum. The size parameter S_f is a parameter constrained to vary between 0 and 1 and specifying the relative contributions of picoplankton and microplankton to

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, C09015, doi:10.1029/2009JC005303, 2009

η from Loisel & Stramski 2000

Retrieval of the particle size distribution from satellite ocean color observations

T. S. Kostadinov,^{1,2} D. A. Siegel,^{1,3} and S. Maritorena¹

estimate the relative fraction of 3 PSCs for each pixel

Figure 1. Results of the forward Mie model run with the default parameters as in Table 1. (a) The resulting $b_{h\rho}(\lambda)$ spectra are shown for different PSD slopes, as in the legend, from lowest ($\xi = 2.5$, black curve) to highest ($\xi = 6$, lightest shade of gray). The wavelengths at which Mie calculations were performed are marked with crosses. The particulate backscattering slope, η , was calculated using only the three wavelengths marked with arrows, both for modeled and SeaWiFS-retrieved spectra (see section 2.1 for details). (b) The resulting relationship between the power law slope of the PSD, ξ , and η (left y axis), as well as the relationship between ξ and the value of $\log_{10} (b_{bn}(440)/N_o)$ (right y axis). These relationships are the basis of the look-up tables (LUTs) presented in the text. The determination coefficient, R^2 , of the linear regression used to calculate the $b_{bn}(\lambda)$ slope is also shown (scale on left y axis).

spectral – inversion modeling

inversion modeling as described in Lectures 19 & 20, except …

Application of an Ocean Color Algal Taxa Detection Model to Red Tides in the Southern Benguela

Collin S. Roesler¹, Stacey M. Etheridge², and Grant C. Pitcher³ 'Bigelow Laboratory for Ocean Sciences, PO Box 475, West Boothbay Harbor, ME 04575, USA; ²Department. of Marine Science, University of Connecticut, 1084 Shennecossett Rd., Groton, CT 06340, USA; ³Marine and Coastal Management, Private Bag X2, Rogge Bay 8012, Cape Town, South Africa

... solve for multiple $a_{\text{ph}}(\lambda)$

GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 9, 1468, doi:10.1029/2002GL016185, 2003

Spectral beam attenuation coefficient retrieved from ocean color inversion

Collin S. Roesler Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine, USA

Emmanuel Boss School of Marine Sciences, University of Maine, Orono, Maine, USA … solve for slope of beam-c

UMaine Ocean Optics Summer Course, PJW, NASA

algorithm sensitivites

all PFT algorithms use derived products (e.g., Chl & IOPs) or make *a priori* environmental assumptions

unfortunately, few PFT/PSC modeling papers include robust analysis of the sensitivity of the model outputs to the model inputs

how sensitive are the abundance methods to uncertainties in derived Chl & IOPs?

how sensitive are the spectral methods to uncertainties in $R_{rs}(\lambda)$ & derived $a_{ph}(\lambda)$?

sensitivity of an inversion model to parameterization

Werdell et al. 2013

measuring PSCs & PFTs in the field

microscopy flow cytometry coulter counters video imaging continuous plankton recorder spectroscopy pigment analyses etc. most ocean color

PFT/PSC algorithms tuned & validated using this proxy method

HPLC measurements as proxy PFT/PSC data

all authors acknowledged the need for rigorous validation via microscopic or flow cytometric enumeration of phytoplankton cells

these measurements are scarce, whereas HPLC pigment data are now abundant & globally distributed

HPLC measurements as proxy PFT/PSC data

weaknesses in DPA:

various phytoplankton groups share some taxonomic pigments (e.g., fucoxanthin in diatoms, plus dinoflagellates & Phaeocystis)

some phytoplankton groups encompass wide size ranges (e.g., most diatoms are micro, but some are nano)

requires a priori knowledge of accessory pigment ratios

validation via visual inspection

global spatial distributions often inspected to verify expected relationships with environmental preferences (Prochlorococcus in oligotrophic waters, diatoms in upwelling zones & high production environments)

example validation exercises

