Calibration and Validation for Ocean Color Remote Sensing 8 July – 2 August, 2013 Darling Marine Center, University of Maine, Walpole ME

Meals: breakfast – 0730; lunch – 1200; dinner – 1800; weekends will be posted Class starts at 0800, except Saturday 13 July (start at 0900); also some days in weeks 3&4 (see below)

Most mornings will start with a student synthesis of data, findings, and questions from previous days lab (schedule is flexible)

Week 1 (Introduction + IOPs)

Day 1 (Mon) – July 8

Welcome to Maine and the Darling Center Logistics and overview Introductions Lecture 1: Light and Radiometry (CM) Lecture 2: Overview of light in water (CR)

Labs: Introductions, part II Playing with Light (All)

Day 2 (Tue) – July 9

Lecture 3:	Absorption physics; overview of absorption spectra for water, CDOM,
	NAP, phytoplankton, etc (CR)
Lecture 4:	Phytoplankton – pigments, photo-adaptation, and taxonomic
	classification (MJP)
Labs:	Absorption by dissolved material (ac-9 / ac-s and spectrophotometer);
	Beer's Law in a tank

Day 3 (Wed) – July 10

Lab report: CDOM lab synthesis and summary

- Lecture 5: What is scattering and how is it measured (EB)
- Lecture 6: The VSF and Models for Scattering (CM)
- Labs: Absorption by particulate material (ac-9 / ac-s and spectrophotometer)

Day 4 (Thu) – July 11

- Lab report: Particulate absorption lab synthesis and summary
- Lecture 7: Beam attenuation (EB)
- Lecture 8: POC and other proxies-optical properties for phytoplankton and community composition (MJP)
- Labs: Scattering by particulate material (b and b_b)

After dinner data lab: walk through ac-9 calculations

Day 5 (Fri) – July 12

Lab report:Temperature corrections ac-9, ac-sLecture 9:Inelastic scattering – Raman, CaCO3 & other minerals, CDOM (KV)Lecture 10:Fluorescence by phytoplankton pigments (MJP)

Labs: Fluorescence of CDOM and chlorophyll

Day 6 (Sat) - July 13 (start at 0900)

Lab report: Scattering lab synthesis and summary
Synthesis of first week: critique process of learning, Q&A on any topic; tie up loose ends (staff)
Student U tube project (building on 2011 portfolio)
Chlorophyll fluorescence in-class exercise: without answers and with answers
Finish chlorophyll analyses from Friday lab
Bar-B-Que at DMC

Week 2 (Radiometric quantities and AOPs):

Day 1 (Mon) – July 15

Lab report: Fluorescence report

- Lecture 11: Introduction to AOPs (will cover R, Rrs, K's, mubars); BRDF and Lambertian Surfaces (CM)
- Lecture 12: Radiometric quantities and their measurement (KV)
- Labs: Radiometric measurements: in-water and above-water (KV)

Day 2 (Tue) – July 16

- Lab report: Synthesis and summary of radiometry field data and above-water reflectance from dock
- Lecture 13: Link between particle properties (size, packaging, composition, shape, internal structure) and IOPs (EB)
- Lecture 14: Polarization (KV)
- Labs: Mie theory and modeling (EB)

Day 3 (Wed) – July 17

Lab report:	Continued synthesis of radiometry lab
Lecture 15:	The Radiative Transfer Equation; Introduction HydroLight (CM)
Lecture 16:	(1030) Barney Balch, Guest Lecture
Labs:	HydroLight Lab 1: Guided Simulations (simple simulations) (CM)
	Faculty planning meeting for Week III cruises

Day 4 (Thu) – July 18

Lab report:	Brief report from HydroLight Lab 1
	Brief report on topics selected for Student Projects – individual or small
	group project
Lecture 17:	Primary production; optical and remote sensing models (MJP)
Lecture 18:	Closure and HydroLight Advanced Features (CM)
Labs:	HydroLight Lab 2: Guided Simulations (advanced simulations) (CM)

Day 5 (Fri) – Jul 19

Lab report:Report from HydroLight Lab 11Lecture 19:Rrs inversion methods a: statistical methods to obtain [chl] and/or IOPs
(ratio, Neural Network; CM)

Lecture 20: Rrs inversion methods b: semi-analytical models to obtain IOPs (CR) Labs: Semi analytical Rrs inversion lab (CR)

Dinner in Whitefield Maine at MJP's home; need to carpool

Week 3 (Field measurements and models)

Day 1 (Mon) – July 22

Group A - R/V Ira C (RZ, EB, KV) Group B - SeaDAS in lab (JW)

Day 2 (Tues) – July 23

- Lecture 21: Uncertainty analysis and propagation of error (EB)
- Lecture 22: Introduction to ocean color satellite remote sensing; basic atmospheric corrections for remote sensing; black pixel assumption and adjacency effect (JW)

Labs: Analysis of Monday cruise data Work on student projects

Day 3 (Wed) – July 24

Group B – R/V Ira C (RZ, EB, CM) Group A – SeaDAS in lab (JW)

Day 4 (Thur) – July 25

Lab reports:Preliminary reports on analysis of radiometry and IOPsLecture 23:In situ data satellite - QA/QC requirements, vicarious calibration, optical
weighting for validation and algorithm development, how data are used
in satellite processing system (JW)

- Lecture 24: Estimating uncertainties of inversion products. Effect of non-elastic scattering on Rrs. (EB)
- Labs: Group B Analysis of radiometry (KV/JW) Group A – Analysis of IOPs (RZ)

Day 5 (Fri) – July 26

(breakfast at 0815)

(
9:00am:	Arduino board lab
10:30am:	Updates on Student Projects
	Updates on analysis of radiometry and IOPs
Labs:	Continued data analysis of radiometry and IOPs
	Exploration of optical phenomena (instructors)
	Ken Voss f/Q chalk talk
~	

Lobster dinner – leave at 4:40 PM and carpool and caravan to lobster wharf

Week 4 (Synthesis)

Day 1 (Mon) - July 29

Lab reports: Updates on analysis of radiometry and IOPs

- Lecture 25: PFT and PSD inversions from Rrs (JW)
- Lecture 26: Design of field campaigns and other sampling strategies (traditional ship, moorings, in-line, autonomous vehicles and drifting platforms), including calibration and cross calibration (MJP & EB)
- Labs: Instrumental closure using cruise data (working in small groups with instructors)

Day 2 (Tues) – July 30

Lab report:	Field data and closure
Lecture 27:	Monte Carlo (CM) (moved to after lunch)
Lecture 28:	Sources of variability in mass-specific attenuation coefficients (Paul Hill)
Labs:	Data processing, submission to SeaBASS, portfolios (videos, etc.), etc.

Day 3 (Wed) – July 31

Start at 0900 (breakfast at 0815)

Lecture 29: QA/QC (Steve Ackleson)

Labs: Data processing, submission to SeaBASS, portfolios (videos, etc.), etc.

Day 4 (Thur) – August 1

Start at 0900 (breakfast at 0815)

Lecture 30: Rrs inversion methods for shallow-water remote sensing (spectrum matching methods of Lee, Mobley, and others; CM)

Labs: Data processing, submission to SeaBASS, portfolios (videos, etc.), etc.

Day 5 (Fri) – August 2

Start at 0900 (breakfast at 0815)

Presentations

Day 6 (Sat) – August 3

Clean and vacate room by 10:00am; other directions from Ali