
Curtis Mobley 

 

The Radiative Transfer Equation 

Copyright © 2015 by Curtis D. Mobley 

Darling Marine Center, University of Maine 

July 2015 

2015 Summer Course  

on Optical Oceanography and 

Ocean Color Remote Sensing 



The Radiative Transfer 

Equation (RTE) 

 
• expresses conservation of 

energy in terms of the 

radiance 

 

• connects the IOPs, 

boundary conditions, and 

light sources to the radiance 

 

All other radiometric 

variables (irradiances) and 

AOPs can be derived from 

the radiance. 

 

If you know the radiance, you 

know everything there is to 

know about the light field 



Derivation of the RTE 

To derive the time-independent RTE for horizontally homogeneous 

water, we consider the radiance at a given depth z, traveling in a 

given direction (, ), at a given wavelength .  We then add up the 

various ways the radiance L(z,,,) can be created or lost in a 

distance Δr along direction (, ), going from depth z to z+Δz 



Losses of Radiance 

The loss due to absorption is 

proportional to how much 

radiance there is: 

dL(z,q,f,) 

    dr 
= - a(z,) L(z,q,f,) 

Likewise for loss of radiance due 

to scattering out of the beam: 
dL(z,q,f,) 

    dr 
= - b(z,) L(z,q,f,) 



Scattering into the beam from all other directions increases the radiance: 

dL(z,q,f,) 

    dr 
= 4p L(z,q,f,) b(z; q,fq,f ;) dW 

Sources of Radiance 

There can be internal 

sources of radiance 

S(z,q,f,), such as 

bioluminescence  

dL(z,q,f,) 

    dr 
= S(z,q,f,) 

See www.oceanopticsbook.info/view/radiative_transfer_theory/ 

deriving_the_radiative_transfer_equation for more detail 



+ 4p L(z,q,f,) b(z; q,fq,f; ) dW 

Add up the Losses and Sources 

+ S(z,q,f,) 

dL(z,q,f,) 

    dr 
= - a(z,) L(z,q,f,) 

   - b(z,) L(z,q,f,) 

Finally, note that a + b = c and that dz = dr cos to get 



The 1D RTE, Geometric-depth Form 

This is the RTE that HydroLight solves.   

+ 4p L(z,q,f,) b(z; q,fq,f; ) dW 

+ S(z,q,f,) 

dL(z,q,f,) 

    dz 
= - c(z,) L(z,q,f,) cos 

The VSF b(z; q,fq,f; ) is usually written as b(z, ψ, ) in terms 

of the scattering angle ψ, where 

 

cosψ = cos cos + sin sin cos(f-f) 



The 1D RTE, Optical-depth Form 

Note that a given geometric depth z corresponds to a different 

optical depth z(λ) = 0
z
 c(z,) dz at each wavelength 

Define the increment of dimensionless optical depth z as dz = c dz  

and write the VSF as b times the phase function,   , 

and recall that o = b/c to get 

b 
~ 

Can specify the IOPs by c and the VSF b, or by ωo and the phase 

function     (and also c, if there are internal sources) b 
~ 

+ o 4p L(z,q,f,)   (z; q,fq,f; ) dW 

+ S(z,q,f,)/c(z,) 

dL(z,q,f,) 

    dz 
= - L(z,q,f,) cos 

b 
~ 



+ 4p L(z,q,f,) b(z; q,fq,f; ) dW 

+ S(z,q,f,) 

dL(z,q,f,) 

    dz 
= - c(z,) L(z,q,f,) cos 

NOTE:  The RTE has the TOTAL c and  TOTAL VSF.  Only 

oceanographers (not light) care how much of the total absorption 

and scattering are due to water, phytoplankton, CDOM, minerals, 

etc. 

The 1D RTE, Geometric-depth Form 

The RTE is a linear (in the unknown radiance), first-order (only a 

first derivitive) integro-differential equation.  Given the green 

(plus boundary conditions), solve for the red.  This is a two-point 

(surface and bottom) boundary value problem. 



A unique solution of the RTE requires: 

Region of 
interest: 
IOPs are 
known 

Radiance incident onto all 
boundaries from outside  
the region is known 

A 3-D problem 

IOPs are known as a  
function of depth 

Bottom (can be at ) 

Radiance incident onto sea  
surface is known 

A 1-D problem 

Stretch out the 
region to make 
a horizontally 
homogeneous 
ocean 

Solving the RTE 

Given the IOPs within the region and the incident radiances, we can 

solve for the radiance within and leaving the region 



Solving the RTE:  The Lambert-Beer Law 

A trivial solution:   

• homogeneous water (IOPs do not depend on z) 

• no scattering (VSF β = 0, so c = a + b = a) 

• no internal sources (S = 0) 
• infinitely deep water (no radiance coming from the bottom boundary, 

so L  0 as z  ∞) 

• incident radiance L(z=0) is known just below the sea surface 

Note that this L satisfies the RTE, the surface boundary condition, and 

the bottom boundary condition L(z=∞) = 0. 



Solving the RTE:  Gershun’s Law 

Start with the 1D, source-free, RTE. 

Integrate over all directions.  The left-hand-side becomes 



Solving the RTE:  Gershun’s Law 

The – cL term becomes 

The elastic-scatter path function becomes 



Solving the RTE:  Gershun’s Law 

Collecting terms, 

or 

Gershun’s law can be used to retrieve the absorption coefficient from 

measured in-water irradiances (at wavelengths where inelastic 

scattering effects are negligible). 

 

This is an example of an explicit inverse model that recovers an IOP 

from measured light variables. 



Water Heating and Gershun’s Law 

The rate of heating of water depends on how much irradiance there is 

and on how much is absorbed: 

ρ = 1025 kg m-3 is the water density  

cv = 3900 J (kg deg C)-1 is the specific heat of sea water   

This is how irradiance is used in a coupled physical-biological-optical 

ecosystem model to couple the biological variables (which, with water, 

determine the absorption coefficient and the irradiance) to the 

hydrodynamics (heating of the upper ocean water) 



Solving the RTE 

Exact analytical (i.e., pencil and paper) solutions of the RTE can be 

obtained only for trivial situations, such as no scattering.  There is 

no function that gives 

 

L(z,q,f,) = f(a, VSF, sun angle, bottom reflectance, etc.) 

 

even for very simple situations such as homogenous water with 

isotropic scattering.   

 

Even the extremely simple geometry of an isotropic point light 

source in an infinite homogeneous ocean is unsolved.  This is 

because of the complications of scattering (which don’t exist for 

problems like the gravitational field around a point mass or the 

electric field around a point charge). 



Solving the RTE: Approximate Analytical Methods 

Approximate analytical solutions can be obtained for idealized 

situations such as single scattering in a homogeneous ocean.  

These solutions are seldom used today, but they were very 

important in the early (pencil and paper) days of remote sensing 

(used by Gordon in many CZCS-era papers). 

 

Quick outline:  SOS   SSA  QSSA 

(successive order of scattering; single-scattering approximation; 

quasi-single-scattering approximation) 

 

Assume: 

• The water is homogeneous: the IOPs do not depend on depth; 

• The water is infinitely deep; 

• The sea surface is level (zero wind speed); 

• The sun is a point source is a black sky, so that the incident 

radiance onto the sea surface is collimated; 

• There are no internal sources or inelastic scattering. 

 



Solving the RTE: The SOS Approximation 
The RTE is then 

 

Now write radiance = unscattered + scattered once + scattered twice + … 

 

This leads to a sequence of solvable equations: 

 



Solving the RTE: The SSA Approximation 

Now must integrate these equations with the appropriate boundary 

conditions at the sea surface and the bottom.  See the Web Book page  

www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_single

scattering_approximation 

for the calculus.   

 

The SSA stops after one scattering term. 

 
Now recall the shape of the VSF: 

http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_singlescattering_approximation
http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_singlescattering_approximation


Solving the RTE: The QSSA Approximation 

The QSSA treats forward scattered radiance in beam c as unscattered: 

Eventually get simple formulas for Lu, Rrs, & Kd: e.g. 

This is where Rrs ~ bb/(a + bb) comes from. 

See 

www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_

quasisinglescattering_approximation  

for the math. 

sw 

ψ 

s 

http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_quasisinglescattering_approximation
http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_quasisinglescattering_approximation


Solving the RTE: The QSSA Approximation 

The QSSA works surprisingly well for Rrs (and Kd): 

Why does the QSSA work so well? 

 

Why does the QSSA work better than the SSA, when it is even simpler? 



Solving the RTE: The QSSA Approximation 
Recall the path radiance term of the RTE: 

The QSSA accounts for the ''missing'' multiple scattering in the single-

scattering formulation by artificially increasing the amount of single scattering.  

The QSSA parameterizes multiple scattering within the single-scattering 

mathematical framework by artificially making the albedo of single scattering 

greater than 1.  See the Web Book QSSA page for the details. 

Example: For b = 4a and B = bb/b = 0.02 we have 

In the QSSA this becomes 



Solving the RTE: Numerical Methods 

The solution of the RTE for any realistic conditions of scattering or 

geometry must be done numerically.  Three widely used exact 

numerical methods are seen in the literature (in RT theory, “exact” 

means that we don’t make approximations such as single scattering.  

Given accurate inputs and enough computer time, you can get the 

correct answer as closely as you wish.) 

 

•  Discrete ordinates:  Widely used in atmospheric optics 

• highly mathematical 

• difficult to program 

• doesn’t handle highly peaked phase functions well 

• most codes need a level sea surface 

• models the medium as homogeneous layers 

• fast for irradiances and homogeneous systems 

• slow for radiances and inhomogeneous systems 

• therefore, not much used in oceanography 

 



Solving the RTE:  Numerical Methods 

•  Monte Carlo:  Widely used 

• simple math, easy to program 

• can solve 3D, time-dependent problems 

• easy to implement polarization  

• run time increases exponentially with optical depth 

• have to trace many photons to get accurate radiance estimates 

   (solutions have statistical noise) 

• very long run times for radiances and/or great depths 

• more useful for irradiance computations and/or shallow depths  

 

•  Invariant Imbedding:  What Hydrolight uses 

• highly mathematical (see Light and Water, Chaps 7 and 8) 

• difficult to program 

• 1D (depth dependence) problems only 

• run time increases linearly with optical depth 

• computes radiances accurately (no statistical noise) 

• extremely fast and accurate even for radiances and large depth 



Sea Kayaking in SE Greenland 
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