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Who Cares About Shallow Waters? 
●  Military needs maps of bathymetry and bottom classification 

in denied-access areas for amphibious operations; water 

clarity maps for optical mine finding and diver operations 

 

●  Ecosystem managers need to map and monitor bottom type 

and water quality for management of coral reefs, sea grass 

beds, kelp forests, fisheries, and recreation 

• episodic (hurricane effects, harmful algal blooms, 

pollution events) 

• long-term (global climate change, anthropogenic changes 

from coastal land usage) 

 

●  Maps needed at 1-10 meter spatial scales (not kilometers), 

sometimes within ~1 day of image acquisition, repeat on 

demand 



Coral Reef Background 
CORAL: COral Reef 

Airborne Laboratory 

Importance 

ARC Centre of Excellence for Coral Reef Studies/Marine Photobank 

Traditional Culture & Food $Multibillion Recreation Industry 

Unattributed 

Major Locus of Global Biodiversity 

Eric J Hochberg 

Shoreline 

Protection 

John Arveson 

Concern 

Coral reef ecosystem goods & services valued at ~$400 billion annually 

Coral reefs do not influence the short-term global carbon cycle, but... 

...they are among the first ecosystems to respond critically and dramatically to climate change. 

Ocean warming and acidification may exacerbate local impacts, leading to reef degradation 

worldwide. Current estimates: 25–30% already severely degraded, 15% more critically 

threatened in 10–20 years, another 20% threatened over 20–40 years (from E. Hochberg) 

Hoegh-Guldberg 

et al. (2007) 



Coral Reef Assessment 

Problem 

CORAL: COral Reef 

Airborne Laboratory 

Photoquadrat Transect: detailed, laborious, 

 small footprint 

“Manta-Tow”: quick, semi-quantitative, 

 larger footprint 

Reef Check Foundation 

Very sparse surveys vastly undersample reef 

 area across local and regional scales (from E. Hochberg) 



CORAL 

Overarching Science Question 

CORAL: COral Reef 

Airborne Laboratory 

What is the relationship between coral reef condition and biogeophysical forcing parameters? 

CORAL Science Objectives 

O1. Make high-density observations of reef condition for 3.3% of world's reef area (green in map 

below) — 3 orders of magnitude more than current, in situ observations. 

O2. Establish empirical models that relate reef condition to biogeophysical forcing parameters.  

(from E. Hochberg) 



Engineering Constraints 

We want meter-scale pixels and hyperspectral imagery 

 

MODIS sensor orbit:  44,460 km in 99 min  7500 m/s 

 

CASI frame rate = 33 frames/sec 

 

7500 m/s X 0.03 sec/frame  225 m/frame 

 

1 m/frame  0.0001 sec exposure time 



Counting Photons 

• View a larger surface area, which both increases the number of photons leaving 

the surface and allows for longer integration times. 

• View the surface area for a longer time, e.g., from a geostationary satellite that 

can stare at the same point for very long times (but a geostationary satellite has 

an altitude of 36,000 km, which makes the solid angle much smaller). 

• Increase the bandwidth. 

• Increase the aperture of the receiving optics. 

• Use multiple detector elements to observe the same ground pixel nearly 

simultaneously, either on the same or successive scans, and then combine the 

photons collected from the different sensors 

• Get closer to the surface, e.g. by using an airborne sensor flying at a few 

kilometers above the sea surface. This greatly increases the solid angle of the 

sensor and allows for longer integration times for a slowly flying aircraft. 

 

The praticable solution:  Fly low and slow with an airborne hyperspectral 

sensor 

You can’t get meter-scale hyperspectral imagery from a polar-orbiting satellite 

because there just aren’t enough photons reaching the TOA.  See 

www.oceanopticsbook.info/view/remote_sensing/level_2/counting_photons 

for order-of-magnitude estimates. 

http://www.oceanopticsbook.info/view/remote_sensing/level_2/counting_photons
http://www.oceanopticsbook.info/view/remote_sensing/level_2/counting_photons
http://www.oceanopticsbook.info/view/remote_sensing/level_2/counting_photons


Science Issues 

Atmospheric correction 

  ● Black pixel assumption isn’t valid because of bottom 

reflectance 

  ● Often have absorbing aerosols in coastal waters 

 

Retrieval algorithms 

  ● Statistical algorithms often fail in shallow coastal 

waters because of  complex mixtures of phytoplankton, 

minerals, and dissolved substances 

  ● Bottom-reflectance causes non-uniqueness in band-

ratio algorithms 



Three Techniques for Atmospheric Correction 

●  “Black-pixel” technique: developed for open-ocean (often Case 1 

water), multi-spectral, satellite ocean color remote sensing 

(SeaWiFS, MODIS, etc.)  Werdell discussed.  Works well for deep 

Case 1 water, but fails for optically shallow and highly scattering 

Case 2 waters. 

 

●  Empirical Line Fit (ELF):  A correlational technique that relates 

measured sea-level Rrs spectra to at-sensor radiances.  In principle 

can correct for any atmospheric conditions, but requires field 

measurements of Rrs at time of image acquisition 

 

●  Radiative Transfer Techniques:  Explicitly compute and remove the 

atmospheric path radiance for given atmospheric conditions and 

viewing geometry.  In principle can correct for any atmospheric 

conditions, but requires knowledge of atmospheric conditions at 

time of image acquisition  



Black-pixel Technique and Extrapolation 

This technique DOES NOT WORK for remote-sensing of shallow 

waters, because bottom reflectance often makes Lw(1) and Lw(2) non-

zero.  It fails for Case 2 waters with high mineral concentrations, 

because scattering by mineral particles can also make Lw(1) and Lw(2) 

non-zero.  It also fails if the aerosols are highly absorbing (dust, soot) as 

is often the case in coastal waters. 

 

It has inherent problems  

because small errors in  

the near IR can give big  

errors (even negative Lw)  

near 400 nm. 



Requirements for Shallow or Case 2 Water 

We need to have an atmospheric correction technique that  

 

•  does not require zero water-leaving radiance at particular 

wavelengths (no “black pixel” assumption) 

 

•  works for any water body (Case 1 or 2, deep or shallow) 

 

•  works for any atmosphere (including absorbing aerosols, which 

are common in coastal areas) 

 

•  does not require ancillary field measurements that cannot be 

obtained on a routine basis or in denied-access areas 

 

Faster, cheaper, better: pick any 2.  Here it’s pick any 3. 



Empirical Line Fit 

●  Measure Rrs at several points within the image area at the time of 

image acquisition 

 

● Correlate the measured Rrs with the at-sensor signal at each 

wavelength to get a function—the empirical line fit—that converts 

at-sensor values to sea-level Rrs 

 

● Apply this ELF to all pixels in the image 

 

●  In principle, the ELF technique can correct for any atmospheric 

conditions (which do not need to be known) 



Empirical Line Fit 
Example using WorldView-2 satellite multispectral imagery of St. Joseph’s Bay, FL 

There is a different ELF for 

each wavelength 



Empirical Line Fit 

The major drawback of the ELF technique is that it requires 

someone in the field, usually in a small boat, to make the needed 

sea-surface Rrs measurements at the time of the overflight. 

 

An ELF based on measurements in one part of the image will give 

a bad correction for an image if the atmospheric conditions vary 

over the image (clouds, variable aerosol concentration), or the sea 

surface reflectance varies (wind speed varies) 

 

The ELF can also become inaccurate for large off-nadir viewing 

angles because of different atmospheric path lengths and 

scattering angles.  



Radiative Transfer Techniques 

If we know the absorbing and scattering properties of the 

atmosphere, then we can use an atmospheric radiative transfer (RT) 

model to compute the atmospheric path radiance and surface 

reflectance contribution to the measured total, and subtract it out to 

obtain the water-leaving radiance. 

 

Example:  the TAFKAA  RT model was developed by the US Navy 

for this purpose (Gao et al, 2000; Montes et al, 2001; TAFKAA = The 

Algorithm Formerly Known As ATREM; ATmospheric REMoval). 

 

TAFKAA has been used to create large look-up tables for various 

wind speeds, sun angles, viewing directions, and atmospheric 

properties (aerosol type and concentration, surface pressure, 

humidity, etc).  These calculations (including polarization) required 

~6 x 107 RT simulations with TAFKAA, taking several months of time 

on a 256 processor SGI supercomputer. 



When correcting an image, 

each pixel in the scene has a 

different viewing geometry, and 

thus gets a different correction. 

 

The main disadvantage of any 

RT method is that it requires 

measurement or estimation of 

the atmospheric properties. 

   

This also requires having 

someone in the the field 

making meteorological 

measurements, or the use of 

imperfect atmospheric 

prediction models.  

Radiative Transfer Techniques 

sensor 



Imperfect Atmospheric Correction Visible in RGB 

HSI 
absorption/scattering 
product showing 
quantitatively different 
water masses. 

(c) 2006 Florida Environmental Research Institute 

flight lines are visible at edges 



Imperfect Atmospheric Correction Effects on Bathymetry 

Effects of imperfect 

atmospheric correction 

on retrieved (by 

spectrum matching) 

bathymetry.  The overall 

pattern is correct but 

note the “striping” in 

retrieved depths. 

 

1 m contours (RGBYC 

=1-5 m) 

courtesy of P. Bissett, FERI 



Bad Atmospheric Correction = Bad Retrieval 

Good retrievals depend on 

having a good atmospheric 

correction 

atmospheric 

undercorrection by 0.003 

1/sr gives bottom depths 

too shallow 



A Hybrid ELF-TAFKAA correction 

Hill et al. (2014; Estuaries and Coasts, DOI 10.1007/s12237-013-

9764-3): 

 

• Sea-level Rrs measurements were made at points in the imaged 

area at the time of the image acquisiton (as done for ELF) 

• For each Rrs, they searched the TAFKAA database of 75x106 

spectra to find the one that best matched the measured Rrs 

• The atmospheric parameters used to create the TAFKAA best-

match spectrum for each measured Rrs were then used to deduce 

a single “best-guess” set of atmospheric parameters for the image 

area 

• The deduced set of atmospheric parameters was then used (along 

with the sensor viewing geometry) to obtain a TAFKAA-corrected 

Rrs for each image pixel 

 

• This worked well for their airborne hyperspectral image 



Retrieval Algorithms 

●  Statistical band-ratio algorithms don’t work well for 

retrieval of bathymetry and bottom classification, so... 

●  Use spectrum matching to well calibrated and 

atmospherically corrected Rrs(λ) 

 

Two flavors of spectrum matching: 

 Match image Rrs(λ) to a semianalytical model 

 Match image Rrs(λ) to a precomputed database 



The Semi-analytical Model of Lee et al. for 

Deriving IOPs and Bottom Depth from Rrs 

Lee et al., Applied Optics, 1998 (model development) 

Lee et al., Applied Optics, 1999 (model testing)  

Used single-scattering theory and various assumptions to 

derive an approximate formula for rrs = Lu/Ed (in water) in 

shallow waters with a reflecting bottom. 

 

u = bb/(a + bb) 

 

rrs
dp = gu      in deep water 

 

g = g0 + g1u
g2 

 

Then add a correction factor to the deep-water rrs
dp to 

account for bottom reflectance contribution: 



rrs = rrs
dp  {1 - A0 exp [ -(Kd + Ku

C) H ] } + A1 r exp [ -(Kd + Ku
B) H ] 

 

rewrite Kd = Dd(a + bb), etc. to get 

a = a + bb, r is the bottom reflectance, w is the in-

water sun zenith angle, and H is the bottom depth 



The IOPs a and bb are modeled by simple formulas: 

 

a() = aw () + af() + aCDOM()  

 

af() = {a0() + a1() ln [ af(440) ] } af(440)  

 

a0() and a1() are known generic phytoplankton spectral shapes 

 

aCDOM() = aCDOM(440) exp [-0.015 ( - 440)] 

 

bb() = bbw() + bbp(400) (400/ )Y  

 

bbp(400) = 0.018 bp(400)    (assumes a Petzold phase function) 

 

bp() = B Chl0.62 (550/) 

 

Y is a function of Rrs(440)/Rrs(490) 

 

Rrs = 0.518 rrs / (1 - 1.562 rrs) 

 

and so on (see the paper for details) 



The final model thus relates Rrs to the 

 

absorption, via aCDOM(440) and af(440) = 0.06Chl 0.65 

backscatter, via B 

bottom reflectance r 

bottom depth H 

 

which are the unknowns to be retrieved from a 

measured hyperspectral Rrs() 

 

the sun zenith angle is known 
 

 



Then used HydroLight for a wide range of input IOPs, bottom 

depths, sun angles, etc. to generate rrs values, which were then 

fit with the model to determine the parameter values 

used HydroLight to 

generate pseudo data 

for determining 

parameter values 

because no real data 

were available 

Nonlinear 

minimization gives 

the final model with 

parameter values 

shown 



The final model is then fit to a measured hyperspectral 

Rrs() spectrum using a predictor-corrector algorithm to 

retrieve IOPs and depth 

initial guesses for 

aCDOM(440), 

af(440), B, r, H  

use SA model 

to predict 

Rrs() 

compare predicted 

and measured 

Rrs() to get error 

adjust current 

values of  

aCDOM(440), 

af(440), B, r, H  

accept values of  

aCDOM(440), 

af(440), B, r, H 

when Rrs() error 

stops decreasing  

Note that no in situ 

measurements are 

required, other 

than Rrs() itself  
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Retrieved vs Measured Phytoplankton Absorption 



Retrieved vs Measured CDOM Absorption and Depth 
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Spectrum Matching to a Database 
(Mobley et al., 2005. Applied Optics, 44(17), 3576-3592) 

The first step is to create a database of Rrs spectra that correspond 

to all possible combinations of water absorption and scattering 

properties, bottom depths, and bottom reflectances that might be 

found in the area being studied. 

 

This is done with a special version of EcoLight (nadir-viewing Rrs 

only) 

 

Then match image Rrs spectra to the database Rrs spectra. 



Rrs Database Creation 

Many different absorption 

spectra, many different scattering 

spectra, and many different 

backscatter spectra.  These 

spectra can be based on 

observations or models. 



Many different bottom 

reflectance spectra (pure 

bottom types and 

mixtures of bottom 

types), with the bottom 

placed at many depths,  

e.g. zb = 0.01, 0.25, 0.50, 

0.75, 1.0, ....,14.75, 15.0, 

15.5, ..., 19.5, 20, 25, 30, 

50 m, and  

The database creation run shown here (for Bahamas waters) used 25 

sets of water properties x 123 bottom reflectances x 83 depths, so 

25 x 123 x 83 ≈ 250,000 EcoLight runs to generate 250,000 Rrs 

spectra from 400 to 750 nm by 5 nm (about a week of computer time 

on a 2 GHz PC) 

Rrs Database Creation 



Each Rrs spectrum in the database corresponds to a known set of 

water properties (a, b and bb spectra), a bottom reflectance spectrum 

(bottom type), and a water depth. 

Rrs Database Creation 



Image Processing 

LUT retrieval: 

Depth 2.75 m 

80% sand, 20%  grass 

IOP set #17 

pixel Rrs 

extraction 

database of Rrs spectra 

database 

search 

spectrum match 

(after atmospheric correction) 



Example: Airborne Hyperspectral Image of 

Very Clear Water in the Bahamas 

NRL-DC PHILLS image from ONR CoBOP program, May 2000 

501x899 pixels at ~1.3 m resolution 

Horseshoe Reef ooid sand 

mixed sediment, 

corals, turf algae, 

seagrass 
Lee Stocking 

Island, Bahamas 

dense seagrass 



Bathymetry Retrieval 

Black: NRL acoustic survey points for ONR CoBOP program 

Color: depth retrieval 



Depth Retrieval vs. Acoustic Bathymetry 

These retrieval errors also include errors due to latitude-longitude calculations in 

mapping acoustic ping locations to image pixels (horizontal errors of several meters 

or more due to failure of built-in navigation instrument), and due to whitecaps 



Bottom Reflectance 

Rb(488) is what you would need for 

performance evaluation of a 488 nm 

bathymetric lidar 



Bottom Classification 

speckle due to whitecaps, which 

were not removed from the image 

spectra 



kNN Error Analysis 
Being able to place error bars or confidence estimates on retrievals 

is often as important as the retrieved value itself 

 

Can do this statistically from the distribution of retrieved values for 

the k closest matching spectra (k Nearest Neighbors, or kNN) 

the 30 closest matches give a 

histogram of retrieved depths 

the average or median gives a 

better estimate of the depth, plus 

an error estimate 



The closest and most 

frequently retrieved 

bottom reflectance 

spectrum was 30% 

sand and 70% 

seagrass. 

 

The other bottoms are 

similar mixtures of 

sand and grass, 

sargassum, turf algae, 

and macrophytes. 

 

So we can be fairly 

certain that the bottom 

is dense vegetation, 

probably sea grass 

kNN Error Analysis 



The retrieval is very certain about 

the absorption coefficient 

The retrieval is fairly certain about 

the scattering coefficient 

The retrieval is UNcertain about 

the backscatter coefficient 

kNN Error Analysis 



Does This Make Sense? 

• In these very clear waters, the water absorption determines how 

much light gets to the bottom and back to the surface.  Water-

column scattering and backscatter contribute less to the water-

leaving radiance in shallow water than does the bottom reflectance.  

 

• The retrieval was therefore most certain about the absorption 

coefficient, and least certain about backscatter. 

 

• The bottom reflectances all had similar reflectance spectra 

because it’s the reflectance that is important.  The retrieval wasn’t 

able to distinguish between sea grass, turf algae, sargassum, and 

macrophytes, which all have similar reflectances. 

 

• In very shallow (<5 m) clear water, the retrieved bottom reflectance 

becomes very certain and the water scattering and backscatter 

very uncertain (i.e., least important in determining Rrs) 



http://www.bestpicturesof.com/misc/pictures%20of%20bull+kelp/?page=2#Google 

http://www.beachwatchers.wsu.edu/ezidweb/seaweeds/Nereocystis.htm 

Kelp Mapping 

Bull kelp (Nereocystis luetkeana) is very 

important for food, medicines, sheltering 

of fish, and recreational diving.  

Harvesting is strictly managed in the US. 



2002 2004 



Humboldt Bay California 

 Eel Grass Mapping 
Chaeli Judd, MS Thesis, Judd et al., 2006 

HSI determined eel grass 

distributions, previously 

unknown. 



Uniqueness: Not a Problem (yet?) 

Red: infinitely deep water, Chl = 10 mg m-3 

Blue: 2 m deep clear water, sea grass bottom 

normalized Rrs spectra calibrated Rrs spectra 

Having well calibrated Rrs spectra removes the non-uniqueness 

that plagues band-ratio and other techniques that depend only on 

spectral shape.  Both spectral shape and magnitude are critical. 



Kathmandu, Nepal, 2011 

नमस्त े


