
Some basic statistics and 
curve fitting techniques 

Some important concepts: 

•  Data 

•  Statistical description of data 
(data reduction, independence) 

•  The use of statistics to make a 
point: 
1.  Statistics never proves a 

point. 
2.  If you need fancy statistic to 

support a point, your point 
is, at best, weak… 



Statistical description of data 

Statistical moments (1st and 2nd): 
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•  Standard deviation: Var=σ

•  Average deviation: 
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•  Standard error: Nserror σ=



•  Standard error: Nserror σ=

When is the uncertainty not reduced by 
sampling more?  



Statistical description of data 

Probability distribution: 



Non-normal probability distribution: 



Statistical description of data 

Nonparametric statistics (when the 
distribution is unknown): 

•  rank statistics 

• Median  

•  Deviation estimate 

•  percentile 

•  The mode 

Issue: robustness 
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Statistical description of data 

Robust: “insensitive to small 
departures form the idealized 
assumptions for which the estimator 
is optimized.” 



Statistical description of data 
Examples from COBOP: 



Relationship between 2 variables 
Linear correlation: 
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Rank-order correlation: 



Regressions of type I and type II 
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Minimize χ2 by taking the derivative of χ2 wrt a  
and b and equal it to zero. 
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What if we have errors in both x and y? 

Uncertainties in y only: 

Minimize χ2 by taking the derivative of χ2 wrt a  
and b and equal it to zero. 

Press et al.’s approach:  



The coefficient of determination 
 
R2 = 1- MSE/Var(y).  
 
MSE=mean square error=average error of 
model^2/variance.  
 
What variance does it explain?  
 
Can it reveal cause and effect? 
 
How is it affected by dynamic range? 
 
R is the ‘correlation coefficient’. 



Regressions of type I and type II 
Classic type II approach (Ricker, 1973): 

The slope of the type II regression is the 
geometeric mean of the slope of y vs. x and the 
inverse of the slope of x vs. y. 
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Smoothing of data 

Filtering noisy signals. 

What is noise? 
 
•  instrumental (electronic) noise. 

•  Environmental ‘noise’. 

“one person’s noise may be another 
person’s signal” 

Matlab: filtfilt 



Method of fluctuation 

Lab aggregation exp.: 

Briggs et al., 2013 

Sample volume 

Measurement 
time 



Modeling of data 

Condense/summarize data by fitting 
it to a model that depends on 
adjustable parameters. 

Example, CDM spectra: 

particulate attenuation spectra: 
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Modeling of data 
Example: CDM spectra. 

Merit function:  
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• For non-linear models, there is no 
guarantee to have a single minimum. 
• Need to provide an initial guess. 
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Matlab: fminsearch 



Modeling of data 
Lets assume that we have a model 
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A more robust merit function:  
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Problem: derivative is not 
continuous. Can be used to fit lines. 



Statistical description of data 



Monte-Carlo/Bootstrap methods 

Need to establish confidence 
intervals in: 

 
1.  Fitting-model parameters (e.g. 

CDM fit). 

2.   Model output (e.g. Hydrolight). 

in out



When there is an uncertainty (or 
possible error) associated with the 
input: 

in2 out2

in1 out1

in3 out3

inN outN

Vary inputs with random errors and 
observe effect on output: 



Example: how to assign uncertainties in derived 
spectral slope of CDOM. 

Merit function:  
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Randomly add uncertainties (Δi) to each 
measurement, each time performing the fit (e.g. 
using randn.m in Matlab, RAND in Excel). 
 
Then do the stats for the different s. 


