Ocean color satellite atmospheric correction

Jeremy Werdell

NASA Goddard Space Flight Center

UMaine Ocean Optics Summer Course 6 – 31 July 2015

Acknowledgements: Zia Ahmad, Sean Bailey, Bryan Franz, Wayne Robinson & Curt Mobley

jeremy.werdell@nasa.gov

satellite ocean color

we desire measurements of marine biogeochemical stocks (e.g., []'s of phytoplankton, carbon) to further our understanding of marine ecosystems

satellites provide routine, synpotic views of the marine biosphere that cannot be achieved using conventional *in situ* & aircraft platforms

ocean color satellite instruments measure light (AOPs) - not []'s

satellite ocean color

ocean color satellites measure top-of-atmosphere radiances $\begin{array}{l} \searrow \\ L_t = \left(L_r + \left[L_a + L_{ra}\right] + t_{dv}L_f + t_{dv}L_w\right) t_{gv} t_{gs} f_p
\end{array}$

- L = radiance (uW cm⁻² nm⁻¹ sr⁻¹)
- t = transmittance (unitless)
- f = correction factor (unitless)

all terms are spectrally dependent

satellite ocean color

outline

atmospheric correction is the process of estimating R_{rs} from L_t

$$L_{t} = (L_{r} + [L_{a} + L_{ra}] + t_{dv}L_{f} + t_{dv}L_{w})t_{gv}t_{gs}f_{p}$$

$$R_{rs} = \frac{L_w}{F_0 \cos(\theta_s) t_{ds} f_s f_b f_\lambda}$$

we will sequentially step through the meaning & derivation of each term in these equations

preview

top-of-atmosphere radiance

 $(L_t) = (L_r + [L_a + L_{ra}] + t_{dv}L_f + t_{dv}L_w)t_{gv}t_{gs}f_p$ $R_{rs} = \frac{L_w}{F_0 \cos(\theta_s) t_{ds} f_s f_h f_\lambda}$

top-of-atmosphere radiance

 L_w is often <10% of L_t !

0.5% error in atmospheric correction or calibration corresponds to possible 5% error in L_w

known terms

$$L_{t} = \left(L_{r} + [L_{a} + L_{ra}] + t_{dv}L_{f} + t_{dv}L_{w}\right)t_{gv}t_{gs}f_{p}$$

$$R_{rs} = \frac{L_{w}}{F_{0}\cos(\theta_{s})t_{ds}f_{s}f_{b}f_{\lambda}}$$

known terms

instrument polarization correction factor (pre-launch measurement)

molecular (Rayleigh) scattering

$$L_{t} = \left(L_{r} + [L_{a} + L_{ra}] + t_{dv}L_{f} + t_{dv}L_{w}\right)t_{gv}t_{gs}f_{p}$$

$$R_{rs} = \frac{L_{w}}{F_{0}\cos(\theta_{s})t_{ds}f_{s}f_{b}f_{\lambda}}$$

molecular (Rayleigh) scattering

- elastic scattering of electromagnetic radiation by particles much smaller than the wavelength of light (atoms or molecules)
- Rayleigh scattering of sunlight in atmosphere causes diffuse sky radiation

 why the sky is blue and the Sun is yellow

- results from electric polarizability of the particles
 - the oscillating electric field of a light wave acts on the charges within a particle, causing them to move at the same frequency
 - \circ $\,$ particle becomes a dipole whose radiation we see as scattered light
- scattering phase function is symmetrical equal forward & backward

molecular (Rayleigh) scattering

Rayleigh optical properties are calculable (to ~0.2%) – made challenging by a rough, reflective ocean (in lieu of a flat, black ocean)

Rayleigh radiances (with polarization) are retrieved from look up tables given:

- solar & satellite viewing geometries
- wind speed (a proxy for surface roughness)
- atmospheric pressure (to adjust Rayleigh optical thickness, τ_r)

$$L_{t} = \left(L_{r} + [L_{a} + L_{ra}] + t_{dv}L_{f} + t_{dv}L_{w}\right)t_{gv}t_{gs}f_{p}$$

$$R_{rs} = \frac{L_{w}}{F_{0}\cos(\theta_{s})t_{ds}f_{s}f_{b}f_{\lambda}}$$

diffuse transmittance of gases (g) in direction of Sun (s) or satellite (v) $L_t = \left(L_r + \left[L_a + L_{ra}\right] + t_{dv}L_f + t_{dv}\right)$ L_{W} $R_{rs} = \frac{1}{F_0 \cos(\theta_s t_{ds}) f_s f_b} f_{\lambda}$ Rayleigh / aerosol diffuse transmittance (d) in direction of Sun (s) or satellite (v)

nitrogen dioxide, ozone, oxygen, & water vapor all attenuate sunlight

O₃ optically thin & high in atmosphere, but NO₂ dense & near the surface

requires ancillary data, e.g.:

- NO₂ from SCIAMACHY/GOME/OMI
- O₃ from OMI/TOMS
- water vapor from NCEP

ancillary data from varied sources for a given product often differ

$$E_d(z) = E_d(0^-) \exp(-K_d z)$$
$$E_d(z) = E_d(0^-) \exp(-\tau)$$
$$\frac{E_d(z)}{E_d(0^-)} = \exp(-\tau)$$
$$t = \exp(-\tau)$$

I often need to mentally transfer atmospheric terminology to oceanic terminology

$$\tau_{O_3} = O_3 k_{O_3}$$
$$t_{O_3} = \exp\left[-\tau_{O_3} \left(\frac{1}{\cos(\theta_0)} + \frac{1}{\cos(\theta)}\right)\right]$$

a word about ancillary data

foam & whitecaps

$$L_{t} = \left(L_{r} + [L_{a} + L_{ra}] + t_{dv}L_{f} + t_{dv}L_{w}\right)t_{gv}t_{gs}f_{p}$$

$$R_{rs} = \frac{L_{w}}{F_{0}\cos(\theta_{s})t_{ds}f_{s}f_{b}f_{\lambda}}$$

foam & whitecaps

15

a quick aside about Sun glint

ideally, satellite ocean color instruments tilt away from Sun glint (e.g., SeaWiFS)

equation for top-of-atmosphere radiance can more accurately be described as:

$$L_{t} - F_{0} T_{0} T L_{GN} = \left(L_{r} + \left[L_{a} + L_{ra}\right] + t_{dv}L_{f} + t_{dv}L_{w}\right)t_{gv}t_{gs}f_{p}$$

$$(1)$$

$$Contribution of Sun glint$$

Sun glint

Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products

Menghua Wang and Sean W. Bailey

4790 APPLIED OPTICS / Vol. 40, No. 27 / 20 September 2001

 $T L_g = F_0 T_0 T L_{GN}$

 L_{GN} is glint radiance normalized to no atmosphere & $F_0 = 1$

$$T_0 T = \exp\left[-(\tau_r + \tau_a)\left(\frac{1}{\cos(\theta_0)} + \frac{1}{\cos(\theta)}\right)\right]$$

two step iteration since we don't know τ_a :` (1) [L_t, τ_a ', W] \rightarrow L_t⁽¹⁾=L_t-L_g \rightarrow $\tau_a^{(1)}$ (2) [L_t⁽¹⁾, $\tau_a^{(1)}$, W] \rightarrow L_t⁽²⁾=L_t⁽¹⁾-L_g \rightarrow $\tau_a^{(2)}$

with initial guess of $\tau_a' \sim 0.1$ (additional logic included to prevent overcorrection)

Fig. 1. Normalized sun glint radiance L_{GN} as a function of the sensor-viewing angle (solar zenith angle, 40°) and for (a) various relative azimuthal angles with surface wind speed of 5 m/s and (b) various surface wind speeds with a relative azimuthal angle of 20°.

L_{GN} from Cox and Munk (1954) requires ancillary wind speed & geometries of Sun & sensor

Sun glint

when $L_{GN} > 0.005 \text{ sr}^{-1}$

mask the pixel as HIGH GLINT

when $L_{GN} \le 0.005 \text{ sr}^{-1}$

remove TL_g from L_t

$$L_{t} - F_{0} T_{0} T L_{GN} = (L_{r} + [L_{a} + L_{ra}] + t_{dv}L_{f} + t_{dv}L_{w})t_{gv}t_{gs}f_{p}$$
contribution
of Sun glint

aerosols

aerosol tables single- vs. multi-scattering aerosol selection the "black pixel" assumption absorbing aerosols

aerosol tables

- aerosol properties can be characterized by their particle size distribution (PSD) & their complex index of refraction (m)
- given a PSD & m (& assuming sphericity), aerosol optical properties can be computed using Mie theory:
 - o scattering phase function $(\hat{\beta})$
 - o single scattering albedo ($\omega = b / c$)
 - extinction coefficient (c = a + b)
- aerosol optical thickness relates to extinction coefficient

$$^{\circ} \quad \tau_a = \int_0^z c(z) \, dz$$

- aerosol tables are generated for various PSDs (& m's) & are
 - o defined by $ilde{eta}$, ω , au_a (& other variables)
 - navigated using solar & satellite viewing geometries

aerosol tables

- we assume each PSD to be represented by 2 lognormal distributions
 - fine particles (continental & sometimes absorbing)
 - o coarse particles (oceanic / sea salt & non-absorbing)

- each PSD modulated by varying relative humidity
 - humidity changes particle size
 - requires ancillary data from NCEP
- 80 aerosol tables total, built from AERONET measurements
 - **10 PSDs**
 - 8 relative humidities

see Ahmad et al., Applied Optics, 2010

aerosol tables

- the Angstrom exponent (α) provides an estimator of particle size
 - high α = small particles
 - \circ low α = large particles

$$\circ \quad \text{defined via} \quad \frac{\tau_a(\lambda)}{\tau_a(\lambda_0)} = \left(\frac{\lambda_0}{\lambda}\right)^{\alpha}$$

 aerosol models often defined by epsilon (ε)

$$\circ \ \varepsilon(748,869) = \frac{L_a(748)}{L_a(869)}$$

in the open ocean, we can assume (???) that L_w in the near-infrared (NIR) is = 0 (rather, is *black*)

thus, in the NIR (e.g., 748 and 869 nm): $L_a(NIR) + L_{ra}(NIR) = L_t(NIR) -$ the terms we computed

$$L_a + L_{ra} = L_t t_{gv} t_{gs} f_p - L_r - t_{dv} L_f$$

aerosol selection

 $L_w(NIR) = 0$, so $L_a(NIR) + L_{ra}(NIR) = L_t(NIR) - (everything previously computed)$ how do we estimate $L_a(visible) + L_{ra}(visible)$?

- let's refer to [L_a + L_{ra}] simply as L_a & ignore single- vs. multi-scattering issues
- select the 10 aerosol tables that match the observed NCEP relative humidity
- compute epsilon values for the 10 tables [ϵ (748,869) = L_a(748) / L_a(869)]
- perform an iterative determination of the mean ϵ (748,869) value (can be describe offline) & select a final bounding 2 aerosol models
- using 2 bounding models, calculate $\epsilon(\lambda, 869)$ from $\epsilon(748, 869)$
- calculate $L_a(\lambda) = \epsilon(\lambda, 869) L_a(869)$

see Gordon & Wang, Applied Optics, 1994

final retrieval of $L_a(\lambda)$ is more accurate than that of τ_a and α ; not unlike retrievals of $a(\lambda)$ being more accurate than $a_{dg}(\lambda) \& a_{ph}(\lambda)$ in inversion models (lectures 19 & 20)

32

sites for upcoming case studies

are R_{rs}(NIR) really black?

are R_{rs}(NIR) really black?

what happens when we don't account for $R_{rs}(NIR) > 0$?

use the "black pixel" assumption (e.g., SeaWiFS 1997-2000)

fixed aerosol & water contributions (MUMM)

assign ϵ & ρ_w (NIR) (via fixed values, a climatology, nearby pixels)

advantages:

accurate configuration leads to accurate aerosol & R_{rs}(NIR) retrievals several configuration options: fixed values, climatologies, nearby pixels method available for all past, present, & future ocean color satellites

disadvantages:

no configuration is valid at all times for all water masses requires local knowledge of changing aerosol & water properties implementation can be complicated for operational processing

use of SWIR bands only

compare NIR & SWIR retrievals when considering only "turbid pixels"

use of NIR + SWIR bands

use SWIR bands in "turbid" water, otherwise use NIR bands

advantages:

"black pixel" assumption largely satisfied in SWIR region of spectrum straightforward implementation for operational processing

disadvantages:

only available for instruments with SWIR bands SWIR bands on MODIS have inadequate signal-to-noise (SNR) ratios difficult to vicariously calibrate the SWIR bands on MODIS must define conditions for switching from NIR to SWIR

correction of non-negligible R_{rs}(NIR)

estimate R_{rs}(NIR) using a bio-optical model

operational SeaWiFS & MODIS processing ~ 2000-present

advantages:

method available for all past, present, & future ocean color missions straightforward implementation for operational processing

disadvantages:

bio-optical model not valid at all times for all water masses

initial $R_{rs}(670)$ measured by satellite (using $R_{rs}(765) = 0$)

initial $R_{rs}(670)$ measured by satellite (using $R_{rs}(765) = 0$)

model $a(670) = a_w(670) + a_{pg}(670)$

46

initial $R_{rs}(670)$ measured by satellite (using $R_{rs}(765) = 0$)

model $a(670) = a_w(670) + a_{pg}(670)$

estimate b_b(670) using R_{rs}(670), a(670), & G(670) [Morel et al. 2002]

$$R_{rs}(670) = G(670) \frac{b_b(670)}{a(670) + b_b(670)}$$

initial $R_{rs}(670)$ measured by satellite (using $R_{rs}(765) = 0$)

model $a(670) = a_w(670) + a_{pg}(670)$

estimate b_b(670) using R_{rs}(670), a(670), & G(670) [Morel et al. 2002]

model η using R_{rs}(443) & R_{rs}(555) [Lee et al. 2002]

initial $R_{rs}(670)$ measured by satellite (using $R_{rs}(765) = 0$)

```
model a(670) = a_w(670) + a_{pg}(670)
```

estimate b_b(670) using R_{rs}(670), a(670), & G(670) [Morel et al. 2002]

model η using R_{rs}(443) & R_{rs}(555) [Lee et al. 2002]

estimate $b_{b}(765)$ using $b_{b}(670)$ & η

$$b_b(765) = b_{bw}(765) + b_{bp}(670) \left(\frac{670}{765}\right)^{\eta}$$

initial $R_{rs}(670)$ measured by satellite (using $R_{rs}(765) = 0$)

model $a(670) = a_w(670) + a_{pg}(670)$

estimate b_b(670) using R_{rs}(670), a(670), & G(670) [Morel et al. 2002]

model η using R_{rs}(443) & R_{rs}(555) [Lee et al. 2002]

estimate $b_b(765)$ using $b_b(670)$ & η

reconstruct R_{rs}(765) using b_b(765), a_w(765), & G(765)

$$R_{rs}(765) = G(765) \frac{b_b(765)}{a_w(765) + b_b(765)}$$

a_w(**765**) = 2.85 m⁻¹

initial $R_{rs}(670)$ measured by satellite (using $R_{rs}(765) = 0$)

```
model a(670) = a_w(670) + a_{pg}(670)
```

estimate b_b(670) using R_{rs}(670), a(670), & G(670) [Morel et al. 2002]

model η using R_{rs}(443) & R_{rs}(555) [Lee et al. 2002]

```
estimate b_b(765) using b_b(670) & \eta
```

```
reconstruct R_{rs}(765) using b_{b}(765), a_{w}(765), & G(765)
```

iterate until Rrs(765) changes by <2% (typically 3-4 iterations)

locations of application of bio-optical model

black = land; grey = Chl < 0.3 mg m⁻³; white Chl > 0.3 mg m⁻³

not applied when ChI < 0.3 mg m⁻³ weighted application when 0.3 < ChI < 0.7 mg m⁻³ fully applied when ChI > 0.7 mg m⁻³ Bailey et al., Optics Express, 2010

$$L_{t} = \left(L_{r} + [L_{a} + L_{ra}] + t_{dv}L_{f} + t_{dv}L_{w}\right)t_{gv}t_{gs}f_{p}$$

$$R_{rs} = \frac{L_{w}}{F_{0}\cos(\theta_{s})t_{ds}f_{s}f_{b}f_{\lambda}}$$

we normalize R_{rs} to account for Sun's changing position in the sky:

pathlengths through atmosphere

transmission of light through air-sea & sea-air interfaces

angular features of in-water volume scattering functions

Morel et al., Applied Optics, 2002

normalize all measurements to condition of overhead Sun

 $\mathfrak{R},\mathfrak{R}_0,F,F_0,Q,Q_0$

from look up tables based on Chl & geometries of Sun & sensor

$$\begin{split} \begin{bmatrix} L_w \end{bmatrix}_N^{\text{ex}} &= \begin{bmatrix} L_w \end{bmatrix}_N \frac{\Re_0}{\Re(\theta', W)} \frac{f_0(\tau_a, W, \text{IOP})}{Q_0(\tau_a, W, \text{IOP})} \\ & \times \left(\frac{f(\theta_s, \tau_a, W, \text{IOP})}{Q(\theta_s, \theta', \phi, \tau_a, W, \text{IOP})} \right)^{-1}, \end{split}$$

Fig. 13. Evolution of the f_0/f ratio with the Chl and for solar angles as indicated by the shaded areas (the values for $\theta_s = 60^\circ$, which overlap those for 45° and 75°, are not displayed); the symbols are for the various wavelengths.

Morel et al., Applied Optics, 2002

normalize all measurements to condition of overhead Sun

 $\mathfrak{R},\mathfrak{R}_0,F,F_0,Q,Q_0$

from look up tables based on Chl & geometries of Sun & sensor

$$egin{aligned} & [L_w]_N \, rac{\Re_0}{\Re(heta',\,W)} \, rac{f_0(au_a,\,W,\, ext{IOP})}{Q_0(au_a,\,W,\, ext{IOP})} \ & imes \left(rac{f(heta_s,\, au_a,\,W,\, ext{IOP})}{Q(heta_s,\, heta',\, ext{\phi},\, au_a,\,W,\, ext{IOP})}
ight)^{-1}, \end{aligned}$$

$$L_{t} = \left(L_{r} + [L_{a} + L_{ra}] + t_{dv}L_{f} + t_{dv}L_{w}\right)t_{gv}t_{gs}f_{p}$$

$$R_{rs} = \frac{L_{w}}{F_{0}\cos(\theta_{s})t_{ds}f_{s}f_{b}f_{\lambda}}$$

calculate $R_{rs}(\lambda)$ using Morel & Maritorena (2001) for 0.01 < Chl < 3 mg m⁻³

calculate $R_{rs}(\lambda)$ using MMo1 for 0.01 < Chl < 3 mg m⁻³

```
for each satellite band \lambda_i:
for each Chl<sub>j</sub>:
calculate 10-nm mean R_{rs}(\lambda_i, Chl_j)
calculate full-spectral-response R_{rs}(\lambda_i, Chl_j)
ratio r(\lambda_i, Chl_i) = 10-nm / full-band
```


62

calculate $R_{rs}(\lambda)$ using MMo1 for 0.01 < Chl < 3 mg m⁻³

calculate $R_{rs}(\lambda)$ using MMo1 for 0.01 < Chl < 3 mg m⁻³

```
for each satellite band \lambda_i:
for each Chl<sub>j</sub>:
calculate 10-nm mean R_{rs}(\lambda_i, Chl_j)
calculate full-spectral-response R_{rs}(\lambda_i, Chl_j)
ratio r(\lambda_i, Chl_i) = 10-nm / full-band
```

plot / regress ratio vs. full-band $R_{rs}(490)$ / $R_{rs}(555)$ derive polynomial expression to estimate ratio from full-band ratio

calculate $R_{rs}(\lambda)$ using MMo1 for 0.01 < Chl < 3 mg m⁻³

```
for each satellite band \lambda_i:
for each Chl<sub>j</sub>:
calculate 10-nm mean R_{rs}(\lambda_i, Chl_j)
calculate full-spectral-response R_{rs}(\lambda_i, Chl_j)
ratio r(\lambda_i, Chl_i) = 10-nm / full-band
```

plot / regress ratio vs. full-band $R_{rs}(490)$ / $R_{rs}(555)$ derive polynomial expression to estimate ratio from full-band ratio

to "adjust" satellite full-band to 10-nm, apply correction factors Rrs(λ_i ,10-nm) = r(λ_i) * Rrs(λ_i ,full-band)

SeaWiFS Spectral Response for Band 2 (443 nm)

SeaWiFS Out-of-Band Correction for Band 2 (443 nm)

why do we care?

satellite R_{rs} adjusted using a bio-optical model

take care when executing satellite-to-in situ match-ups

when using multispectral in situ radiometers: enable the bandpass adjustment

when using hyperspectral in situ radiometers: enable the adjustment when applying 10-nm filter to in situ R_{rs} disable the adjustment when applying full-spectral-response to in situ R_{rs}

so there you have it – perfect R_{rs}

$$L_{t} = \left(L_{r} + [L_{a} + L_{ra}] + t_{dv}L_{f} + t_{dv}L_{w}\right)t_{gv}t_{gs}f_{p}$$

$$R_{rs} = \frac{L_{w}}{F_{0}\cos(\theta_{s})t_{ds}f_{s}f_{b}f_{\lambda}}$$

scorecard – ancillary data requirements

ancillary data

atmospheric pressure water vapor relative humidity wind speed ozone NO₂ sea surface temperature sea ice

ancillary source

NCEP NCEP NCEP OMI/TOMS Sciamachy/OMI/GOME Reynolds

NSIDC

uses

Rayleigh transmittance aerosol models white caps, Sun glint, Rayleigh transmittance transmittance bio-optical algorithms masking

look-up tables, coefficients

aerosol models Rayleigh Rayleigh optical thickness ozone absorption NO₂ absorption pure seawater absorption, scattering, index of refraction (temp/sal dependent) f/Q (bidirectional reflectance distributions) others ...

other issues

only if we have time ...

absorbing aerosols

single vs. multiple scattering

adjacency effects

others?

absorbing aerosols

Dubovik, O., B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker (2002), Variability of absorption and optical properties of key aerosol types observed in worldwide locations, *J. Atmos. Sci.*, *59*, 590-608.
absorbing aerosols

effect of aerosol layer height on top-of-atmosphere reflectances

For dust (ω =0.878) & τ_a =0.1, a 1-km error in aerosol layer height corresponds to 0.3% difference in L_t. This translates into a 3% difference in L_w. The error increases with increasing τ_a For an aerosol layer at 3-km & τ_a =0.1, a change from ω =0.878 to ω =0.918 corresponds to 1% difference in L_t. This translates into a 10% difference in L_w. The error increases with increasing τ_a

single vs. multiple scattering

single scattering solution historically used to simplify math (CZCS – present)

in the atmospheric correction algorithm, the relationship between single (SS) and multiple scattered (MS) reflectances is defined as:

$$ln(\rho_{\rm ms}) = a_0 + a_1 ln(\rho_{\rm ss}) + a_2[ln(\rho_{\rm ss})]^2$$

see Gordon & Wang, Applied Optics, 1994

single vs. multiple scattering

why bring this up?

- satellites "observe" multi-scattering
- operational atmospheric corrections schemes convert to single-scattering
- what errors are introduced? (plus, error propagation made difficult)- is this still necessary?

aerosol selection

 $L_w(NIR) = 0$, so $L_a(NIR) + L_{ra}(NIR) = L_t(NIR) - (everything previously computed) how do we estimate <math>L_a(visible)$?

- select the 10 aerosol tables that match the observed NCEP relative humidity
- use the observed multiple scattered $\rho_{ms}(748,869)$ values to compute the single scattering $\rho_{ss}(748,869)$ values for each aerosol model of the selected *Rh* suite
- compute the single scattering epsilon values ($\epsilon_{ss} = \rho_{ss}(748)/\rho_{ss}(869)$)
- perform an iterative determination of the mean ϵ_{ss} value (can be describe offline) & select a final bounding 2 aerosol models

extra slides

molecular (Rayleigh) scattering

Rayleigh scattering phase functions & optical thicknesses are known:

$$\begin{split} \tilde{\beta}(\theta) &\propto 1 + \cos^2 \theta \\ \tau_r(P_0) &= 0.008569 \lambda^{-4} (1 + 0.0113 \lambda^{-2} + 0.00013 \lambda^{-4}) \\ \tau_r(P) &= \tau_r(P_0) \frac{P}{P_0} \end{split}$$

transmittances

