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Forward Model

• Start with incident radiance

• Propagate through the medium using IOPs

• Radiative Transfer Equation

– Monte Carlo

– Hydrolight



Inverse Model

• Approximations to the Radiative Transfer 
Equation

– Empirical models

– Semi-analytic models (semi-empirical)

• Start with AOPs

• Derive the IOPs



IOCCG



How do you measure the 
reflectance ratio?

Roesler and Perry 1995 Cullen et al. 1997 Lee et al. 2013 Clarke et al. 1970



From Curt’s Lecture:  empirically estimate chlorophyll 
[chl] from radiance or reflectance ratios 

R13

R12

R23

Coastal Zone Color Scanner

Gordon et al. 1985



Maximum Band Ratio Algorithm

NASA's Operational Empirical Chlorophyll Algorithm



operational empirical (statistical) algorithms 

typically have a form that resembles:

NASA's Operational Empirical Chlorophyll Algorithm

equation that fits the distribution of points
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• Empirical estimation of chlorophyll from radiance (“black box”)

• But chlorophyll isn’t what is impacting radiances, it is the IOPs



• And the IOPs are determined by constituent properties

• So inverting radiance provides information on all of these 
constituents



You have heard how to estimate chl from spectral 
reflectance ratios, but back in 1977 Morel and Prieur
were already investigating the IOP R relationship



R = Eu

Ed

Measurements of R = Eu/Ed

QSSA leads to:  R = 0.33 bb/(a+bb)

• Goals of paper

• Explain variations in R 
with respect to bb, a

• Model the IOPs to 
predict R

• These results are the 
basis for semi-analytic 
inversions
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Parameterize the Spectral Backscattering
(remember there were no measurements)

b(l) = bw(l) + bp(l) and bb(l) = bbw(l) + bbp(l)

= bbw(lo) l-4.3 + bbp(lo) lnp

when water dominates 
the spectral slope is 
dominated by that of water

but as particles dominate 
the spectral slope is 
very reduced and dependent
upon the slope of the power
function (np)

np= -1

np= 0



Case 1:  Blue Waters

R(l) = 
bw(l) + bp(l)

aw(l)
Only bp(l) varies

modeled

T1 to T5 increasing [particles]
np =1 (dotted), np=0 (solid)

Measured

Crater Lake
Sargasso Sea

Compared modeled T3, T4
With measured spectra (solid)



Case 2:  Green Waters
V-type Chl-dominated

R(l) = 
bw(l) + bp(l)
aw(l) +aphyt(l)

aphyt and bp(l) ~ [chl]

[chl] = 0.2

[chl] = 18.1



Case 2:  Green Waters
U-type Sediment-dominated

R(l) = 
bw(l) + bbp(l)

aw(l) +aphyt(l) +ap(l)
aphyt ~ [chl]
ap and bp ~ [chl]



Generalized semi-analytic model

bb = bbw +(b-bw)
bbp

bp

a = aw + [chl + pheo]a*phyt + b ap

(know bw, bbw, measure b)

Assume a backscattering ratio
for particles is spectrally flat,
adjust to match R(500), bp



The results
Order of magnitude variations exist between reflectance 

ratios and pigment due to combined spectral variations of 
absorption and backscattering

Variations in ocean color are 
explained by more than variations 

in pigment concentrations



1990s  Invert R to obtain IOPs

R(l) = f/Q 
𝑏
𝑏
(l

𝑎(l+𝑏
𝑏
(l

Starting in 1995 there was an explosion of papers 
(well, OK, less than 5) focused on semi-analytical 
inversion models to obtain IOPs from reflectance

Here is how it works…



1990s  Invert R to obtain IOPs

Step 1. The IOPs are additive, separate into 
absorbing and backscattering components

a(l) = aw(l) + aphyt(l) + aNAP(l) + aCDOM(l) 

bb(l) = bbw(l) + bbp(l)

R(l) = f/Q 
𝑏
𝑏
(l

𝑎(l+𝑏
𝑏
(l
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1990s  Invert R to obtain IOPs

Step 2. Beer’s Law indicates component IOPs are 
proportional to component concentration, define 
concentration-specific spectral shapes. For example 
chlorophyll-specific phytoplankton absorption

aphyt(l) = [chl] x a*phyt(l)

Component IOP = concentration x concentration-specific IOP

= scalar x vector

= magnitude x spectral shape

= eigenvalue x eigenvector

R(l) = f/Q 
𝑏
𝑏
(l

𝑎(l+𝑏
𝑏
(l



1990s  Invert R to obtain IOPs

Step 3. Put it all together

water IOPs know and constant

eigenvectors are spectra, representative shapes

eigenvalues are scalars to be estimated

R(l) = f/Q 
𝑏
𝑏
(l

𝑎(l+𝑏
𝑏
(l

R(l) = f/Q 
𝑏𝑤(l  𝐴𝑏𝑏𝑝 𝑏𝑏𝑝

∗ (l

𝑎𝑤(l  𝐴𝑝ℎ𝑦𝑡 𝑎𝑝ℎ𝑦𝑡
∗ (l  𝐴𝑁𝐴𝑃 𝑎𝑁𝐴𝑃
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1990s  Invert R to obtain IOPs

Step 4. input known eigenvectors (component IOP 
spectra), perform regression against measured 
reflectance spectrum to estimate eigenvalues 
(magnitudes, As)

How much of each absorbing and backscattering 
component is needed (in a least squares sense) to 
reconstruct the measured reflectance spectrum?

R(l) = f/Q 
𝑏
𝑏
(l

𝑎(l+𝑏
𝑏
(l

R(l) = f/Q 
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∗ (l  𝐴𝑁𝐴𝑃 𝑎𝑁𝐴𝑃

∗ (l  𝐴𝐶𝐷𝑂𝑀 𝑎𝐶𝐷𝑂𝑀
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1990s  Invert R to obtain IOPs 

R(l) = f/Q 
𝑏
𝑏
(l

𝑎(l+𝑏
𝑏
(l
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1990s  Invert R to obtain IOPs

R(l) = f/Q 
𝑏
𝑏
(l

𝑎(l+𝑏
𝑏
(l

Starting in 1995 there was an explosion of papers 
(well, OK, less than 5) inversion models utilizing this 
approach. The differences between them lies in:

1) Definition of eigenvectors (spectral shapes)
2) Inversion method (non-linear least squares, 

linear matrix inversion)
3) Validation and error analysis



Models to be used in afternoon laboratory

• Roesler and Perry 1995 
• Lee et al. 1996  Lee et al. 2002 QAA
• Hoge and Lyon 1996
• Garver and Siegel 1997 Maritorena et al 2002 GSM
• Roesler and Boss 2003 (estimate c, bb(l))
• Roesler et al. 2004 (phytoplankton functional types)
• Things to notice

– Basis vector definition
– Solution approach
– Testing against independent data
– Sensitivity analyses



We will not go through each one in 
detail but will look at examples to 

see how the approach works

1. non-linear regression of R = f/Q   bb/(a+bb)

1. Roesler and Perry 1995

2. Lee et al. 1996

3. Garver et al. 1997
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Eigenvectors

bbw(l)

bbl(l) = b(440) (l/lo0

bbs(l) = b(440) (l/lo-1

aw(l)

af
*(l) (from 1989 data)

aNAP(l) + aCDM(l) = 

aCDM(440) exp[-0.0145 (l-440)]

Roesler and Perry 1995



Measured R(l) = Eu(l)/Ed(l)

Chl = 0.07 to 25.6 mg/m-3

aphyt(440) = 0.004 to 0.5 m-1

bbp(440) ~ 0.002 to 0.04 m-1

Roesler and Perry 1995



Results I: Model Test – reconstructing R(l) 

R = bbw + bbpl + bbps .
aw + aphyt +aCDM

6-component model explains most of the observed variability

measured
modeled



Results II: IOP model validation

Estimated chl from

af(676)[m-1]

0.014[m2 mg-1] QFT

aphyt(440)

From Particle Size Distribution

(Coulter Counter)

bbp(440)

Chl



Results III: analysis of model residuals 

to assess af Spectral variations

First estimate:  aphyt(l) = Aphyt aphyt
*(l)

Second estimate:  add in DR(l) residual

Compare with Basis Vector af
*(l)



Sensitivity Analysis

• Generally 30% cv

• Phyto abs retrieval most 
robust

• Evidence of variance 
transference, acdm bbp

• acdm basis vector induced 
largest cv in retrieval



We will not go through each one in 
detail but will look at examples to 

see how the approach works

2.  non-linear regression of R(l) to retrieve beam c

1. Roesler and Boss 2003



bbp = b
~

bp bp let

where            is the particle backscattering ratiob
~

bp  

so bbp(λ) = b
~

bp bp(λ) 

therefore bbp(λ) = b
~

bp (cp(λ) - ap(λ)) 

Roesler and Boss 2003 GRL:
Semianalytic inversion to retrieve beam attenuation

R(λ) = 
F

Q

bbw + bbp

aw + aφ + aCDOM + anap + bbw + bbp



What do we know about the 
particle backscattering ratio?

Varies with real
Index of refraction

organic

inorganic

Independent of imaginary
Index of refraction 
(so not strongly spectral)



bbp(λ) = b
~

bp (cp(λ) - ap(λ)) 

and cp(l) is a smoothly varying function

cp(λ) = cp(λo) 
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we know ap(λ) = aφ(λ) + anap (λ)

so

bbp(λ) = b
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Regression Model



Results:  Model fit to reflectance
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Results: comparison with measured IOPs

extreme
monospecific
algal bloom
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Results:  backscattering

c-model realistic spectrum, spectral features under high 
absorption conditions as predicted by Mie theory.
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We will not go through each one in 
detail but will look at examples to 

see how the approach works

3.  linear matrix inversion

1. Hoge and Lyon 1996

2. With uncertainties (Wang et al. 2005; Boss and Roesler 2006)



Linear matrix inversion

• This is linear??

R(l) = f/Q 
𝑏𝑤(l  𝐴𝑏𝑏𝑝 𝑏𝑏𝑝

∗ (l

𝑎𝑤(l  𝐴𝑝ℎ𝑦𝑡 𝑎𝑝ℎ𝑦𝑡
∗ (l  𝐴𝑁𝐴𝑃 𝑎𝑁𝐴𝑃

∗ (l  𝐴𝐶𝐷𝑂𝑀 𝑎𝐶𝐷𝑂𝑀
∗ (l  𝑏𝑤(l  𝐴𝑏𝑏𝑝 𝑏𝑏𝑝

∗ (l

Rearrange
(aw + aphyt + acdm + bw + bbp) = (f/QR) (bbw + bbp)

(aphyt + acdm + bbp) - (f/QR) x bbp = (f/QR) x bw - (aw + bbw)

Which has the linear regression form:
Aphyt x a*phyt + Acdm x acdm + Abbp x bbp = [(f/QR)-1] x bbw - aw

(unknowns)                                                     (knowns)



Because it is linear

• Regression yields exact solution

• Fast (good for image processing)

• Allows for computation of uncertainties in 
retrieved IOPs (when system is 
overconstrained) 

• based upon our uncertainties in

– Measured Rrs

– Spectral shapes of basis vectors



Determining uncertainties

• Allow spectral shapes of eigenvectors to 
vary in every possible combination

• Run linear regression for each combination

• Compile retrieved eigenvalue statistics for 
each measured reflectance spectrum

Wang et al 2005



Determining uncertainties

• Repeat for suite of reflectance spectra 
(simulated or in situ)

Wang et al 2005



Invert for Phytoplankton Functional Types
ex. Benguela Upwelling System

alongshore winds

offshore transport

upwelled deep nutrients
fuel expansive blooms

with variable species



The variations in water color are extreme



Day to day variations in water color

Downward irradiance

Upward radiance

Our primary tool was a small radiometric buoy (HTSRB):
incident solar irradiance spectrum
upwelled radiance spectrum
 Lu(63cm)/Ed(0+)



Examples from South African Time Series

Wavelength (Y)
Time (X)
Brightness (Z)

Fluorescence



• Time series measured daily reflectance spectra (ex below left)

• 5-phytoplankton eigenvectors, PFTs, (below right)

• Inversion to estimate PFT contributions 

• Compare with PFT determined microscopically

Inversion Modeling for Phytoplankton Functional Types: 
South African Red Tide 

(Roesler et al 2004)



Examples from South African Time Series

Measured (colored)
Modeled (line)

the differences in ocean color are due to differences in pigmentation, 
so we can retrieve species information

Model vs measured



• 5-phytoplankton eigenvectors, PFTs, (below)

• Time series measured daily reflectance spectra

• Inversion to estimate time series of PFT 
contributions (colored symbols at right)

• Compare with time series of microscopic 
estimates of PFTs (black symbols at right)!

Inversion Modeling for Phytoplankton 
Functional Types: South African Red Tide 

(Roesler et al 2004) 0
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Take Home messages
• Semi-analytic reflectance inversion models are powerful tools 

for estimating spectral IOPs from ocean color

• The devil is in the details
– Eigenvector definitions

– Over constrained (hyperspectral vs multispectral) 

• Solution method
– Non-linear

– “optimized” non-linear

– linear

• Important considerations
– Independent data for  model testing

– Sensitivity analysis

– uncertainties



Today in Lab

• Excel file for hands on inversion examples

• Matlab code for inversion

– Different models

– Wavelength resolution

– Basis vectors

• Data for inversions

– Measured reflectance spectra

– Simulated reflectance spectra (Hydrolight)

– Your data



Details on some inversion methods 
(for your information)



Roesler and Perry 1995 JGR



Lee et al. 1996 Applied Optics
• Basis vectors

– absorption
• afl = af(440) exp[ -F  ln  l-440 2] l=400 to 570 nm

100

• acm(l) = acm(440) exp(-S (l-lo))    S = 0.012 to 0.016

– backscattering
• bbp(l) = bbp(400) (400/l)h h = 0 to 3

• Reflectance equation (hyperspectral)
– Radiance Reflectance

RRS = 0.0949( bb/(bb+a)) + 0.0794 (bb/(bb+a))2

plus terms for sunglint and Fresnel reflectance

• Constrained non-linear regression

• model testing
– measured radiance reflectance

– a from Kd, measured af

– not independent data (data used to derive empirical values, used to test)



aCM(l) = 
aCM(410) exp[-S (l-410)]

bbp(l) = (l/lo)
-n

af(l) =af(440)exp(-F*{[ln(l-340)]^2})    400 < l < 570 nm  
100

af(l) =af(676)exp(-(l-676)2)                 656 < l < 700 nm  
2s2

af(l) =af(570) af(656) – af(570) (l-570) 570 < l < 656nm  
656-570

Lee:  Basis Vectors



Lee:  Measured R(l) = Lu(l)/Ed(l)

Chl = 0.09 to 21 mg/l
af(440) = 0.01 to 0.83 m-1



Lee: IOP model test

37.9% error



QAA Products SeaWiFS MODIS
Z. Lee, K. L. Carder, and R. A. Arnone, "Deriving Inherent Optical Properties from Water Color: a Multiband Quasi-Analytical 

Algorithm for Optically Deep Waters," Appl. Opt. 41, 5755-5772 (2002)



QAA:  Inversion Steps



QAA:  Inversion Steps and testing

• Tested against simulated data 
set

• Simulated data plus noise

• Tested against n<20 obs made 
with an ac9 off Baja California



Hoge and Lyon 1996 JGR
• Basis vectors

– absorption
• afl = af(440) exp[(l-440)2/2g2)]  for l=400 to 570 nm
• acm(l) = acm(440) exp(-0.014 (l-lo))

– backscattering
• bbp(l) = bbp(440) (l/440)-3.3

• Reflectance equation (410, 490 555)
– Radiance Reflectance

RRS = 0.0949( bb/(bb+a)) + 0.0794 (bb/(bb+a))2

• Linear regression: singular value decomposition
• model testing

– synthetic data using basis vector parameterization 
– af,acm, bbp at 3l

– sensitivity analysis to radiance (IOP uncertainties by 
bootstrap)



Hoge:  Basis Vectors

aCM(l) = aCM(410) exp[-0.014 (l-410)]

bbp(l) = (l/lo)
-3.3

af(l) =exp(-2*{ln[(l-340).^2]})
100



Hoge:  Synthetic Reflectance Spectra

Used basis vector formulations in Rrs equation
with magnitudes varied such that 5*105 of each
IOP were generated

af(410)   = 0 to 0.74 m-1

acm(410) = 0.01 to 0.5 m-1

bbp(410) = 0.0005 to 0.05 m-1



Hoge:  Sensitivity Analysis

Examined IOP error in response to: af acm bb .
• 5% uncertainties in L(555)  55% 10% 28%    
• 5% uncertainties in L(490)
• 5% uncertainties in L(410)
• uncertainties in all three L(l)
• 10% in width of af peak 9% 5% 9%
• 100% uncertainty in Scm 20% 20% 20%
• 100% uncertainty in n >20% >20% >20%



Garver and Siegel 1997 JGR
• Basis vectors

– absorption
• af(l)  = af(440) af*(l)    3 models
• acm(l) = acm(440) exp(-S (l-lo))

– backscattering
• bbp(l) = bbp(440) (l/400)n n= 0, 1, 2

• Reflectance equation (8 ls)
– Radiance Reflectance
RRS = 0.0949( bb/(bb+a)) + 0.0794 (bb/(bb+a))2

• non-linear regression (but see Maritorena et al. 2002 
for improved optimization method)

• model testing
– measured radiance reflectance, 2-yr BATS data
– sensitivity analysis to af models, S, n
– comparison with biogeochemical observations (no validation)



Garver:  Basis Vectors

Bricaud et al. 1995 JGR

aw

bbw

aphyt

acm

bbp



Garver: IOP model sensitivity analysis

af retrieval most sensitive to Scm

aphyt model

bbpexponent

Scm



Garver: IOP model sensitivity analysis

acm retrieval most sensitive to Scm

aphyt model

bbpexponent

Scm



Garver: IOP model sensitivity analysis

bbp retrieval most sensitive to Scm and n

aphyt model

bbpexponent

Scm



Garver, Siegel, Maritorena 2002 
GSM SeaWiFS MODIS product

Simulated Annealing Technique
• “Compared with other steepest descent minimization techniques that 

look for the quick and nearby solution, simulated annealing is an 
iterative heuristic method that permits the search of solutions in the 
uphill i.e., lower performance direction. This allows the system to 
ultimately find a global minimum.”

• “This feature also reduces the importance of the first guesses used to 
initiate the process that is often a critical aspect of minimization 
techniques based on the steepest descent methods.”

• “Simulated annealing includes three basic elements: 
– 1 a cost function that, given a set of  parameters, evaluates the performance of the 

model;
– 2 a candidate generator that randomly proposes new values for the  eigenvector, and 
– 3 a decreasing temperature that introduces some randomness in the process and 

controls its overall progress.”



GSM test on SeaWiFS data

GS97

OC4.4

GSM

Retrieved aphyt
*(l)

aphyt
*


