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“cal/val” 

“cal/val” = calibration & validation 
 
“cal/val” has become the catch-all phrase in our community 
for all activities related to the on-orbit calibration of a satellite 
instrument, the execution of field programs, the validation of 
biogeophysical satellite data records, & the development of 
related atmospheric & bio-optical algorithms 
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outline 

the purpose of this presentation is to provide an overview of 
how in situ data are used in an operational cal/val 
environment & to describe some of the issues we wrestle 
with within this environment 
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great field data enable great satellite data products 
 
 
an abundance of field data is hard to come by 
 
 
emerging technologies can provide rich data streams 
 
 
QA/QC metrics are essential (or this all falls apart) 
= quality assurance & quality control  

outline 
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field work funded by OBB Program 

in situ data submitted to NASA 
SeaBASS (GSFC) within 1-year 

in situ data publicly released 

in situ data used to validate 
satellite data products & to 

develop / evaluate algorithms 

in situ used to calibrate satellite 

QA/QC 

by data contributor 

by
 N

AS
A 

NASA Ocean Biology & Biogeochemistry Program 
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AOPs, IOPs, carbon stocks, CTD, pigments, aerosols, etc. 
 

continuous & discrete profiles; some fixed observing or along-track 

SeaBASS @ seabass.gsfc.nasa.gov 
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great field data enable great satellite data products 
 
 
an abundance of field data is hard to come by 
 
 
emerging technologies can provide rich data streams 
 
 
QA/QC metrics are essential (or this all falls apart)  

outline 
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satellite vicarious calibration (instrument + algorithm adjustment) 
 
 
satellite data product validation 
 
 
bio-optical algorithm development, tuning, & evaluation 

great field data enable great satellite data products 
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what is vicarious calibration? 
 
 
spectral on-orbit calibrations 
 
1.  instrument calibration 
  -  e.g.,  focal plane temperature 
 
2.  temporal calibration 
  -  reference Sun or Moon 
 
3.  absolute (vicarious) calibration 
  -  reference Earth surface 
  -  final, single gain adjustment 
  -  calibration of the combined 
     instrument + algorithm system 
 

 g = Lt
target / Lt

satellite 

 

TARGET	
  

SATELLITE	
  

TOP OF 
ATMOSPHERE	
  

from the satellite

+ Lr , td , …

Lt
target
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vicarious calibration 



a single, spectral radiometric adjustment 

Franz et al. 2007 

gain vs. time 

gain vs. solar 
zenith angle 

gain vs. satellite 
zenith angle 
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vicarious calibration 



Franz et al. 2007 

~40 match-ups required to achieve “stable” vicarious gain 

SeaWiFS and Aqua 
average ~20 MOBY 
match-ups per year  

 

12 
jeremy.werdell@nasa.gov 

vicarious calibration 



MOBY - the Marine Optical BuoY 

maintained by NOAA & Moss Landing 
Marine Laboratory 
 
20 miles west of Lanai, Hawaii 
 
Lu(λ) and Ed(λ) at nominal depths of 
1, 5, and 9 meters, plus Es(λ) 
 
spectral range is 340-955 nm & 
spectral resolution is 0.6 nm 
 
hyperspectral data convolved to 
specific bandpasses of each satellite 
 
approximately 450-700 samples per 
year for MODIS-Aqua 
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operational vicarious calibration 



build a climatology using a long-
term chlorophyll-a record (this is for 
BATS, near Bermuda) … 

Werdell et al. 2007 

… then, develop a radiometric 
climatology using an ocean 
reflectance model (e.g., Morel 
and Maritorena 2001) 
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model-based vicarious calibration 

Lwn(λ) = fcn(Chl-a) 



model-based gains typically differ 
from MOBY gains by < 1% 

Werdell et al. 2007 
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model-based vicarious calibration 



AERONET (fixed-above water platforms) 

buoy networks 

gliders, drifters, & other 
autonomous platforms longitu

de	
  

de
pt
h	
  

towed & underway sampling 
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alternative data for vicarious calibration 



gains calculated using 
alternative in situ data typically 
differ from MOBY by < 0.3% 

Bailey et al. 2008 

17 
jeremy.werdell@nasa.gov 

alternative for vicarious calibration 



selecting vicarious calibration sources 

the gains shown previously for the multiple “ground-truth” 
targets differ only from 0.3 to 1%, but there are spectral 
dependencies in their differences … 
 

spectral differences impart changes in derived products 
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satellite vicarious calibration (instrument + algorithm adjustment) 
 
 
satellite data product validation 
 
 
bio-optical algorithm development, tuning, & evaluation 

great field data enable great satellite data products 
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general flow of match-up process, with exclusion criteria 
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Level-2 match-ups 



seabass.gsfc.nasa.gov/seabasscgi/search.cgi 

in situ Ca
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Bailey & Werdell 2006 

comparison of “coincident” in situ & satellite measurements 
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Level-2 match-ups 
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Werdell et al. 2009 
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Level-2 time-series 
C

hesapeake B
ay 



along-track comparisons  
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common limitations 
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quality of in situ data is highly variable & difficult to assess





in situ data coverage is limited, both geographically & temporally





availability of in situ data in future is unknown





highly localized (~meters) measurements represent pixel (>km) area





satellite-to-in situ comparisons require expertise to prepare & evaluate





generally useful only for assessing static biases in final products








lessons learned & anticipated challenges 
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data collection


- horizontal resolution


- temporal resolution


- vertical resolution 








lessons learned & anticipated challenges 
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data collection


- horizontal resolution


- temporal resolution


- vertical resolution 






first optical depth 
0.37 = exp(-Kd z)  
-1 =-Kd z 



lessons learned & anticipated challenges 
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data collection


- horizontal resolution


- temporal resolution


- vertical resolution 






0.5 mg m-3 

1.25 mg m-3 

average 

0.95 mg m-3 

optically 
weighted 

not only is the resolution of vertical 
sampling important, but we must also 
understand (accept & ultimately consider) 
what the satellite sees & does not see





satellite vicarious calibration (instrument + algorithm adjustment) 
 
 
satellite data product validation 
 
 
bio-optical algorithm development, tuning, & evaluation 

great field data enable great satellite data products 
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empirical algorithms 

Rrs related to pigments, IOPs, carbon stocks, etc. 

what satellite sees what you might want to study 



in situ data are used in the development of: 
 
aerosol tables (via AERONET) 

  
the correction for non-zero Rrs(NIR) 
 
the correction for bidirectional effects (f/Q) 
 
the correction for spectral bandpass effects 
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atmospheric correction 



great field data enable great satellite data products 
 
 
an abundance of field data is hard to come by 
 
 
emerging technologies can provide rich data streams 
 
 
QA/QC metrics are essential (or this all falls apart)  

outline 
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spatial & temporal distributions 
 
 
“complete” suites of measurements (Rrs, IOPs, biogeochemistry) 

an abundance of field data is hard to come by 
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SeaBASS @ seabass.gsfc.nasa.gov 

35 
jeremy.werdell@nasa.gov 



2009 

2006 2007 

2008 

SeaBASS holdings by year: 2006-2009 
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S.W. Bailey and P.J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Rem. Sens. Environ. 102, 12-23 (2006). 

Level-2 match-ups 
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all available SeaBASS data 
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coincident SeaWiFS & in situ data 
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valid SeaWiFS match-ups 
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Rrs & Chl & absorption & backscattering 

Rrs Rrs & Chl 

Rrs & Chl & absorption 

bio-optical algorithm development data sets 
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bio-optical algorithm development data sets 
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outline 
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AERONET (fixed-above water platforms) 

buoy networks 

gliders, drifters, & other 
autonomous platforms longitu

de	
  

de
pt
h	
  

towed & underway sampling 

moving forward – community innovations 
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AERONET-OC match-ups with VIIRS (satellite data since Feb 2012) 

validation exercises using autonomous data 
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Tara Oceans expedition (2009-2012) AC-S products vs. MODISA 

validation exercises using autonomous data 
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great field data enable great satellite data products 
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outline 
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a single entity (e.g., NASA or equivalent) cannot collect sufficient volumes 
of in situ data to satisfy its operational calibration & validation needs 
 
 
following, flight projects rely on multiple entities to collect in situ data 
 
 
robust protocols for data collection & QA/QC ensures measurements are 
of the highest possible quality – well calibrated & understood, properly & 
consistently acquired, within anticipated ranges 
 
 
robust QA/QC provides confidence in utility & quality of data 

QA/QC metrics are essential 
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QA/QC methods vary in maturity – exist for many established instruments & 
platforms, but not always for newer or autonomous systems 
 
 
where do we want to be in 10 years? 
 
 
QA/QC methods are ideal when: 

  
they accommodate routine time-series reprocessing 
they are well documented 
they consistently maintain consensus from vendor è institution è end user 
revisited by subject matter experts routinely 
 
 
recommend invested agencies/institutions facilitate routine activities 
(workshops, round robins, inter-comparisons) to revisit QA/QC protocols  
 

QA/QC metrics are essential 
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AOP instrumentation in SeaBASS or available commercially: 
 
•  many companies & instruments 

 Biospherical, Satlantic, HOBI, Trios/Ramses, DALEC, SIMBAD-A, ASD, Spectron, custom 

•  many platforms & deployment strategies  
 profilers, buoys, above-water (ship, permanent, hand-held), gliders, AUVs 

 
dynamic range of problem set is growing: 

•  new missions emphasize research in shallow, optically complex water 
•  spectral domain stretching to UV and SWIR 
•  new missions have immediate, operational requirements  
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for example, variance in AOP data sets 



bonus material! 
 
 

satellite-to-satellite comparisons 
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Level-3 comparisons 

52 
jeremy.werdell@nasa.gov 

Seasonal Chlorophyll Images

0.01-64 mg m-3

Summer 2004

Winter 2004

SeaWiFSMODIS/Aqua

Winter 2004

Summer 2004



Level-3 time-series 
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Level-3 parameters (e.g., Rrs) compared for common spectral bands 

common bins extracted & compared over the period of overlap between the sensors

comparisons performed globally, trophically, zonally & for specified regions 



Level-3 comparisons 

54 
jeremy.werdell@nasa.gov 

Deep-Water (Depth > 1000m) Oligotrophic (Chlorophyll < 0.1)

Mesotrophic (0.1 < Chlorophyll < 1) Eutrophic (1 < Chlorophyll < 10)

definitions of trophic subsets



Level-3 time-series 
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mesotrophic                                                     eutrophic 

deep water                                                    oligotrophic



Level-3 time-series 
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strengths:

sensitive to small differences in products from different sensors/algorithms

excellent coverage available, both temporal & geographic

can assess continuity among data sets (Climate Data Records)





limitations:

no obvious truth in comparisons.

sensitive to band-pass differences.

may be affected by time-of-observation differences.








Level-3 anomalies 
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Level-3 global averages for the entire mission are fit to a periodic function to 
remove natural annual variability; the differences between the global averages & 
the annual cycle are then plotted over the mission
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Level-3 anomaly time-series 
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strengths:

very sensitive to small changes in instrument performance





limitations:

difficult to distinguish sensor from real geophysical challenges

can be affected by sampling variations






questions? 
comments? 
concerns? 
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backup slides 
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Chesapeake Bay Program  

http://www.chesapeakebay.net 
 
 
routine data collection since 1984 
12-16 cruises / year 
 
49 stations 
19 hydrographic measurements 
 
algal biomass 
water clarity 
dissolved oxygen 
others  

Level-2 time-series 
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Stumpf & Werdell 2010 

spectral shape @ 443 nm, SS(443), uses Rrs(412), Rrs(443), & Rrs(490) 
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compare spectral shapes of in situ & satellite populations 

valleys have negative SS hills have positive SS 
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population statistics for vicarious calibration 



in situ, SeaWiFS, & MODIS-Aqua spectral shapes compared at MOBY site 

Stumpf & Werdell 2010 
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population statistics for vicarious calibration 



Lu(z), Ed(z) -> Lw, Es
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AOP data analysis 
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Rrs ≈ func bb
a+ bb
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$ 
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& 

' 
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satellite provides Rrs(λ) 
a(λ) and bb(λ) are desired products 

several flavors of a “semi-analytical” inversion algorithm … 

Spectral Optimization: 

•  define shape functions for 
(e.g.) bbp(λ), adg(λ), aph(λ) 

•  solution via L-M, matrix 
inversion, etc. 

•  ex: RP95, HL96, GSM 

1 

Spectral Deconvolution: 

•  partially define shape functions for 
bbp(λ), adg(λ) 

•  piece-wise solution: bbp(λ), then a(λ), 
then adg(λ) + aph(λ) 

•  ex: QAA, PML, NIWA 

2 

Bulk Inversion: 

•  no predefined shapes 

•  piece-wise solution: bbp(λ), then 
a(λ), via empirical Kd (λ) via RTE 

•  ex: LS00 

3 
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inversion models 


