In situ data support for ocean color satellite calibration & validation

Jeremy Werdell

NASA Goddard Space Flight Center

UMaine Ocean Optics Summer Course 6 – 31 July 2015

jeremy.werdell@nasa.gov

"cal/val"

"cal/val" = calibration & validation

"cal/val" has become the catch-all phrase in our community for all activities related to the on-orbit calibration of a satellite instrument, the execution of field programs, the validation of biogeophysical satellite data records, & the development of related atmospheric & bio-optical algorithms

outline

the purpose of this presentation is to provide an overview of how *in situ* data are used in an operational cal/val environment & to describe some of the issues we wrestle with within this environment

outline

great field data enable great satellite data products

an abundance of field data is hard to come by

emerging technologies can provide rich data streams

QA/QC metrics are essential (or this all falls apart) = quality assurance & quality control

NASA Ocean Biology & Biogeochemistry Program

SeaBASS @ seabass.gsfc.nasa.gov

AOPs, IOPs, carbon stocks, CTD, pigments, aerosols, etc. continuous & discrete profiles; some fixed observing or along-track

outline

great field data enable great satellite data products

an abundance of field data is hard to come by

emerging technologies can provide rich data streams

QA/QC metrics are essential (or this all falls apart)

great field data enable great satellite data products

satellite vicarious calibration (instrument + algorithm adjustment)

satellite data product validation

bio-optical algorithm development, tuning, & evaluation

great field data enable great satellite data products

satellite vicarious calibration (instrument + algorithm adjustment)

satellite data product validation

bio-optical algorithm development, tuning, & evaluation

vicarious calibration

what is vicarious calibration?

spectral on-orbit calibrations

- 1. instrument calibration
 - e.g., focal plane temperature
- 2. temporal calibration
 - reference Sun or Moon
- 3. absolute (vicarious) calibration
 - reference Earth surface
 - final, single gain adjustment
 - calibration of the combined instrument + algorithm system

 $g = L_t^{target} / L_t^{satellite}$

vicarious calibration

a single, spectral radiometric adjustment

Franz et al. 2007

vicarious calibration

~40 match-ups required to achieve "stable" vicarious gain

operational vicarious calibration

MOBY - the Marine Optical BuoY

Fig. 1. Schematic diagram of MOBY.

maintained by NOAA & Moss Landing Marine Laboratory

20 miles west of Lanai, Hawaii

 $L_u(\lambda)$ and $E_d(\lambda)$ at nominal depths of 1, 5, and 9 meters, plus $E_s(\lambda)$

spectral range is 340-955 nm & spectral resolution is 0.6 nm

hyperspectral data convolved to specific bandpasses of each satellite

approximately 450-700 samples per year for MODIS-Aqua

model-based vicarious calibration

build a climatology using a longterm chlorophyll-a record (this is for BATS, near Bermuda) ...

Werdell et al. 2007

 $L_{wn}(\lambda) = fcn(Chl-a)$

... then, develop a radiometric climatology using an ocean reflectance model (e.g., Morel and Maritorena 2001)

model-based vicarious calibration

	412	443	490	510	555	670
BATS	-0.31	-1.18	-1.14	-0.52	0.14	-0.07
HOTS	-0.74	-0.53	-0.48	-0.14	0.44	-0.21
BATS + HOTS	-0.52	-0.86	-0.81	-0.33	0.29	-0.13

Table 3. Percent Differences^a Between the MOBY and ORM g

^aCalculated using $(\bar{g}_{ORM} - \bar{g}_{MOBY}) \times 100\%/\bar{g}_{MOBY}$.

Werdell et al. 2007

alternative data for vicarious calibration

AERONET (fixed-above water platforms)

buoy networks

gliders, drifters, & other autonomous platforms

towed & underway sampling

alternative for vicarious calibration

Fig. 3. Vicarious calibration coefficients as a function of wavelength. The standard MOBY-derived \bar{g}_{λ}' (solid curve) are overplotted by the msMOBY-, NOMAD-, and BOUSSOLE-derived \bar{g}_{λ}' . The shaded regions indicate the ranges for the first (light-gray) and second (dark-gray) standard deviations of the mean for \bar{g}_{λ}' .

Bailey et al. 2008

Fig. 7. Satellite-derived chlorophyll estimated from the two alternative \bar{g}' gain sets (msMOBY and NOMAD/BOUSSOLE) plotted versus the corresponding chlorophyll estimated from the standard MOBY \bar{g} .

gains calculated using alternative *in situ* data typically differ from MOBY by < 0.3%

selecting vicarious calibration sources

the gains shown previously for the multiple "ground-truth" targets differ only from 0.3 to 1%, but there are spectral dependencies in their differences ...

spectral differences impart changes in derived products

Fig. 3. Vicarious calibration coefficients as a function of wavelength. The standard MOBY-derived \bar{g}_{λ}' (solid curve) are overplotted by the msMOBY-, NOMAD-, and BOUSSOLE-derived \bar{g}_{λ}' . The shaded regions indicate the ranges for the first (light-gray) and second (dark-gray) standard deviations of the mean for \bar{g}_{λ}' .

great field data enable great satellite data products

satellite vicarious calibration (instrument + algorithm adjustment)

satellite data product validation

bio-optical algorithm development, tuning, & evaluation

Level-2 match-ups

general flow of match-up process, with exclusion criteria

Level-2 match-ups

comparison of "coincident" in situ & satellite measurements

Bailey & Werdell 2006

seabass.gsfc.nasa.gov/seabasscgi/search.cgi

Level-2 time-series

Werdell et al. 2009

Chl-a (mg m⁻³)

22

Chesapeake Bay

along-track comparisons

common limitations

quality of *in situ* data is highly variable & difficult to assess

in situ data coverage is limited, both geographically & temporally

availability of in situ data in future is unknown

highly localized (~meters) measurements represent pixel (>km) area

satellite-to-in situ comparisons require expertise to prepare & evaluate

generally useful only for assessing static biases in final products

data collection

- horizontal resolution
- temporal resolution
- vertical resolution

data collection

- horizontal resolution
- temporal resolution
- vertical resolution

data collection

- horizontal resolution
- temporal resolution
- vertical resolution

data collection

- horizontal resolution
- temporal resolution
- vertical resolution

not only is the resolution of vertical sampling important, but we must also understand (accept & ultimately consider) what the satellite sees & does not see

Theoretical derivation of the depth average of remotely sensed optical parameters

J. Ronald V. Zaneveld¹, Andrew H. Barnard¹ and Emmanuel Boss² ¹ WET Labs. Inc. P.O. Box 518, 620 Applegate Street, Philomath. OR 97370

VE1 Labs, Inc. P.O. Box 518, 620 Applegate Street, Philomath, OK 97370 ²University of Maine, 5741 Libby Hall, Orono, ME 04469 ron@wetlabs.com

Received 15 September 2005; revised 20 October 2005; accepted 24 October 2005 31 October 2005 / Vol. 13, No. 22 / OPTICS EXPRESS 9052

great field data enable great satellite data products

satellite vicarious calibration (instrument + algorithm adjustment)

satellite data product validation

bio-optical algorithm development, tuning, & evaluation

empirical algorithms

atmospheric correction

in situ data are used in the development of:

aerosol tables (via AERONET)

the correction for non-zero $R_{rs}(NIR)$

the correction for bidirectional effects (f/Q)

the correction for spectral bandpass effects

outline

great field data enable great satellite data products

an abundance of field data is hard to come by

emerging technologies can provide rich data streams

QA/QC metrics are essential (or this all falls apart)

an abundance of field data is hard to come by

spatial & temporal distributions

"complete" suites of measurements (R_{rs}, IOPs, biogeochemistry)

SeaBASS @ seabass.gsfc.nasa.gov

jeremy.werdell@nasa.gov

SeaBASS holdings by year: 2006-2009

45

0

2007

180

-120

-60'

0"

90'

120

60'

2006

180

-120

-60

60

45

120°

36

S.W. Bailey and P.J. Werdell, "A multi-sensor approach for the on-orbit validation of ocean color satellite data products," Rem. Sens. Environ. 102, 12-23 (2006).

all available SeaBASS data

coincident SeaWiFS & in situ data

POSSIBLE SEAWIFS MATCH-UPS

valid SeaWiFS match-ups

VALID SEAWIFS MATCH-UPS

bio-optical algorithm development data sets

R_{rs} & ChI & absorption

Rrs & Chl & absorption & backscattering

bio-optical algorithm development data sets

outline

great field data enable great satellite data products

an abundance of field data is hard to come by

emerging technologies can provide rich data streams

QA/QC metrics are essential (or this all falls apart)

moving forward – community innovations

AERONET (fixed-above water platforms)

buoy networks

gliders, drifters, & other autonomous platforms

towed & underway sampling

validation exercises using autonomous data

AERONET-OC match-ups with VIIRS (satellite data since Feb 2012)

Product Name	VIIRS Range	In situ Range	#	Best Fit Slope	Best Fit Intercept	R ²	Median Ratio	Abs % Difference	RMSE
Rrs410	-0.00188, 0.01572	0.00006, 0.01480	370	1.15891	-0.00075	0.72848	0.91371	30.62030	0.00151
Rrs443	-0.00022, 0.01985	0.00028, 0.01769	312	1.06528	-0.00048	0.86995	0.92035	18.64367	0.00114
Rrs486	0.00066, 0.02486	0.00101, 0.02520	370	0.95921	-0.00056	0.92048	0.83444	18.33002	0.00130
Rrs551	0.00097, 0.02519	0.00008, 0.02453	370	0.93824	-0.00055	0.94017	0.81644	18.58145	0.00131
Rrs671	-0.00007, 0.00920	0.00007, 0.00864	296	1.05955	-0.00043	0.86652	0.57489	45.94727	0.00057

The linear regression algorithm has been changed to reduced major axis.

validation exercises using autonomous data

Tara Oceans expedition (2009-2012) AC-S products vs. MODISA

outline

great field data enable great satellite data products

an abundance of field data is hard to come by

emerging technologies can provide rich data streams

QA/QC metrics are essential (or this all falls apart)

QA/QC metrics are essential

a single entity (e.g., NASA or equivalent) cannot collect sufficient volumes of *in situ* data to satisfy its operational calibration & validation needs

following, flight projects rely on multiple entities to collect in situ data

QA/QC metrics are essential

QA/QC methods vary in maturity – exist for many established instruments & platforms, but not always for newer or autonomous systems

for example, variance in AOP data sets

AOP instrumentation in SeaBASS or available commercially:

- many companies & instruments Biospherical, Satlantic, HOBI, Trios/Ramses, DALEC, SIMBAD-A, ASD, Spectron, custom
- many platforms & deployment strategies profilers, buoys, above-water (ship, permanent, hand-held), gliders, AUVs

dynamic range of problem set is growing:

- new missions emphasize research in shallow, optically complex water
- spectral domain stretching to UV and SWIR
- new missions have immediate, operational requirements

bonus material!

satellite-to-satellite comparisons

Level-3 comparisons

Seasonal Chlorophyll Images

MODIS/Aqua

SeaWiFS

0.01-64 mg m⁻³

jeremy.werdell@nasa.gov

Level-3 time-series

Level-3 parameters (e.g., Rrs) compared for common spectral bands common bins extracted & compared over the period of overlap between the sensors comparisons performed globally, trophically, zonally & for specified regions

Level-3 comparisons

definitions of trophic subsets

Deep-Water (Depth > 1000m)

Oligotrophic (Chlorophyll < 0.1)

Mesotrophic (0.1 < Chlorophyll < 1)

Eutrophic (1 < Chlorophyll < 10)

Level-3 time-series

Jan 2010

Jan 2010

Level-3 time-series

strengths:

sensitive to small differences in products from different sensors/algorithms excellent coverage available, both temporal & geographic can assess continuity among data sets (Climate Data Records)

limitations:

no obvious truth in comparisons. sensitive to band-pass differences. may be affected by time-of-observation differences.

Level-3 anomalies

Level-3 global averages for the entire mission are fit to a periodic function to remove natural annual variability; the differences between the global averages & the annual cycle are then plotted over the mission

Level-3 anomaly time-series

strengths:

very sensitive to small changes in instrument performance

limitations:

difficult to distinguish sensor from real geophysical challenges can be affected by sampling variations questions? comments? concerns?

backup slides

Level-2 time-series

http://www.chesapeakebay.net

routine data collection since 1984 12-16 cruises / year

49 stations19 hydrographic measurements

algal biomass water clarity dissolved oxygen others

population statistics for vicarious calibration

compare spectral shapes of in situ & satellite populations

$$SS(\lambda) = R_{rs}(\lambda) - R_{rs}(\lambda^{-}) - \left[R_{rs}(\lambda^{+}) - R_{rs}(\lambda^{-})\right] \left(\frac{\lambda - \lambda^{-}}{\lambda^{+} - \lambda^{-}}\right)$$

spectral shape @ 443 nm, SS(443), uses R_{rs}(412), R_{rs}(443), & R_{rs}(490)

Stumpf & Werdell 2010

population statistics for vicarious calibration

in situ, SeaWiFS, & MODIS-Aqua spectral shapes compared at MOBY site

AOP data analysis

$L_u(z)$, $E_d(z) \rightarrow L_w$, E_s

inversion models

several flavors of a "semi-analytical" inversion algorithm ...

$$R_{rs} \approx func\left(\frac{b_b}{a+b_b}\right)$$

satellite provides $R_{rs}(\lambda)$ a(λ) and b_b(λ) are desired products

Spectral Optimization:

- define shape functions for (e.g.) $b_{bp}(\lambda)$, $a_{dg}(\lambda)$, $a_{ph}(\lambda)$
- solution via L-M, matrix inversion, etc.
- ex: RP95, HL96, GSM

Bulk Inversion:

- no predefined shapes
- piece-wise solution: $b_{bp}(\lambda)$, then $a(\lambda)$, via empirical $K_d(\lambda)$ via RTE

• ex: LS00

Spectral Deconvolution:

2

- partially define shape functions for $b_{bp}(\lambda)$, $a_{dg}(\lambda)$
- piece-wise solution: $b_{bp}(\lambda)$, then $a(\lambda)$, then $a_{dg}(\lambda) + a_{ph}(\lambda)$
- ex: QAA, PML, NIWA