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ABSTRACT

A new more general phase function is derived which models more accurately the refracted and scattered components of
the phase function. Modeling accurately the backscatter contribution is absolutely required when evaluating and
predicting the performance of oceanographic remote sensing systems and underwater imaging systems1, as the veiling
glare from the in water scattering particles is the dominant first order source of image degradation. The function is
further generalized to account for the effect of shelled organisms with two different indices of refraction for the bulk
material and for the outer shell. It explains some of the puzzling discrepancies noticed by many workers who tried to
model the oceanic phase functions using a single overall index of refraction. It shows why the index fitting parameter
generally used in the phase function for ocean waters is always higher than the bulk index of refraction of the particles
measured in the laboratory.
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1. INTRODUCTION
A previously developed physics based oceanic phase function model2 used only an approximation to the diffraction term
to obtain an analytic expression to the phase function for Junge distributions of particles with small relative index of
refraction. In the current work, a way was found to simply separate the diffraction, refraction and reflection term and
combine them in a new analytic expression for the phase function. This new approach allows one to simply evaluate the
contribution of the shell to the light scattered in the back hemisphere. The results clearly show that the shell reflection
controls completely the scattering at large angles, while the index of the bulk material controls the medium to small
forward angle scattering. The separation of the shell and bulk contribution allows model fits to oceanic phase functions
that match experimental results with indices of refraction for the shell and bulk material that are in the range of measured
properties of the individual organisms. Using these new results a formula is derived for a single approximate effective
index of refraction that can be used in a standard Fournier-Forand phase function.

2. PARTITIONING THE PHASE FUNCTION
When analyzing the various contributions to scattering, it is particularly instructive to consider the large particle limit. In
that limit the various contributions to the total scattering function can be simply separated out. The various mutual
interference terms become negligible. This separation leads to relatively simple formulations for the separate terms of
the scattering function and the ways of combining them become obvious. This approach is particularly suitable when the
purpose is to produce formulae that are applicable to large ensembles of particles since the mutual interference terms
will almost always be very nearly cancelled out due to the required integration over the size distributions.

If we follow this approach we must consider three terms. The first term is the scattering due to the diffraction of light
around the particle. In the large particle limit , according to the Babinet theorem, this term has a total scattering cross-
section value equal to the geometric scattering cross-section. The second term is the scattering due to the light refracted
by its passage through the particle. This term would also be equal to the geometric cross-section if one did not account
for the amount of light reflected by the particle at its various boundaries. In fact it is equal to the geometric cross-section
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minus the amount of reflected light. The final term is the reflected light. For the oceanic environment, the evaluation of
these various terms is considerably simplified by the fact that the relative index of refraction is very near one. One can
then use the anomalous diffraction approximation for the diffraction term, the simple analytic approximation for the
refraction term and the small index asymptotic limit for the various refracted terms.
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Fig 1 . The phase function averaged over an ensemble of particles can be separated into its component parts, diffraction,
refraction, reflection, and the interference terms can be neglected to first order. When the relative index of refraction is
near unity (n1.09), as is the case for water borne particulates, the physics further simplifies and simple approximate
expressions can be obtained for all three terms.

We thus have for an individual particle:

°scai(°) = a! (0) +a(O) +a,(O)

CL) i5 the total amount of light reflected by the particle's front and back surfaces. For a spherical particle one obtains the
following results.

adlff(O) = ('fl 2 J12(x2sin8I2)
scat

(2sinO 2)2

Uscat(0) =J(i - )F(, 0)

F(,8)= 2 2 '
[ (2sin812)2 +42]

(9) = .reflfroni (9) + a;:'Lback (p9)

The term sI4 is one quarter of the surface area of the particle. This represents the value of the mean projected area for
randomly oriented convex objects. The refracted term is the standard geometric optics approximation for small index3.
The reflected term is the sum of the reflection from the front and back surfaces of the particles. As noted before, all
interference terms and resulting cross terms are neglected in this approximation.
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Fig 2. The separation between the effect of diffraction and refraction can clearly be seen in the near forward angle on this
graph of the phase function of a Junge distribution of spheres with an inverse power exponent of 3.5 and a relative
index of refraction of 1 .1. The straight line is the pure diffractive part. The points are the result of an extensive exact
Mie code calculation. The refractive term shows up in the formation ofa characteristic knee near 1O. The addition of
the refractive term from this study would give an excellent fit. It should be noted that the refractive term is strongly
shape dependant.

3. EVALUATION OF THE REFLECTED TERM

r 2
is the reflection coefficient as a function of angle for parallel and perpendicular polarization. The reflection from

the first surface is straightforward to compute.

arefifroni (8) =W[(ri
2

r2 2)]

The reflection from the second or back surface of the particle is computed by assuming that the rays going through the
particle have not been deflected to first order. This assumption is consistent with the small departure from one of the
index of refraction and with the basic assumptions of the anomalous diffraction approximation.

For the sake of simplicity we will assume that the index of refraction is real and that the particles do not absorb.
Generalizing to an absorbing particle is straightforward as follows:
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. . . . . ,—irefl front refi backAdditional factors required to compute the scattering due to reflection are u scat and scat' ' the total angle

integrated reflective cross-sections, which are in turn required to obtain expressions for the different W. (total mean

reflectivity) factors for the various surfaces involved in the reflective term. These factors are as follows:
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4. EFFECT OF SHAPE IN REFLECTION
We now have in hand all the terms required to evaluate the various contributions to the phase function. We should first
note that both the refractive and reflective terms are completely size independent. Both depend primarily on the value of
the index ofrefraction. Furthermore, to first order it can be shown that the refractive term is also shape independent. This
remarkable conclusion comes about from a direct application ofthe following theorem ofVan de Hulst3:
"The scattering pattern caused by reflection on large convex particles with random orientation is identical with the
scattering pattern on a large sphere made of the same material and with the same surface condition.

If the assumption is made that the rays passing through the particle will not be significantly deflected, then the following
corollary immediately applies:

"In the case where the index of refraction is near enough unity that the deflection of the light inside the particle is
negligible, the same scattering pattern will be made by the back surface of the particle as the front surface.
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note that both the refractive and reflective terms are completely size independent. Both depend primarily on the value of
the index of refraction. Furthermore, to first order it can be shown that the refractive term is also shape independent. This
remarkable conclusion comes about from a direct application ofthe following theorem ofVan de Hu!st3:
"The scattering pattern caused by reflection on large convex particles with random orientation is identical with the
scattering pattern on a large sphere made of the same material and with the same surface condition.

If the assumption is made that the rays passing through the particle will not be significantly deflected, then the following
corollary immediately applies:

"In the case where the index of refraction is near enough unity that the deflection of the light inside the particle is
negligible, the same scattering pattern will be made by the back surface of the particle as the front surface.
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5. MODELINGTHE EFFECT OF SHELLED PARTICLES
The results to date apply to a particle with a single index of refraction. For many years some puzzling results have been
obtained when attempts were made to model the oceanic phase function by scattering codes that used a single averaged
index of refraction to describe the scattering particles. The derived index of refraction was found to be much larger than
the actual index measured from samples of individual scattering organisms. Many of the organisms present in the water
column are in fact thin shells filled with liquid. The index ofrefraction ofthe shell material can be much larger than the
index of the bulk material. For large particles, the contribution to scattering in the back hemisphere is in general
dominated by the light reflected from the front and back surfaces of the particle. The amount of reflection and therefore
the backscatter is dominated by the Fresnel reflections and this is controlled by the values of the difference between the
indices of refraction of the different surfaces. The bulk or mean volume averaged index of the particles can be much
smaller than the real index ofthe thin shell. This effect explains most ofthe noted discrepancies.

To handle the effect ofa thin-shelled particle with different indices ofrefraction for the shell and the bulk ofthe particle,
the simplest approach consists of replacing the index by a set of effective indices. One of the indices is designed to
handle properly the refractive and diffractive terms and the other is designed to handle the reflective term.

The appropriate effective index of refraction for the reflective terms of a thin-shelled particle is one that gives the same

total reflectivity as the shell thickness goes to zero. n is the index of refraction of the shell material and n is the index

ofrefraction ofthe core material.

Ins 2
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I —i- +1
nc

This effective index therefore applies to all the reflective terms in the phase function. For the refractive terms the
effective index must give the appropriate phase difference rather than match the reflectivity. In the refractive and
diffractive terms, the appropriate value ofthe effective index is therefore:

n = nJ + n(i — jç)
where j is the fraction of the particle thickness or radius occupied by the shell.

6. PHASE FUNCTION FORM FOR SHELLED PARTICLES
Following our previous arguments we therefore obtain the following terms for a normalized phase function. Consider
first the refractive phase function term for a sphere.
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With the index having the value appropriate for the refractive term. Note that the value of the index to use in evaluating

cot is however the reflective effective index. The reflective term is obtained as follows:
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with the effective index obviously having the value appropriate for the reflective term.

The diffractive term is the only term that is explicitly dependent on the particle size distribution. We will use for it the
result that we previously obtained for an inverse power law distribution of particles2. This type of distribution is
characteristic and representative of oceanic particle size distributions. In this case the appropriate index is the refractive
term index.
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The complete normalized phase function is now obtained by simply summing all three terms.
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( 'u) + ( 'u)d + ('k' '0 'u) d = ('k' ' 'u)d p(n,9,2) = Pdiff('°") + Prefr(119) + Prefl(11,O)

In this equation for shelled particles, where the index of refraction of the shell is much higher than the index of the core
material, the appropriate effective indices must be used. If the shell is thin, the index for the diffractive and refractive
terms approaches the core index of refraction while the index for the reflective term approaches the higher valued shell
index of refraction.

7. CONCLUSIONS
The natural separation into a reflected term involving mostly the shell index ofrefraction and the diffracted and refracted
terms involving mostly the core index of refraction, allows one enough freedom to model oceanic particles with indices
of refraction values that now approach those expected from the basic models of the indices of refraction of phyto-
plankton. The backscatter portion of the phase function is controlled by the reflective term while the forward scatter
portion is dominated by the diffracted and refracted terms. Both these terms can be modeled independently by using
different values for the shell and core indices of refraction.

We have gained more insight and precision for the evaluation of oceanic phase functions but have unfortunately lost in
the process the relative simplicity of the standard Fournier-Forand phase function. We are currently working on an
approximation that would allow one to compute a single effective index of refraction that could be used in the standard
Fournier-Forand form to approximate faithfully the results of the present analysis.

REFERENCES

1. G.R. Fournier and M. Jonasz, "Computer Based Underwater Imaging Analysis", SPIE, Gary M. Gilbert editor, Vol.
3761, 62-70, Denver, 1999.
2. J.L. Forand and G.R. Fournier, "Particle Distribution and Index of Refraction Estimation for Canadian Waters",
SPIE, Gary M. Gilbert editor, Vol. 3761, 34-44, Denver, 1999.
3. H.C. Van de Hulst, Light Scattering by Small Particles, Wiley, 1957.

Proc. of SPIE Vol. 6615  66150N-7


