
 
 

 

 

Implications of a new phase function for  
autonomous underwater imaging  

 
G.R. Fournier, V. Sanjuan-Calzado, C. Trees 

NATO Centre for Maritime Research and Experimentation (CMRE), La Spezia, Italy 

ABSTRACT 

Autonomous underwater vehicles do not have sufficient communications bandwidth over long ranges to send back real 
time images even for monitoring purposes. Autonomous imaging from underwater vehicles will therefore require real-
time imaging system performance prediction in order to ensure that the vehicle can position itself at a range that will 
allow it to take an image of the scene or target of interest at the required resolution and contrast level. Ideally the 
inherent optical properties of the surrounding waters should be measured on board. This may not be feasible or only a 
restricted set may be measurable. In order to improve the prediction of the imaging performance, a physics based 
analytic phase function that could effectively exploit any a-priori or in-situ measured parameters would be extremely 
helpful. Such a new physics based analytic phase function has been derived and tested against exact scattering codes. 
Among other features it is sufficiently precise to allow an accurate determination of the backscatter ratio based on an 
estimate of the mean index of refraction which is by far the dominant parameter. The new formulation shows clearly 
why the backscatter ratio, which is the dominant factor in determining imaging range, is insensitive to the inverse power 
of the size distribution and almost entirely controlled by the mean index of refection.  
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1. INTRODUCTION 

There is no current or potential future free space underwater communication link with sufficient bandwidth to transmit 
images at the rate required to position an autonomous vehicle in real-time. Seriously compounding the problem, almost 
all the techniques developed to automatically control and optimize camera images taken in air are not applicable in the 
large majority of underwater environments. The fundamental problem is that in many situations the backgrounds are 
virtually featureless and there is no way for a camera system to adjust itself by resolving features. For example, there is 
no moderately reliable a priori way of determining if one is looking at a mud flat or at in water scattering near the 
vehicle which also generally has the appearance of a featureless fog. The real question to answer in this situation is not 
“Do I see something?” but rather “If there had been an object or feature of interest to me would I have seen it?”  
 
To answer this last question properly, one must first be able to assess what features an image, with no intervening media 
to corrupt it, would need to have to allow a human or a computer to recognize the objects or features of interest. Once 
this is done the optical effect of the water on the image must be evaluated by first measuring the optical properties of the 
water column and then using an appropriate model to calculate the resultant behavior of the corrupted image as a 
function of the distance to the target of the vehicle1. The ideal tool for determining the complete profile of the inherent 
optical properties of the water column between the imaging system and the scene of interest is a multiple field of view 
polarized LIDAR. To accomplish these last two tasks an estimate of the phase function is required. It would obviously 
be of great use if this estimated phase function was parameterized in terms of the physical properties of the scattering 
particles such as the mean index of refraction and the inverse power of the size distribution. If the phase function is in 
this physical form one can bring to bear all the prior oceanographic knowledge one has about the nature of the scattering 
particles present in the different types of waters to bracket the range of the optical parameters when analyzing the 
LIDAR returns.  

2. NEED FOR AN APPROXIMATE MODEL FOR HYDROSOLS 

 The very nature of hydrosols prevents the use of the exact scattering models extensively developed for aerosols. A 
common feature of almost all aerosols is that they are composed of a small solid core that acts a nucleation center and 
coats itself in water.   



 
 

 

 

 

Fig 1.  The phase function averaged over an ensemble of particles can be separated into its component parts, diffraction, 
refraction, reflection, and the interference terms can be neglected to first order. When the relative index of refraction is 
near unity (n=1.09), as is the case for water borne particulates, the physics further simplifies and simple approximate 
expressions can be obtained for all three terms. 

Surface tension ensures that the surface of all these aerosols even if they are distorted into spheroids is smooth. As 
shown in figure 1 the absence of surface tension leads to complex structures and surface features for hydrosols. A further 
complication is that they are generally surrounded by a hard shell of relative index of the order of 1.1 to 1.15 with a soft 
organic core of relative index of 1.02 to 1.05 The only way to obtain good approximations to the scattering from large 
ensembles of these structures is to decompose the scattering in its basic components and use the simplest physical 
formulations possible for these components that account for all the relevant features. 

3. PARTIONING THE PHASE FUNCTION 

A previously developed physics based oceanic phase function model2 used only an approximation to the diffraction term 
to obtain an analytic expression to the phase function for Junge distributions of particles with small relative index of 
refraction. In further work3, a way was found to simply separate the diffraction, refraction and reflection term and 
combine them in a new analytic expression for the phase function. This new approach allows one to simply evaluate the 
contribution of the shell to the light scattered in the back hemisphere. The results clearly show that the shell reflection 
controls completely the scattering at large angles, while the index of the bulk material controls the medium to small 
forward angle scattering. The separation of the shell and bulk contribution allows model fits to oceanic phase functions 
that match experimental results with indices of refraction for the shell and bulk material that are in the range of measured 
properties of the individual organisms. Using these new results a formula was derived for a single approximate effective 
index of refraction that can be used in a standard Fournier-Forand phase function4. Two important effects were neglected 
in this previous work which led to a significant overestimate of the backscattered fraction form both the scattering due to 
diffraction around the particle and refraction through the particle. The purpose of the present work is to correct these two 
terms. This is important as the LIDAR signal amplitude depends on the backscattered light. 
 
As stated in the previous analyses3-4, when evaluating the various contributions to scattering, it is particularly instructive 
to consider the large particle limit. In that limit the various contributions to the total scattering function can be simply 
separated out. The various mutual interference terms become negligible. This separation leads to relatively simple 
formulations for the separate terms of the scattering function and the ways of combining them become obvious. This 
approach is particularly suitable when the purpose is to produce formulae that are applicable to large ensembles of 



 
 

 

 

particles since the mutual interference terms will almost always be very nearly cancelled out due to the required 
integration over the size distributions. 
 
If we follow this approach we must consider three terms. The first term is the scattering due to the diffraction of light 
around the particle. In the large particle limit, according to the Babinet theorem, this term has a total scattering cross-
section value equal to the geometric scattering cross-section. The second term is the scattering due to the light refracted 
by its passage through the particle. This term would also be equal to the geometric cross-section if one did not account 
for the amount of light reflected by the particle at its various boundaries.  In fact it is equal to the geometric cross-section 
minus the amount of reflected light and absorbed light if the particle material absorbs. The final term is the reflected 
light. At the present time we will only consider the non-absorbing. The extension to absorption is very straightforward 
but tedious3.  For the oceanic environment, the evaluation of these various terms is considerably simplified by the fact 
that the relative index of refraction is very near one. One can then use the anomalous diffraction approximation for the 
diffraction term, the simple analytic large particle approximation for the refraction term and the small index asymptotic 
limit for the various refracted terms. 
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Fig 2.  The phase function averaged over an ensemble of particles can be separated into its component parts, diffraction, 
refraction, reflection, and the interference terms can be neglected to first order. When the relative index of refraction is 
near unity (n=1.09), as is the case for water borne particulates, the physics further simplifies and simple approximate 
expressions can be obtained for all three terms. 

 
We thus have for the scattering cross-section an individual particle: 
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  is the total amount of light reflected by the particle’s front and back surfaces. The reflected term needs to be further 
broken down in terns of reflections from the front and back surfaces.  
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The cross-sections can be expressed in terms of the probabilities of scattering of the various components multiplied by 
the orientation averaged geometric cross-section of the particle.  
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The term 4/ŝ is one quarter of the surface area of the particle. This represents the value of the mean projected area for 
randomly oriented convex objects. 

2

ir is the reflection coefficient as a function of angle for parallel and perpendicular 
polarizations.  is the inverse power of the Junge particle size distribution and n  is the index of refraction of the 
particle. As noted before, all interference terms and resulting cross terms are neglected in this approximation. 
In the case where a surface is rough and acts therefore as a perfect diffuser the angular distribution is completely 
different and increases in the backscatter direction. The form is well known and is derived in Van de Hulst5 . 
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We can characterize to a good approximation the reflection coming from any scattering particle as a linear combination 
of diffuse and specular components. To do this we will define a roughness factor 11  R  so that the total contribution 
to scattering becomes: 
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4. EVALUATION OF THE DIFFRACTED TERM 

The term that was missing in the previous evaluations of the diffracted term is the Kirchhoff obliquity factor which 
ensures that there is no contribution to diffraction in the backward direction.  Including this term means that there is no 
contribution by diffraction in the retro reflection direction and therefore no contribution to the signal received by a 
LIDAR system. This modified diffractive scattering probability also reduces by an order of magnitude the total 
contribution of diffraction to the scattering integrated over the entire back hemisphere.  
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With this notation and using the standard Fournier-Forand3 functional form for the phase function we get the following 
result: 
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Where 0N is normalization constant such that: 
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This implies that:  
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This expression has the following limits. 
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We can approximate the normalization factor to an error of 14% by the following expression: 
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This finally gives: 
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Using the following notation we then obtain the new diffraction component of the phase function with obliquity factor 
included: 
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The maximum normalization error for n=1.1 is 6.1% at m=4.4. The error in the most likely value for ocean waters 
n=1.09 and m=3.65 is 3%. More precise results could be obtained but at the cost of considerable added complexity not 
warranted at this stage. 
The new formulation leads to lower values of the diffraction term in the back hemisphere and thus helps the reflection 
terms to dominate. At 90 degrees the new diffraction term is 25% of the old.  
 

5. EVALUATION OF THE REFRACTED TERM 

We also need to modify the refraction formula from Van de Hulst5 to better account for the large angle refraction. This 
can be done by using the formulas found in Chen6. 
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These new expressions were derived using the full Generalized Eikonal Approximation and are much more accurate than 
the ones given by Van de Hulst5. They account much better for the large angle scattering contribution. They lead to a 
much lower value of the refraction term in the back hemisphere which thus allows the reflection terms to dominate. For 
example at an index of 1.1 and 90 degrees, the new form is 1/20 of the old Van de Hulst form. 

6. EVALUATION OF THE REFLECTED TERM 

The evaluation of most of the reflected term is not modified in the present work.  The results are the same as those found 

in Jonasz-Fournier3 and in Fournier4 with the exception of the back,2  term for which we have found a new exact 

formulation.  
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7. EVALUATION OF THE BACKSCATTER RATIO 

Using the expressions outlined above and a model of the expected particle structure it is possible to compute the ratio of 
the radiation scattered in the back hemisphere to the total radiation scattered in all directions. This is a key parameter in 
both the analysis of LIDAR returns and underwater radiative transfer theory. To do this we use the model of a shelled 
particle with an effective index of refraction4. The results for the backscatter ratio as a function of shell index and 
roughness factor are shown in figure 2. The Junge particle size distribution exponent was the mean oceanic value3 of 3.6. 



 
 

 

 

 

 
 

Fig 3.  Modeled Backscatter ratio for a hard shelled particle as a function of surface index of refraction and surface 
roughness factor. The results show how much the effect of surface roughness is significant in the backscattering 
hemisphere and it would not be modeled by exact scattering codes which assume and require smooth surfaces.  

 
 

Fig 4.  Backscatter ratio for a hard shelled particle as a function of surface index of refraction. The Junge particle size 
distribution power law exponent was the oceanic mean value of 3.6 and the best fit to the experimental results was 
found for a surface roughness of 0.025.  

An extensive study experimental and theoretical study of the relationship between mean index of refraction and the 
backscattering ratio was carried out by Twardowki et al7. Their carefully researched empirical formula is compared to 
our model of a shelled particle where we have used an inverse power of 3.6, the mean value for several hundred fits of 
the Fournier Forand phase function to experimentally measured oceanic phase functions3. The close agreement for this 



 
 

 

 

very sensitive parameter is a clear indication that the present model could be used to significantly improve the accuracy 
of both LIDAR return calculations and oceanic radiative transfer models.  
 

8. CONCLUSIONS 

A new physics based analytic phase function has been derived and tested against experimental results for the 
backscattering ratio as a function of index of refraction. It was shown that it  is sufficiently precise to allow an accurate 
determination of the backscatter ratio based on a simple hard shell model and an estimate of the mean index of refraction 
and the surface roughness of the scattering particles. Since the phase function is in this physical parameter form one can 
now bring to bear all the prior oceanographic knowledge one has about the nature of the scattering particles present in 
the different types of waters to bracket the range of the optical parameters when analyzing the LIDAR returns.  This 
approach has the potential to significantly improve the real-time analysis of LIDAR signals to extract the optical 
parameters of the water column between the optical system on autonomous underwater vehicle and the scene of interest. 
Given these parameters and the predicted phase function, it will possible to determine the range at which the autonomous 
vehicle must maintain itself to obtain images sufficient quality to satisfy the requirements of its mission and feed this 
information into its motion control algorithms. This unattended optimization of optical imaging systems operating on 
board AUV’s will completely change the field of remote underwater optical imaging. The presence of a tether to a 
surface ship is by far the most costly and range constraining condition which renders all but the more localized or 
shallow imaging operations unfeasible or unaffordable.  A successful demonstration of fully autonomous underwater 
E/O imaging would mean completely opening up the oceans to low cost large-scale visual survey and inspection 
operations. 
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