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Generation of random sea surfaces using wave variance spectra and Fourier transforms is formulated in a way that
guarantees conservation of wave energy and fully resolves wave height and slope variances. Monte Carlo polarized
ray tracing, which accounts for multiple scattering between light rays and wave facets, is used to compute effective
Mueller matrices for reflection and transmission of air- or water-incident polarized radiance. Irradiance reflec-
tances computed using a Rayleigh sky radiance distribution, sea surfaces generated with Cox–Munk statistics, and
unpolarized ray tracing differ by 10%–18% compared with values computed using elevation- and slope-resolving
surfaces and polarized ray tracing. Radiance reflectance factors, as used to estimate water-leaving radiance from
measured upwelling and sky radiances, are shown to depend on sky polarization, and improved values are
given. © 2015 Optical Society of America
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1. INTRODUCTION

Optical reflection and transmission by water surfaces are fun-
damental to radiative transfer calculations for oceanic and
atmospheric applications. Reflection of Sun and sky radiance
by the sea surface creates glint. In ocean color remote sensing
of water-column conditions, glint is an undesired contribution
to the measured upwelling radiance that, along with atmos-
pheric path radiance, must be estimated and removed from
the measured radiance in order to obtain the water-leaving ra-
diance, which carries the information about the water column
itself. In remote sensing of the surface wave state or wind
speed and direction, glint is the signal because it depends
on surface roughness. The water-leaving radiance itself
comes from upwelling underwater radiance, which is transmit-
ted through the sea surface from water to air. The underwater
light field arises from light that is transmitted through the sur-
face from air to water and is affected by underwater radiance
that is reflected back downward by the underside of the sea
surface.

Accurate calculation of surface optical properties has three
requirements. First, the sea surface itself must be modeled in a
way that accounts for wave elevation and slope. To first order,
reflection and transmission of a light ray incident onto the sea
surface are governed by the slope of the surface at the point of
intersection. However, wave elevation can lead to wave shad-
owing for incident angles near the horizon, which refers to rays
predominately striking the sides of the waves tilted toward the

light source. In the ocean, wave elevation is dominated by the
highest amplitude waves, which are generally gravity waves with
wavelengths of tens to hundreds of meters. The waves with the
largest slopes are often gravity waves with wavelengths of a me-
ter or less and capillary waves with wavelengths of a few milli-
meters. Thus, the simulated sea surface must include the
elevation and slope effects for spatial scales that vary by a factor
of 105.

Second, the simulated light rays must account for polariza-
tion. Surface reflection and transmission induce polarization,
even if the incident source (e.g., the Sun’s direct beam) is un-
polarized. Incident sky radiance is usually partially linearly
polarized. Thus, both reflected and transmitted light fields
are, in general, partially polarized. Although many sensors
are designed to be insensitive to polarization, the state of polari-
zation of the incident light affects the total energy reflected or
transmitted by the sea surface. Polarization also carries informa-
tion that potentially can be used to improve algorithms for re-
moval of surface glint, underwater visibility, or separation of
particle types, if polarization-sensitive sensors are employed.

Third, the ray tracing must account for multiple scattering
between light rays and waves. Although single scattering
dominates ray-surface interactions, multiple scattering can
occur for incident angles that are large relative to the local
normal to the sea surface. This occurs most often when the
incident ray is nearly horizontal, e.g., when the Sun is near
the horizon.
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Simulations of sea surfaces for optical calculations often
employ Cox–Munk wind speed-wave slope statistics for
generation of random surface realizations. Their equations [1]:

σ2a � 0.003� 0.00316W 12.5 � 0.002; (1a)

σ2c � 0.00192W 12.5 � 0.004; (1b)

σ2 � 0.003� 0.00512W 12.5 � 0.004; (1c)

relate the along wind (σ2a ), cross wind (σ2c ), and total
(σ2 � σ2a � σ2c ) variances of the nondimensional sea surface
slopes to the wind speed W 12.5 in meters per second at
12.5 m above sea level (the coefficients of W 12.5 have units
of s m−1). Surfaces generated using these equations capture
slope effects for the full range of wave spatial scales at the times
of observation. The data upon which these equations rest were
obtained for wind speeds of 1–14 m s−1. The sea states were not
described but were probably mature but not fully developed.
Preisendorfer and Mobley [2] used Cox–Munk surfaces and
a ray tracing algorithm that included all orders of multiple scat-
tering to study sea surface optical properties, but only for un-
polarized light. Although the Cox–Munk model provides a
reasonable simulation of surface slopes, it cannot reproduce
wave elevations.

Both elevation and slope statistics can be captured if wave
variance spectra and Fourier transforms are used for surface
generation. These surfaces are referred to here as FFT surfaces
because the fast Fourier transform (FFT) is used to evaluate the
discrete Fourier transforms. Several previous studies [3–7] have
used FFT surfaces but have not included polarization or multi-
ple scattering. Tulldahl and Steinvall [8] used a two-step, two-
scale model to simulate the effects of both gravity and capillary
waves on wave slopes. In the first step of their calculations, they
used a coarse spatial grid to resolve the gravity waves. In the
second step, they added capillary-scale waves to the coarse grid.
Their capillary-scale waves were generated using slope variances
equal to the difference of the Cox–Munk slope variance and the
slope variance of the gravity waves generated in the first step.
Their surfaces, thus, accounted for slope effects due to the full
range of wavelengths, and their ray tracing used the same multi-
ple scattering algorithm as [2]. They did not, however, include
polarization. McLean [5] accounted for unresolved slope vari-
ance in a study of lidar transmission through the surface by
adding extra divergence to the lidar beam when it passed
through the sea surface. A later similar study [6] used a grid
resolution of 0.5 cm to capture the slopes of capillary-scale
waves, but the longest gravity waves were not fully resolved.
The recent study by Kay et al. [7] simulated the full range
of spatial scales from 200 m to 3 mm needed to resolve the
amplitude and slope variances, but their brute-force computa-
tions required 65536 × 65536 grid points in the FFTs, with
consequently very long run times of 6 h to generate a single
surface realization. They also did not include polarization.

A number of studies have modeled the polarization proper-
ties of sea surfaces but only for level [9–13] or Cox–Munk
surfaces [14–17]. The latter studies sometimes included an ana-
lytic function to model wave shadowing, but none accounted
for multiple scattering between wave facets.

The previous studies just cited have, thus, included at best
two of the three abovementioned requirements for accurate
computation of sea surface optical properties. The first goal
of the present paper is to introduce techniques for computing
optical properties for sea surfaces that incorporate elevation and
slope effects for the full range of gravity and capillary spatial
scales, with all orders of multiple scattering between light rays
and surface waves, and including polarization via the full Stokes
vector formalism. The second goal is to compare predictions
made with the complete formalism with those made using
the simplifications of Cox–Munk surfaces, unpolarized ray
tracing, and/or single scattering. Fortran 95 code was written
to implement the surface-generation and ray-tracing algorithms
described in the next two sections. That code can generate
either Cox–Munk or FFT surfaces, and the ray tracing can
be either polarized or unpolarized. The ray tracing keeps a sep-
arate tally for singly and multiply scattered rays. It is, thus, easy
to compare results obtained for different sea surface models, for
polarized versus unpolarized treatments of the light, and for
single versus multiple scattering.

The next section describes the surface wave generation,
including an algorithm to account for elevation and slope var-
iances without the need for large numbers of grid points. The
polarized ray tracing algorithm is outlined in the following sec-
tion. Section 4 then shows examples of reflectance and trans-
mittance for both water- and air-incident light for the simple
case of an unpolarized, collimated incident beam. Reflection
and transmission of a partially polarized Rayleigh sky radiance
distribution are then illustrated in Section 5. Section 6 then
compares exact calculations (i.e., using FFT surfaces and
polarized ray tracing with multiple scattering) of sea surface
irradiance reflectance with results obtained using various
approximations. The use of radiance reflectance factors for
surface glint removal is well established [18]. Finally,
Section 7 compares these factors as computed using FFT
surfaces and polarized ray tracing with the factors obtained with
Cox–Munk surfaces and unpolarized ray tracing.

2. SEA SURFACE GENERATION

The initial part of this section reviews the relations between sea
surfaces and the wave elevation and slope variance spectra
needed for sea surface generation. The next part then shows
how a wave variance spectrum is used to define random sea
surfaces that are consistent with the chosen wave spectrum.
Particular attention is paid to the normalization factors that
are required for conservation of wave elevation variance (pro-
portional to wave energy) in a round-trip calculation from a
wave variance spectrum to a sea surface realization and back
to a wave spectrum. The final section shows how a wave eleva-
tion variance spectrum can be rescaled so that a finite range of
sampling of the spectrum in frequency space generates sea sur-
faces that reproduce the elevation and slope statistics of the real
sea surface corresponding to the original variance spectrum.

A. Wave Variance Spectra
The Monte Carlo ray tracing begins with the generation of ran-
dom realizations of sea surfaces. Let z�x� � z�x; y� be the sea
surface elevation in meters at point x � �x; y� at a particular

Research Article Vol. 54, No. 15 / May 20 2015 / Applied Optics 4829



time. The spatial extent of the sea surface is 0 ≤ x < Lx and
0 ≤ y < Ly, with Lx and Ly in meters. A wind-centered coor-
dinate system is used, with the �x direction chosen to be
downwind; −x is then upwind, and �y are the cross-wind
directions. This surface is sampled on a rectangular grid of
Nx by Ny points, where both Nx and Ny are powers of 2
to enable use of FFTs. The spatial sampling points are then
x�r� � rΔx; r � 0;…; N x − 1 with Δx � Lx∕Nx . A similar
equation holds for the y�s� � sΔy points. A discrete sample
of z�x; y� is denoted z�xrs� or z�r; s�.

The two-dimensional (2D) forward discrete Fourier trans-
form of z�r; s�, which is evaluated using the FFT algorithm,
converts the surface elevations to a 2D grid of complex
Fourier amplitudes ẑ�u; v� � FFT2Dfz�r; s�g. These ampli-
tudes are defined at positive and negative discrete angular spa-
tial frequencies kx�u� � uΔkx; u � −�Nx∕2� 1�;…; N x∕2,
with Δkx � 2π∕Lx . The fundamental frequency of magnitude
Δkx corresponds to the longest resolvable wave. The positive
frequency kx�Nx∕2� � 2π∕�2Δx� is the Nyquist frequency,
which corresponds to the shortest resolvable wavelength of
2Δx. Corresponding results hold for the ky�v� spatial frequen-
cies. These spatial frequencies have units of radians per meter. A
discrete frequency pair kuv � �kx�u�; ky�v�� is labeled by �u; v�.
The sea surface z�xrs� is real valued, so the amplitudes are
Hermitian: ẑ	�−kuv� � ẑ��kuv�, where ẑ	 denotes the com-
plex conjugate of ẑ.

The absolute value squared of the discrete amplitudes is the
discrete elevation variance spectrum corresponding to the sur-
face sample z�r; s�. This spectrum is denoted Ψ�u; v� �
jẑ�u; v�j2. Dividing the discrete spectrum by the sampling
bandwidth gives a discrete estimate (a periodogram) of the
continuous elevation variance spectral density: Ψ�kx; ky� �
Ψ�u; v�∕�ΔkxΔky�. Averaging the periodograms from many in-
dependent samples of the sea surface averages out the statistical
noise inherent in each individual periodogram and leads to the
elevation spectral density of the sea surface. It is important to
note that the discrete z2�r; s�, jẑ�u; v�j2, and Ψ�u; v� are all
point functions with units ofm2, whereas the continuous func-
tion Ψ�kx; ky� is a spectral density with units of m2∕�rad∕m�2.
The integral of Ψ�kx; ky� over all spatial frequencies gives the
variance of the zero-mean sea surface elevation:

varfzg � hz2i �
Z

∞

−∞

Z
∞

−∞
Ψ�kx; ky�dkxdky; (2)

where hi indicates expectation or ensemble average over many
measurements of the sea surface. The energy contained in a
surface wave is proportional to the wave amplitude squared,
so variance spectra are often loosely called energy spectra,
and conservation of wave energy corresponds to conservation
of elevation variance.

The FFT of z�r; s� leads to a discrete two-sided (2S)
spectrum, denoted here by Ψ2S�kuv�. “Two-sided” means that
positive and negative frequencies, which correspond to waves
propagating in opposite directions, are present. With the choice
of �x being downwind, frequencies with a positive kx value
correspond to waves propagating generally downwind
(jφj < π∕2, where φ � tan�ky∕kx�); negative kx corresponds
to waves propagating upwind (jφj > π∕2).

The resulting Ψ2S�k� � Ψ2S�kx; ky� is equal for directions
�k and −k. This symmetry arises because the FFT cannot de-
termine which direction a wave is propagating because there is
no time dependence in the surface sample z�r; s�. In many ap-
plications in physical oceanography, the quantity of interest is
just the total variance (i.e., total energy) per unit frequency in-
terval contained in waves of a given frequency magnitude
k � jkj � �k2x � k2y �1∕2, without regard for the direction of
wave propagation. In this case, a one-sided (1S) spectral density
is used, which has only positive k values but is twice the
magnitude of the two-sided spectrum: Ψ1S�k� � 2Ψ2S�k�.
One-sided spectra are also known as folded spectra [19].
Wave spectral densities as presented in the oceanographic liter-
ature are almost always one-sided spectra. However, when gen-
erating sea surfaces as described below, two-sided spectra are
needed, in which case the one-sided spectrum must be divided
by two to convert it back to the proper magnitude of a two-sided
spectrum. In reality, Ψ2S�k� ≫ Ψ2S�−k� because much more
energy propagates downwind than upwind at a given frequency,
but symmetric spectra are consistent with the generation of
time-independent surfaces as needed for the present study.

This study uses the one-sided elevation variance spectral
density of Elfouhaily et al. [20], which they write in polar
coordinates �k;φ� as

Ψ1S�k;φ� �
1

k
S�k�Φ�k;φ�:

Here, S�k� is the 1D omnidirectional spectral density with
units ofm2∕�rad∕m�, andΦ�k;φ� is a nondimensional spread-
ing function.Ψ1S�k;φ�, thus, has the same units asΨ1S�kx; ky�.
Their spreading function has the form:

Φ�k;φ� � 1

2π
�1� Δ�k� cos�2φ��: (3)

This function is symmetric about φ � �π∕2, i.e., the function
gives symmetric spreading for downwind and upwind propa-
gation. The division of Ψ1S by 2 when generating time-
independent surfaces is, in essence, a division of the one-sided
or folded spreading function to give equal energy propagation
in the φ and φ� π directions.

The Ψ spectra give the variance of the sea surface elevations.
The corresponding variance spectrum of the sea surface slopes
is k2Ψ. Thus, the variance of the wave slopes (the mean square
slope) in the along-wind (�x) direction is given by either of

σ2a �
Z

∞

−∞

Z
∞

−∞
k2xΨ2S�kx; ky�dkxdky

�
Z

∞

0

Z
π

−π
k2 cos2 φΨ2S�k;φ�kdkdφ:

A similar equation gives the cross-wind slope variance. The
total slope variance is then

σ2 � σ2a � σ2c �
Z

∞

0

k2S�k�dk:

These relations are derived in [21] and [22, Appendix A], both
of which contain a general discussion of wave spectra.

B. Surface Generation Via FFTs
The next task is to generate a set of random discrete complex
Fourier amplitudes that are physically consistent with the
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chosen wave elevation variance spectrum. These amplitudes
must be defined for positive and negative frequencies, and they
must be Hermitian, so that the inverse Fourier transform
generates a real sea surface. In essence, the elevation variance
spectrum is used to define the wave amplitudes as a function
of spatial frequency, and random variables are used to define a
random phase for each wave.

Following the formulation of Tessendorf [23], first define

ẑo�kuv� ≡
1ffiffiffi
2

p �ρ�kuv� � iσ�kuv��

×

�
Ψ1S�k � kuv�

2
ΔkxΔky

�
1∕2

; (4)

� 1ffiffiffi
2

p �ρ�kuv� � iσ�kuv��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ2S�kuv�

p
: (5)

Here, ρ�kuv� and σ�kuv� are independent normal random var-
iables with zero mean and unit variance, denoted N �0; 1�. A
different random variable is drawn for each kuv value. Ψ1S�k �
kuv� is a one-sided continuous spectral density evaluated at the
discrete frequencies kuv. Note in Eq. (4) that the one-sided
spectrum is divided by 2 in the process of generating the sym-
metric discrete two-sided spectrum of Eq. (5). This division by
two reflects the assumption that the one-sided spectrum corre-
sponds to a symmetric two-sided spectrum. Multiplication of
the continuous spectral density by the sampling frequency
bandwidths converts the spectral density to a discrete point
function showing how much variance is contained in a finite
frequency interval ΔkxΔky at each frequency kuv. Ψ2S�kuv�
denotes the resulting two-sided, discrete variance spectrum.

The amplitudes ẑo�kuv� � ẑo�u; v� are random variables.
The statistical expectation of jẑo�kuv�j2 is

hẑo�u; v�ẑ	o �u; v�i �
��

1ffiffiffi
2

p �ρ�u; v� � iσ�u; v��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ2S�u; v�

p �

×

�
1ffiffiffi
2

p �ρ�u; v� − iσ�u; v��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ2S�u; v�

p ��

� Ψ2S�u; v�
2

�hρ2�u; v�i � hσ2�u; v�i�
� Ψ2S�u; v�;

where it has been noted that hρ2�u; v�i � hσ2�u; v�i � 1 for
independent N �0; 1� random variables. Thus, ẑo�u; v� is con-
sistent with the chosen variance spectrum. However, ẑo�u; v� is
not Hermitian, so the inverse FFT would not give a real sea
surface. However, the spectral amplitudes defined by

ẑ�kuv; t�

≡
1ffiffiffi
2

p �ẑo��kuv� exp�−iωuvt� � ẑ	o �−kuv� exp��iωuvt��

(6)

are clearly Hermitian, so the inverse FFT applied to ẑ�kuv; t�
will give a real-valued z�xrs; t�. Time dependence is included in
this definition for complete generality. Just as was done for
hjẑo�kuv�j2i above, it is easy to show that hjẑ�kuv; t�j2i �
1
2 �Ψ2S�kuv� �Ψ2S�−kuv��. Thus, the amplitudes of Eq. (6) give
a real sea surface that is consistent with the chosen energy

spectrum. This result holds even if the two-sided spectrum
is not symmetric for�k. The time independence of the expect-
ation shows that even though the shape of the wave surface
depends on time, the total energy of the wave field does not.

If a sequence of independent surfaces is to be generated, as
needed for the Monte Carlo simulations below, then the time
can be set to 0 in Eq. (6). Each surface is then generated by
drawing a new set of random numbers in Eq. (5). If the
time-dependent propagation of a given surface is to be simu-
lated, e.g., for creating a visual rendering of moving waves, then
a single set of random numbers is drawn, and the time depend-
ence is obtained from the exponentials of Eq. (6) and an
appropriate dispersion relation to obtain the temporal angular
frequency ωuv from the spatial angular frequency kuv. For deep-
water gravity waves, the dispersion relation is ω2

uv � gkuv,
where g is the acceleration due to gravity. Note, however, that,
when generating a time-dependent sequence of surfaces for a
propagating wave field, it is necessary to use an asymmetric
spreading function so that most of the energy propagates
downwind. A commonly used spreading function for this pur-
pose is the cosine-2s family [24] of the form Φ�k;φ� �
C�s�cos2s�φ∕2�, where s is a spreading parameter that depends
on k, and C is a normalization coefficient. These functions are
asymmetric about φ � π∕2 and give much stronger propaga-
tion downwind than upwind. In this case, essentially all of the
variance is contained in the downwind half of Ψ2S�k�, and no
division by two is needed in Eq. (4). In any case, the random
realization of the sea surface is obtained from the inverse FFT of
the amplitudes: z�r; s; t� � FFT−1

2Dfẑ�kuv; t�g.
Equations similar to Eqs. (4) and (6) are widely used in the

movie industry for computer-generated imagery of sea surfaces.
However, the literature on those applications (e.g., [23]) always
ignores the division of the one-sided variance spectrum by 2, as
seen in Eq. (4), and the leading factor of 1∕

ffiffiffi
2

p
, as seen in

Eq. (6), is likewise missing. Multiplication by the frequency
interval, as seen in Eq. (4), is also often ignored. The justifi-
cation seems to be that scale factors do not matter because
the generated surfaces subsequently will be distorted for artistic
purposes, e.g., to make the waves appear larger. However,
for scientific applications, it is crucial that the generated
sea surfaces be physically correct. When generating time-
independent surfaces with a symmetric spreading function such
as that of Eq. (3), if Ψ1S is not divided by 2 in Eq. (4) and the
1∕

ffiffiffi
2

p
factor is omitted in Eq. (6), then the amplitudes will be a

factor of 2 too large. This corresponds to a factor of four
violation of conservation of variance (i.e., energy) in a round
trip calculation from variance spectrum to sea surface and back
to variance spectrum.

C. Accounting for Unsampled Variance
Generation of a sea surface requires specific values for Lx , Ly,
Nx , and Ny in the above equations. This raises the question of
how large a spatial region and how many points must be used in
generating sea surface realizations. Not surprisingly, the answer
depends on the application. The visual impression of a sea sur-
face is, to first order, determined by the height of the waves,
which, in turn, is governed by the largest gravity waves for the
given wind speed. When creating sea surfaces for rendering into
a visually appealing movie scene, Lx and Ly can be chosen large
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enough to resolve the gravity waves with the greatest elevation
variance (estimated from the peak of the S�k� spectrum). The
number of grid points can be small; 29 � 512 or 210 � 1024
grid points in each direction are usually adequate.

Accurate scientific calculations of sea surface reflectance re-
quire many more grid points in order to resolve the surface
down to the millimeter scale where capillary waves make a sig-
nificant contribution to the surface slope variance. It is now
computationally possible to create 2D FFT surfaces with suf-
ficiently large N values in the x and y directions, but run times
are prohibitive. Kay et al. [7] created 200 m × 200 m surfaces
with 216 � 65536 points in each dimension. This allowed
sampling of the variance spectrum for wavelengths from
200 m gravity waves to 3 mm capillary waves. However, it took
6 h to create just one surface on a 3 GHz computer. Many ray
tracing applications require tens to hundreds of thousands of
independent surface realizations to obtain satisfactory statistical
estimates. Thus, it is necessary to finesse certain calculations so
that large-N FFTs can be avoided.

The upper-left panel of Fig. 1 shows the omnidirectional
elevation spectrum S�k� of Elfouhaily et al. [20] for a wind
speed of 10 m s−1. The upper-right panel shows the corre-
sponding slope spectrum k2S�k�. Note that the slope spectrum
falls off much more slowly with increasing k than does the
elevation spectrum. The elevation and slope variances con-
tained in these spectra can be computed by numerically inte-
grating the spectra from some very low frequency k0 to a very
high frequency kh, which cover the frequency range where the
spectra are non-negligible in magnitude:

hz2i �
Z

kh

k0
S�k�dk; (7)

and

σ2 �
Z

kh

k0
k2S�k�dk: (8)

Using k0 � 0.01 and kh � 104 gives hz2i � 0.4296 m2 and
σ2 � 0.06011 rad2 for the spectrum of the present example.

Now suppose this spectrum is used to generate a surface
with Lx � 200 m using Nx � 1024 sampling points. The
fundamental spatial frequency corresponding to the longest
resolvable wavelength is then kf � 2π∕Lx � 0.0314 radm−1

and the Nyquist frequency is kNy � 16.085 radm−1; these
frequencies are shown by the two red dots in the upper panels
of Fig. 1. These two frequencies and the Nx − 2 evenly spaced
frequencies in between are the frequencies at which the eleva-
tion variance spectrum is sampled. Using kf and kNy as the
lower and upper limits in Eqs. (7) and (8) gives hz2i�N �
1024� � 0.4219 m2 and σ2�N � 1024� � 0.02584 rad2.
Thus, the finite range of the sampled frequencies includes
the fraction,

f E ≡
hz2i�N �
hz2i � 0.4219

0.4296
� 0.982;

of the total variance of the sea surface elevation. However, the
corresponding fraction of the sampled slope variance is just
f S � 0.02584∕0.06011 � 0.430. Thus, N � 1024 is sam-
pling 98% of the elevation variance but only 43% of the slope
variance. This sampling is acceptable for creating a sea surface
that looks realistic to the eye. However, the unsampled
frequencies greater than the Nyquist frequency account for a
large part of the optically important slope variance.

One way to account for the unsampled slope variance is to
alias the variance of the waves with frequencies greater than the

Fig. 1. Example sampling of elevation and slope spectra. The red dots on the lines in the upper panels show the bounds of the elevation and slope
spectra sampled using 1024 points with L � 200 m. The light red lines are the true spectra S, and the truncated heavy blue lines are the adjusted
spectra S̃ obtained from Eqs. (9)–(11). The dashed lines at 370 rad∕m indicate the conventional boundary between gravity and capillary waves. The
lower panels show random realizations of short segments along the x direction of the sea surface elevation and slope for the true (light red line) and
adjusted (heavy blue line) spectra.
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Nyquist frequency into the higher-frequency waves with
frequencies less than the Nyquist frequency. The higher-
frequency waves that are sampled will then contain too much
variance, i.e., they will have amplitudes that are too large for
their wavelengths, which will increase their slopes. This is done
by adjusting or rescaling the elevation spectrum,

S̃�k� ≡ �1� δ�k��S�k�; (9)

such that the integral of k2S̃�k� over the sampled region kf to
kNy equals the integral of the true k2S�k� over the entire spec-
tral range. Sampling the rescaled spectrum k2S̃�k� over the kf
to kNy frequency range then gives the same slope variance, as
would be obtained by sampling the true spectrum k2S�k� over
the entire range of frequencies.

L is chosen sufficiently large for the low frequencies to be
well sampled starting at the fundamental frequency kf . There
is, thus, no need to modify the low-frequency part of the vari-
ance spectrum, which, if done, would adversely affect the total
elevation variance. Only the high-frequency part of the spec-
trum needs modification. A simple approach is to take δ�k�
to be a linear function of k between the spectrum peak kp
and the highest sampled frequency kNy , and zero elsewhere:

δ�k� ≡
(

0 if k ≤ kp
δNy

	
k−kp
kNy−kp



if k > kp

; (10)

δNy is a parameter that depends on the spectrum (i.e., the wind
speed), the size L of the spatial domain, and the number of
samples N . δNy must be determined so that δ�k� “adds back
in” the unresolved slope variance. The added variance will be
zero at the peak frequency kp and largest at the Nyquist fre-
quency. That is, the δ�k� function will make only a small
change to the variance spectrum at the low frequencies, and
the change will be largest near the highest sampled frequencies,
which is consistent with the idea that the high-frequency waves
have the largest slopes.

The parameter δNy is determined by noting that

σ2 ≈
Z

kh

k0
k2S�k�dk �

Z
kNy

k0
k2S�k�dk �

Z
kh

kNy

k2S�k�dk

≡
Z

kNy

k0
k2S̃�k�dk �

Z
kNy

k0
k2S�k�dk

� δNy

Z
kNy

kp
k2
�

k − kp
kNy − kp

�
S�k�dk:

The right-most terms of these equations give (after recalling
that δ�k� � 0 for k ≤ kp)

δNy �
R kh
kNy

k2S�k�dkR kNy

kp
k2
	

k−kp
kNy−kp



S�k�dk

: (11)

These integrals are numerically evaluated for the given
spectrum.

The heavy blue lines in the upper panels of Fig. 1 show the
S̃�k� and k2S̃�k� spectra for the present example. It is clear that
the δ�k� function has added progressively more variance to the
higher frequencies. The rescaled variance spectrum does, of
course, contain somewhat more variance over the sampled

region than does the true spectrum. As the upper inset f E value
shows, this rescaling has increased the fraction of sampled/true
variance from 0.982 to 1.020. However, the upper f S number
in the upper-right panel shows that 99.5% of the slope variance
is now being sampled, as opposed to just 43% for the true spec-
trum. Having slightly too much total elevation variance is a
reasonable trade-off for being able to model the optically im-
portant slope statistics without the need for very large numbers
of grid points.

The lower-left panel of Fig. 1 shows a 10 m slice along x of a
random realization of the surfaces generated from these two
spectra (with the same set of random numbers). The surface
elevations z�xr� from the true spectrum (shown as the light
red line) and the rescaled spectrum (thick blue line) are almost
indistinguishable at the scale of this figure. The lower-right
panel shows the surface slopes computed from finite differences
of the discrete surface heights. The Cox–Munk along-wind
mean square slope of 0.0346 given by Eq. (1a) compares well
with the value of 0.032 obtained with the rescaled spectrum.
However, the value obtained from sampling the truncated true
spectrum is only 0.022, or 64% of the Cox–Munk value. Thus,
in this example, the δ�k� correction to the elevation variance
spectrum reproduces the slope variance at the expense of a
2% error in the elevation variance, compared to the theoretical
values that would be obtained if the spectra were sampled with
enough points to fully resolve the elevation and slope spectra.

The rescaled spectrum, thus, reproduces the slope variance
at the expense of some increase to the elevation variance. The
question still remains as to how many FFT grid points should
be used in practice. Figure 2 illustrates the approach to the full
slope variance as the number of grid points increases when no
adjustment is made to the wave spectra, versus the slope var-
iances obtained with rescaled spectra. The filled red diamonds
show the mean square slopes (mss) when an L × L �
100 × 100 m area of sea surface is simulated using an N × N
FFT, for a wind speed of W � 5 m s−1. The open red dia-
monds show the corresponding mean square slopes for the
rescaled spectra. For N � 27 � 128 points, the mss is only

Fig. 2. Approach to fully resolved mean square slopes (diamonds,
left ordinate) and elevations (circles, right ordinate) as a function of the
number of grid points N , for winds speeds of W � 5 (red) and
10 m s−1 (blue).
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0.0119, versus a value of mss � 0.0328 for the rescaled spec-
trum. Not until N � 215 � 32; 768 does the mss for an un-
adjusted spectrum equal the value for the adjusted spectrum.
For L � 100 m and N � 215, the surface is being resolved
down to a grid spacing of L∕N � 0.003 m (or a Nyquist spa-
tial frequency of kNy � 1029 radm−1), which fully resolves the
capillary waves. At this value, the rescaled and unscaled spectra
are the same, i.e., δ � 0 in Eq. (9). Larger values of N then
make no difference in the mss values. The red dots show
the elevation variances z2 for unadjusted (solid dots) and ad-
justed (open dots) spectra. For L � 100 m and W � 5 m s−1,
there is almost no difference in the elevation variances. The
blue curves show the corresponding results for L � 300 m
andW � 10 m s−1. In that case, the unadjusted spectrum does
not fully resolve the mss until N � 217 � 131; 072 points are
used, which corresponds to a grid point spacing of 0.0023 m or
a Nyquist frequency of 1373 radm−1. Now, however, the small
N values give a substantial increase to the elevation variance, as
seen by the open blue circles. For N � 128, z2 for the adjusted
spectrum is 1.54 times the value for the unadjusted spectrum.
This difference decreases to an increase of 1.057 at N � 1024
and 1.029 at N � 2048. Numerical experimentation shows
that N � 1024 provides a reasonable balance between having
enough grid points to minimize the increase in elevation vari-
ance and keeping the run times acceptably small. The depend-
ence of surface-reflected radiance on the choice of N is
discussed below in Fig. 10.

The surface generation techniques of this section give sea
surfaces that correctly reproduce the elevation and slope statis-
tics of a real sea surface corresponding to the chosen variance
spectrum. Figure 3 shows an example of a 2D sea surface gen-
erated using these techniques. The along-wind, cross-wind, and
total slope variances for this realization (computed by finite
differences) are in good agreement with the respective Cox–
Munk values of 0.035, 0.019, and 0.054. The significant wave
height ofH 1∕3 � 2.18 m for this realization with Lx � 100 m
is somewhat less than the theoretical value of H 1∕3 ≡
4

ffiffiffiffiffiffiffiffi
hz2i

p
� 2.622 m obtained by numerical integration of

the elevation variance spectrum, as in Eq. (2). However, in-
creasing Lx to 400 m accounts for the very longest waves

and gives H 1∕3 � 2.613 m. Table 1 compares the Cox–
Munk slope variances of Eq. (1) with those obtained by ran-
dom realizations of sea surfaces, as shown in Fig. 3, for various
wind speeds. It should be noted that the along-wind and cross-
wind mean square slopes (i.e., the ratio σ2a∕σ2c ) depend on
choice of spreading function Φ�k;φ�, but the total variance
depends only on the omnidirectional spectrum S�k�.

3. POLARIZED RAY TRACING

Ray tracing is most conveniently carried out if the surface is
modeled as a grid of triangular wave facets. Resampling of rec-
tangular FFT grids is described first. The process of ray tracing
for polarized light is then outlined.

A. Resampling Rectangular Grids
The wave spectrum-FFT process gives sea surface elevations
defined on a rectangular grid of points. The Monte Carlo com-
putation of surface optical properties requires repeated determi-
nations of the points of intersection of rays with surfaces and of
the angles of incidence of the rays with the surface normals at
the points of intersection. Those calculations are most easily
performed if the sea surface is modeled as a grid of triangular,
rather than rectangular, wave facets. The mathematics then
amount to finding the intersection point of a line with a plane
defined by the three vertices of a wave facet. The normal to the
planar wave facet is easily computed from facet vertices.

There is no unique or one best way to map a rectangular
FFT grid to a grid of triangles. However, the ray tracing algo-
rithm that determines when a ray intersects the surface does
depend on the particular triangulation scheme chosen because
it is necessary to determine when a ray crosses the boundaries of
the facet triangles. If the FFT surface is generated using N y �
Nx∕2, then, essentially, every other x grid point can be omitted
to generate a hexagonal grid of triangular wave facets as illus-
trated in Fig. 4 for the case of Nx � 16 and Ny � 8 (and
Lx � Ly � 8 m). This resampling generates a hexagonal region
with 3�Ny∕2��Ny∕2� 1� � 1 facet vertices and 3N 2

y∕2 wave
facets. Although a triangulation based on right triangles half the

Table 1. Mean Square Slopes as Given by Cox–Munk
Formulas in Eq. (1) and by Random Realizations of FFT
Surfacesa

mss Cox–Munk FFT

W � 5 m s−1

σ2a 0.0188 0.021
σ2c 0.0096 0.010
σ2 0.0286 0.031
W � 10 m s−1

σ2a 0.0346 0.038
σ2c 0.0192 0.017
σ2 0.0542 0.055
W � 15 m s−1

σ2a 0.0504 0.050
σ2c 0.0288 0.022
σ2 0.0798 0.071
aAs shown in Fig. 3. Different random realizations give a variability of

�0.001 in the FFT values.

Fig. 3. 2D example sea surface random realization for Lx � Ly �
100 m and Nx � Ny � 512 and a wind speed of 10 m s−1 in the�x
direction. Light color is high surface elevation; dark color is low eleva-
tion. Inset numbers give the significant wave height H 1∕3, mean
square slopes (total, mss; along wind, mssx ; and cross wind, mssy),
and mean surface tilt angles from the vertical in the along-wind
(hθxi) and cross-wind (hθyi) directions.
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size of the isosceles triangles shown in Fig. 4 would use every
FFT grid point, the present triangulation scheme was chosen
because a well-proven computer code (used in HydroLight) for
the ray tracing was already available. The Cox–Munk Eq. (1)
can be used to generate surfaces of triangular wave facets
with the chosen triangulation scheme, as described in [25,
Section 4.3].

B. Ray Tracing
Tracing the path of a light ray through 3D space, as it is re-
flected and refracted by the sea surface, is in principle no more
complicated than determining where a straight line intersects a
plane. Those calculations are purely geometric and do not
depend on the polarization state of the light. However, the
application of the basic geometric concepts to the irregular
geometry of the wave facets comprising a random realization
of the sea surface is rather tedious. The details of those geomet-
ric calculations are given in [26, Appendix B].

Polarized light is described by the four-component Stokes
vector S � �I ; Q;U ; V �T , whose components describe the
state of polarization in a particular coordinate system. The con-
vention used here [27] is that positive Q represents vertical
polarization (the electric field in the vertical, or meridian plane,
normal to the mean sea surface) and negativeQ represents hori-
zontal polarization (electric field parallel to the sea surface).
Positive U is �45 deg polarization, and negative U is
−45 deg . Positive V is left circular polarization, and negative
V is right circular. Incident rays approaching the sea surface
before any interaction are described in a coordinate system
based on the incident meridian plane, which is the plane con-
taining the z axis (outward normal to the mean sea surface) and

the direction ξi of the incident ray. The associated Stokes vector
Si is specified relative to horizontal and vertical directions, hi
and vi, which are, respectively, perpendicular and parallel to the
incident meridian plane. Unit vectors hi and vi are determined
so that “perpendicular” cross “parallel” is in the direction of
light propagation. For an incident ray, this rule gives

hi �
z × ξi
jz × ξij

; vi � ξi × hi ; ξi � hi × vi :

An incident ray always intersects a wave facet. The incident
direction ξi and the wave facet normal n define the scattering
plane containing the incident, reflected (ξr ), and transmitted
(ξt ) rays. The incident Stokes vector must be “rotated” (trans-
formed) from the incident meridian plane into a coordinate
system whose axes are perpendicular (s) and parallel (p) to the
scattering plane. Using the choices of incident direction cross
facet normal equals the perpendicular vector, and perpendicular
cross parallel equals direction of propagation, gives

s � ξi × n
jξi × nj

; p � ξi × s; ξi � s × p:

Vector s resides in the plane of the wave facet and is normal to
each of ξi, n, ξr , and ξt . Vector p resides in the scattering plane
and is normal only to ξi.

The rotation angle 0 ≤ αi < 2π that rotates the incident
Stokes vector into the scattering plane is the angle that rotates
the initial perpendicular direction hi into the direction
perpendicular to the scattering plane. (This same angle rotates
vi into p.) The rotation angle can, therefore, be obtained from
the dot product of hi and p. However, there is some ambiguity
in the angle obtained this way. This is resolved by choosing a
positive rotation to be counterclockwise when looking into the
beam (in the −ξi direction) [27]. In general, the rotation angle
is the angle required to rotate the first vector v1 counterclock-
wise into the second vector v2 when looking into the rotation
axis, which is vector v3 � v1 × v2. In the present case, v1 � hi,
v2 � s, and v3 � ξi is the rotation axis. In general, four cases
must be considered, as shown in Fig. 5. The rotation angle de-
pends on whether v1 · v2 is positive or negative and on whether
v1 × v2 is parallel or antiparallel to the rotation axis. In the
present case, v1 × v2 � hi × s is by construction parallel to
ξi, in which case

αi � jcos−1�v1 · v2�j � jcos−1�hi · s�j: (12)

If v1 × v2 is antiparallel to ξ, then

αi � 2π − jcos−1�v1 · v2�j � 2π − jcos−1�hi · s�j: (13)

Vector v1 × v2 is parallel (antiparallel) to ξ if the z component
of v1 × v2 has the same (different) sign as the z component
of ξ.

Once the rotation angle has been determined, it is applied
via a rotation matrix. For the choice of a positive rotation being
counterclockwise when looking into the beam, the Stokes vec-
tor rotation matrix is [27, page 25]

Fig. 4. Example mapping of a rectangular FFT grid (light blue lines)
to a hexagonal grid of triangles as used in ray tracing. Red dots show
the triangle vertices. FFT grid points at the right and top, shown by the
dotted lines, are obtained by the inherent spatial periodicity of the
surface as determined by FFT techniques. Thus, the surface elevation
of point 35 is the same as that of point 27, point 57 is the same as
point 1, etc. One of the triangles generated from the FFT grid is
shaded in red.
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Once a Stokes vector has been rotated into the local coor-
dinate system of a wave facet, the 4 × 4 Fresnel reflection and
transmission matrices are applied to obtain the reflected and
transmitted (if any) Stokes vectors. There are four such
Fresnel matrices, namely, for reflection from the air side of
a wave facet (denoted by matrix Raw), transmission from air
to water (T aw), reflection from the water side of a facet
(Rwa, which may be total internal reflection), and transmission
from water to air (T wa). These Fresnel matrices are given in
[26,28]. They depend only on the angle of incidence relative
to the surface normal, θi � cos−1 jξi · nj, and the index of re-
fraction of the water.

When a ray eventually leaves the region of the sea surface, its
final Stokes vector Sf must be specified in the final meridian
plane. The final horizontal and vertical directions are obtained
from choosing the first direction to be the final ray direction
ξf �� ξr or ξt� cross z. Then, as above, vf � ξf × hf . The final
rotation angle αf , which carries the Stokes vector from the
most recent wave facet s and p axes to the final hf and vf axes,
is obtained by Eqs. (12) or (13). It can happen, for example,
that a downward reflected ray in air leaves the hexagonal grid
region before intersecting the surface. Such a ray would inter-
sect the surface at some point outside the hexagonal grid.
Numerical simulation shows that, for the large spatial regions
used in the present simulations, for which the initial rays are
aimed toward the center of the grid, fewer than one ray per
100,000 anomalously exits the grid before intersecting the sur-
face. Such anomalous rays are discarded for simplicity of the ray
tracing algorithm, rather than being “wrapped around” the hex-
agon for further ray tracing.

A chain of one or more ray-surface interactions, thus, gives
the final Stokes vector Sf as

Sf � R�αm;f �M�ψm�R�αm−1;m� 
 
 
R�α1;2�M �ψ1�R�αi;1�Si;
(14a)

Sf ≡ E�ξi → ξf �Si; (14b)

where

• αi;1 is the rotation angle that rotates the initial Si into the
scattering plane of the first wave facet;

• M �ψ1� is any of the four Fresnel reflectance and trans-
mittance matrices Raw , Rwa, T aw , or T wa applied to the first
ray-wave interaction;

• ψ1 represents the scattering angle for the incident and re-
flected or transmitted directions used in the Fresnel matrix;

• R�α1;2� is the rotation matrix that takes the Stokes vector
M�ψ1�R�αi�Si from the scattering plane of the first wave facet
to the scattering plane of the second wave facet;

• R�αm−1;m� carries the current Stokes vector from wave
facet m − 1 to the last facet m;

• M �ψm� is the Fresnel reflection or transmission function
for the last wave facet;

• R�αm;f � is the rotation matrix that carries the Stokes vec-
tor from the scattering plane of the last wave facet to the final
meridian plane associated with Sf .

Note that only the incident and final Stokes vectors are refer-
enced to a meridian plane.

Except for the case of total internal reflection of water-
incident rays, each ray-surface interaction generates a reflected
and a transmitted ray. The information for each (point of in-
tersection, direction, coordinate system, and weight) is stored
in a stack array. The most recently stored ray is then selected for
further processing. In this way, processing continues until all
rays in the stack have been traced until they have left the surface
region without further interaction and their final values have
been tallied.

The continuous set of all directions is discretized by parti-
oning the directions into a set of rectangular �θ;ϕ� bins, plus
two polar caps, which are collectively called quads. The quad
partitioning used below has polar caps of 5 deg half angle and
rectangular quads of Δθ × Δϕ � 10 × 15 deg , except for
Δθ � 5 deg quads next to the equator of each hemisphere.
The same partitioning is used in the unpolarized
HydroLight radiative transfer code. Rather than perform the
ray tracing de novo for particular incident Stokes vectors,
quad-averaged transfer matrices E are computed for all pairs
of quads. There are four sets of these transfer matrices, e.g.,
Eraw�Qij → Qkl �, which describe reflection for air-incident rays
coming from quadQij, corresponding to the ith θ band and jth
θ band, and eventually being reflected upward after one or
more ray-wave interactions into quad Qkl . For particular quads
Qij and Qkl , Eraw�Qij → Qkl � is, thus, a 4 × 4 scattering
(Mueller) matrix that shows how any quad-averaged incident
Stokes vectors Si�Qij� are transformed by reflection into a final
Stokes vector Sf �Qkl �. This matrix and its counterparts Etaw,
Erwa, and Etwa are optical properties of the sea surface itself and
do not depend on the incident Stokes vector. Thus, these
matrices need be computed only once for a given wind speed
(i.e., surface wave state) and water index of refraction.

The four sea-surface transfer matrices are statistically esti-
mated as the ensemble averages of the transfer matrices com-
puted for S independent surface realizations. The calculation
for a particular ray is initialized by choosing a random direction
within a quad, so that the initial ray is directed from the quad
toward the middle of the realized surface. The initial E is set to
the 4 × 4 identity matrix. The random sequence of matrix mul-
tiplications seen in Eq. (14a) is then carried out. When a ray
leaves the surface and crosses the hexagonal surface boundary
without further interaction, the current E array is tallied to the

Fig. 5. Four cases for determining Stokes vector rotation angles. v1
is the initial direction, which is rotated into the final direction v2 by a
counterclockwise rotation about direction ξ.

4836 Vol. 54, No. 15 / May 20 2015 / Applied Optics Research Article



accumulating array for the pair of quads containing the incident
and final ray directions. The averages of the E arrays for the S
surface realizations then yield the transfer matrices. Separate
weight arrays are computed for singly and multiply scattered
rays to enable quantification of the importance of multiple
scattering.

The slope and elevation statistics of the FFT and Cox–
Munk surfaces have elliptical symmetry about the along-wind
direction. This means that rays need to be traced only for one
quadrant of initial directions (e.g., for 0 ≤ φ ≤ 90 deg ). For
the 10 × 15 deg angular partioning (plus two polar caps) of the
set of all directions used here, there are 434 quads in all. For
incident rays from just one quadrant, there are 128 quads with
an initial ray, for each surface realization. A run then initializes
128S rays. Multiple scattering and the proliferation of daugh-
ter rays created by reflection and transmission means that about
three rays are traced to completion for each initial ray. Note
that there is still Monte Carlo noise in the computed reflectan-
ces and transmittances due to tracing a finite number of rays,
so these quantities are not perfectly elliptically symmetric.
Numerical experimentation shows that using S � 105 inde-
pendent surface realizations, hence 12.8 × 106 initial rays, give
Monte Carlo noise of only a few percent in the computed quan-
tities for directions that are energetically important. Generating
105 surfaces and tracing roughly 36 × 106 rays to completion
requires less than 8 h on a 2.5 GHz computer.

The E matrices computed in this manner are energy-transfer
matrices that give the fraction of energy in the incident quad
that is reflected or transmitted into the final quad. These ma-
trices can be converted to matrices for radiance reflectance and
transmittance by incorporation of cosine and solid angle factors
for the incident and final quads as shown in [25, Eq. (4.74)]
and [26, Eq. (3.67)]:

R�Qij → Qkl � � E�Qij → Qkl �
jμijΩij

jμkjΩkl
: (15)

Here, μ is the average of cos θ over the respective quad, and Ω
is the solid angle of the quad. The notationR denotes a matrix
for reflection or transmission of radiance, rather than for en-
ergy. For coherent incident Stokes vectors (in the sense of
[27]) with units of irradiance (Wm−2), the final Stokes vector
is obtained from Sf � ESi. If the incident Stokes vector is a
diffuse vector [27] with units of radiance (Wm−2 sr−1), then
the radiance version is used: Sf � RSi. The radiance form
is used if the transfer matrices are to be used as surface boun-
dary conditions for solving the vector radiative transfer equa-
tion, e.g., as formulated in [26]. In either case, once the
transfer matrices have been computed, any particular angular
distribution of quad-averaged incident Stokes vectors can be
transformed into reflected and transmitted Stokes vectors by
simple matrix multiplications.

4. SEA SURFACE REFLECTANCE AND
TRANSMITTANCE

For an initial application of the above surface transfer functions,
consider the easily understood case of an unpolarized, colli-
mated source (e.g., the Sun in a black sky). Figures 6–9 show
the (temporally or spatially averaged) polarized reflectance and

transmittance for a fully developed sea surface and a wind speed
of 10 m s−1. The surfaces were generated with FFTs using re-
scaled variance spectra to fully resolve both elevation and slope
variances. The sea surface region was 200 × 200 m with Nx �
1024 and Ny � Nx∕2 � 512, as required for mapping the
rectangular FFT grid to a hexagonal grid of triangular wave fac-
ets. Ray tracing was performed for 105 surface realizations
(about 7 h of computer time on a 2.4 GHz PC). The view
is looking toward the point of reflection or transmission on
the sea surface, i.e., looking at the glitter pattern, which is quali-
tatively shown by the size of the colored area. The source is,
thus, located at the φ � 180 deg side the plotted hemisphere
of directions, so the unscattered rays are traveling in the φ � 0
azimuthal direction. The incident Stokes vector in each case is
unpolarized light, S � �1; 0; 0; 0�T . The incident direction is
50 deg from the zenith for air-incident light (Figs. 6 and 7)
or 50 deg from the nadir for water incident light (Figs. 8
and 9). The upper-left panel of each figure shows the percent
of the incident energy that is reflected or transmitted into each
direction for quads of angular size 10 × 15 deg in polar and
azimuthal angles. Quad boundaries are shown in gray, and
the specular quad is outlined. Quads receiving less than
0.001% of the total energy are not colored. The asymmetry
in φ is due to Monte Carlo noise in quads receiving almost

Fig. 6. Reflected energy pattern (glitter pattern) for unpolarized air-
incident light at a 50 deg incident angle from the zenith and a 10 m s−1

wind speed. The light source is in an otherwise black sky. The viewing
direction is looking downward at the surface, facing the glitter pattern.
The quad outlined in gray indicates the specular reflection quad that
would receive all reflected light for a level surface. The tan color in the
lower-right panel indicates values that are identically zero.
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no energy. The other panels show the degree of polarization of
the reflected or transmitted light.

For the air-incident case of Fig. 6, 3.87% of the incident
energy is reflected, and the remaining 96.13% is transmitted
into the water. The upper-right panel of Fig. 6 shows that
the reflected light is as much as 97% horizontally polarized
in the quads near θ � 50 deg , which is near the Brewster an-
gle of 53 deg for a level surface. The �45 deg polarization of
the lower-left panel arises from rays being reflected by wave
facets tilted to the left or right relative to the incident direction.
Figure 7 shows the air-incident energy that is transmitted
through the surface into the water.

Figures 8 and 9 show the corresponding results for water-
incident unpolarized light, i.e., light incident onto the under
side of the sea surface. Figure 8 shows the “underwater glitter
pattern” as seen looking upward at the bottom of the sea
surface. The tracing of underwater rays, e.g., as can pass from
one surface facet to another via an underwater path, assumes
that the intervening water is nonabsorbing and nonscattering.
For this incident angle and wind speed, 60.42% of the incident
energy is reflected back into the water. For a level surface, all of
the energy would be reflected because the incident angle of
50 deg is greater than the 48 deg critical angle for total internal
reflection. For a windblown surface, some of the incident light
intersects wave facets that are tilted, so that the incident angle
with the surface is less than the angle of total internal reflection,
and 39.58% of the upwelling energy leaks through the surface

into the air. In the upper-right and lower-left panels of Fig. 8,
the large areas of unpolarized light near the horizontal (tan
color) come from total internal reflection, which cannot change
unpolarized incident light into any state of polarization.

It was argued in the discussion of Fig. 2 that a value ofNx �
1024 was a reasonable choice for numerical simulations.
Figure 10 shows the reflected energy as a function of θ for φ �
0 in Fig. 6 when values of Nx � 512, 1024 and 2048 are used
in the simulations and the elevation variance spectrum is re-
scaled as previously described. The Nx � 512 curve is as much
as 25% different from the Nx � 1024 curve for the larger val-
ues in the central region of the glitter pattern. However, the
difference in the 1024 and 2048 curves is less than 4%.
Thus, Nx � 1024 gives results within a few percent of the val-
ues obtained for Nx � 2048 but with only one-fifth of the
computer time (the ratios of �Nx log2 Nx��Ny log2 N y� for
the different choices of Nx and N y � Nx∕2). The red solid,
dotted, and dashed curves in that figure are the values forNx �
1024 and three different seeds for random number generation.
These curves differ by less than 4%, which shows that simu-
lations with 105 surface realizations give statistical noise of only
a few percent in the energetically important directions.
Numerical experiments such as these led to the choices of
Nx � 1024 and 105 surface realizations for the simulations
in the present work.

Figure 10 also shows the reflectance for an FFT surface with
Nx � 1024 but without rescaling to account for unresolved

Fig. 7. Transmitted energy pattern for air-incident light corre-
sponding to Fig. 6. The viewing direction is looking upward at the
surface from within the water.

Fig. 8. Reflected energy pattern (underwater glitter pattern) for
water-incident light at a 50 deg incident angle from the nadir and
a 10 m s−1 wind speed. The light source is unpolarized in an otherwise
black ocean.
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slope variance. The surface is then too smooth, leading to too
much reflected energy in directions near the center of the glitter
pattern. Finally, the curve for a Cox–Munk surface shows that,
for this wind speed, the Cox–Munk surface differs from the
FFT surface by roughly �25% in the central part of the glitter
pattern. As seen in Table 1, the Cox–Munk and FFT surfaces
have almost the same slope statistics for a 10 m s−1 wind speed.
The Cox–Munk and FFT curves for the rescaled Nx � 1024
or 2048 curves in Fig. 10 include multiple scattering between
wave facets. The difference in these Cox–Munk and FFT
curves is, thus, due to differences in resolution of the wave
heights, which results in different amounts of multiple scatter-
ing and wave shadowing.

Figure 11 shows the percent of air-incident rays that
undergo multiple interactions with surface wave facets.
There is more multiple scattering for Cox–Munk surfaces
for incident angles between 30 and 70 deg but more for the
FFT surfaces at incident angles very near the horizon. The most
common multiple-scatter event is one for which the incident
ray is reflected into another wave facet, giving a final tally of
one reflected and two refracted rays, although five rays were
traced (including the intermediate one that traveled from
one wave facet to another without being tallied to the final re-
sult). However, other combinations occur. For example, the
incident ray may generate a reflected ray that leaves the surface
without further interaction, and a refracted ray that intersects
the surface again from the water side and undergoes total
internal reflection. As with a single-scattering event, this

multiple-scattering event gives a final tally of one reflected
and one refracted ray, although four rays were traced to com-
pletion. For rays traveling under water from one facet to an-
other, the water is assumed to be transparent. For large
incident angles, rays occasionally have 10 or more interactions
with the surface, but such events are rare—typically just one or
two rays per 10,000 incident rays. The maximum number of
multiply scattered rays is between 8% and 12% for Cox–Munk
surfaces and 6% to 9% for FFT surfaces. The maximum occurs
when the incident rays tend to be reflected into nearly horizon-
tal directions, so that they are likely to intersect another wave.
The drop-off for incident angles near the horizon occurs be-
cause those rays tend to intersect the sides of wave facets tilted
toward the source such that the reflected ray heads upward,
away from the surface.

It is easy to show that an arbitrary sequence of Fresnel
reflection and transmission matrices and rotation matrices,
as seen in Eq. (14a), has the form:

Fig. 9. Transmitted energy pattern for water-incident light corre-
sponding to Fig. 8. The viewing direction is looking downward at
the surface from the air side.

Fig. 10. Dependence of energy reflectance along the midline of the
glitter pattern (φ � 0) in Fig. 6, as a function of the number of grid
points Nx used for surface generation.

Fig. 11. Percent of incident rays that undergo multiple interactions
with the surface, as a function of wind speed and incident angle from
the zenith, for FFT and Cox–Munk surfaces.
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E �

2
664
X X X 0
X X X 0
X X X 0
0 0 0 X

3
775;

where X denotes a nonzero value. [A specific example is given
in Eq. (16) below.] Thus, reflection and transmission cannot
convert air-incident unpolarized or linearly polarized light into
circular polarization. This is seen numerically in the lower-right
panels of Figs. 6 and 7, which show that the circular polariza-
tion is identically zero. However, total internal reflection leads
to matrices of the form:

E �

2
664
X X X 0
X X X X
X X X X
0 X X X

3
775;

which still cannot convert unpolarized light into circular polari-
zation. This is seen numerically in the lower-right panels of 8
and 9. However, if the incident upwelling underwater light is
linearly polarized and undergoes total internal reflection, the
reflected light can be circularly polarized. (This is, of course,
the same physics used to generate circular polarization by total
internal reflection in a Fresnel rhomb.) Total internal reflection
is a potential source of elliptical or circular polarization in
the ocean.

5. SEA SURFACE REFLECTANCE AND
TRANSMITTANCE OF POLARIZED SKY
RADIANCE

Simulations as just seen using a collimated unpolarized light
source in an otherwise black sky or ocean are useful to illustrate
the fundamental reflection and transmission features of the sea
surface. However, real skies are distributed light sources and are
usually partially polarized.

The sky radiance distribution is modeled as follows. Using
conditions typical of a clear maritime atmosphere (80% relative
humidity, 2.5 cm of precipitable water vapor, marine aerosols,
ozone concentration of 300 Dobson units), the RADTRAN
irradiance model [29] is run to obtain the direct (Edir

d ) and dif-
fuse (Edif

d ) sky irradiances for the given solar zenith angle θsun
and a wavelength of 550 nm. The quad containing the Sun is
given a radiance of magnitude I sun � Edir

d ∕�μsunΩsun�, where
μsun is the average of cos θ over the Sun’s quad, and Ωsun is
the solid angle of this quad. The Sun’s direct beam is taken
to be unpolarized: Ssun � �I sun; 0; 0; 0�T . The angular pattern
of the total radiance in the remaining quads is computed using
the semi-empirical, clear-sky model of Harrison and Coombes
[30]. Those diffuse sky radiances are scaled so that the total
irradiance from the nonsolar quad equals Edif

d . This gives a cali-
brated sky I�θ;ϕ� that reproduces the RADTRAN direct and
diffuse irradiances. The polarization pattern of the diffuse sky
radiance is that of a molecular (Rayleigh) single-scattering sky
with a depolarization factor of 0.0318, as given by the equa-
tions of Tilstra et al. [31]. Figure 12 shows, for a solar zenith
angle of 50 deg, the resulting pattern of I , horizontal versus
vertical (Q∕I ) and �45 deg�U∕I� polarization, and the
degree of total polarization DoP � �Q2 � U 2 � V 2�12∕I .

The circular polarization is identically zero. In the numerical
calculations below, these equations are used to compute
quad-averaged sky Stokes vectors.

Multiple scattering and aerosols tend to depolarize the sky
radiance. Monte Carlo simulations of atmospheric radiance
patterns [32], including both molecular and aerosol compo-
nents and multiple scattering, show a variety of polarization
patterns, which depend on the type and concentration of
the aerosols. Thus, a polarization pattern corresponding to a
single-scattering Rayleigh sky serves as an upper limit to the
degree of polarization that occurs for a very clear atmosphere.
Use of this sky radiance distribution in simulations, thus, gives
an upper bound for the effects of polarization compared to sim-
ulations using unpolarized ray tracing but only for the Rayleigh
polarization pattern.

Figure 13 shows the surface-reflected sky radiance for the
Sun at 50 deg and the partially polarized sky of Fig. 12.
The sea surface is an FFT surface for a wind speed of
10 m s−1, generated with Lx � 200 m and Nx � 1024. The
increase in the radiance magnitude I going toward the horizon
at ϕv � 0 in the upper-left plot is due to the rapidly increasing
Fresnel reflectance for the wave facet reflection angles that con-
nect the bright region of sky near the Sun to the near-horizon
directions. The level of statistical noise in this plot is generally a
few percent (recall Fig. 10) but can be more for directions

Fig. 12. Sky radiance distribution for single scattering by atmos-
pheric molecules according to the Rayleigh scattering equations.
The upper-left panel shows the total radiance magnitude I relative
to 1 in the Sun’s direction. The Sun’s location is at the left side of the
plotted hemisphere of sky directions. The other panels show the hori-
zontal versus vertical, �45 deg , and degree of total polarization in
percent.
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receiving relatively few photons. For example, the DoP values
for the quad next to the horizon (θv � 87.5) and ϕv �
�90 deg are 86.69% and 87.79%. Such differences can cause
slight asymmetries in the color coding of plots for �ϕv values.
The I value for �θv;ϕv� � �87.5; 0� (the orange quad in the
upper-left panel) was 39.98 Wm−2 sr−1 nm−1 for this plot
and 44.67 for an independent run starting with a different seed
for random number generation. For this Sun zenith angle and
atmospheric conditions, RADTRAN gives Edir

d � 0.6561 and
Edif
d � 0.3509 Wm−2 nm−1. The incident sky Stokes vectors

are now diffuse vectors with units of spectral radiance, so the
surface reflectance function is an Raw , as defined in Eq. (15).
All sky quads now, in principle, contribute to the reflected
radiance in each quad:

Srefl�Qkl � �
X
ij

Raw�Qij → Qkl �Ssky�Qij�;

where the sum over ij indicates a sum over all sky
quads.

Figure 14 shows the transmitted radiance corresponding to
Fig. 13. As in Fig. 7, most of the transmitted radiance is con-
centrated into a few quads near the refracted direction of the
Sun’s direct beam, and the radiance in those quads is only
weakly polarized. However, the state of linear polarization away
from the direct beam direction is determined by the sky polari-
zation in directions away from the Sun, and the degree of
polarization can be large. However, those directions contain
very little energy. For a level surface, all of the transmitted en-
ergy would be contained within the Snell’s cone of angle

48.2 deg from the nadir. Now, however, for the 10 m s−1 wind
speed, the rough surface allows radiance to be transmitted into
all downwelling directions, although directions near the hori-
zon receive very little energy.

6. IRRADIANCE REFLECTANCE

Surface irradiance reflectance is fundamental to energy transfer
across the air-water surface. Although it is the total energy
(without regard for the state of polarization) that is usually
of interest, radiance reflectance by the surface depends on
the state of polarization of the incident sky radiance, which,
in turn, depends on the direction relative to the Sun.
Likewise, the reflectance depends on the angle between the in-
cident radiance and the normal to the sea surface. It is, there-
fore, worthwhile to quantify the differences that may arise from
the use of Cox–Munk surfaces and/or unpolarized ray tracing,
compared with the more realistic FFT surfaces and polarized
ray tracing.

The sky total downwelling plane irradiance is

Ed �sky� �
X
ij

I sky�Qij�μiΩij:

For the sky used to generate Fig. 13, Ed �sky� �
1.0070 Wm−2 nm−1, as expected from the input Edir

d and
Edif
d values. The upwelling, surface-reflected irradiance com-

puted from I refl is Eu�refl� � 0.05098 Wm−2 nm−1. Thus,
for the conditions of Fig. 13, Rsurf ≡ Eu�refl�∕Ed �sky� �
0.0506. That is, about 5% of the incident energy is reflected
by the sea surface, and the remaining 95% enters the water

Fig. 13. Surface-reflected radiance for a single-scattering Rayleigh
sky and a wind speed of 10 m s−1. The Sun zenith angle is 50 deg
and the viewing geometry corresponds to Fig. 6.

Fig. 14. Surface-transmitted radiance for a single-scattering
Rayleigh sky and a wind speed of 10 m s−1. The Sun zenith angle
is 50 deg, and the viewing geometry corresponds to Fig. 7.
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column. It should be noted that Rsurf is the irradiance reflected
by the surface itself, not the albedo of the water body. The
albedo is defined in the same way, but the Eu includes
surface-reflected and water-leaving radiance. The albedo is,
therefore, always somewhat greater than Rsurf . For the 105 sur-
face realizations used here, the statistical noise in Rsurf is never
more than 0.2% and usually much less. This variability is too
small to display on the curves of Fig. 15.

The upper-left panel of Fig. 15 shows the dependence of
Rsurf on whether the ray tracing is polarized or unpolarized,
for FFT surfaces and selected wind speeds. The polarized
sky radiances were generated, as described above, for nominal
solar zenith angles from 0 (the polar cap) to 87.5 deg (the
quad next to the horizon). The corresponding first
section of Table 2 shows the percent differences computed
as 100�Rsurf �polarized� − Rsurf �unpolarized��∕Rsurf �polarized�
for Sun zenith angles of 0, 50, and 87.5 deg. For the Sun
at the zenith, the difference in Rsurf for polarized versus unpo-
larized ray tracing is about 11%, i.e., polarized ray tracing gives

a greater reflectance. For a solar zenith angle of 50 deg, the
difference is only about 1%. For the near-horizon quad, the
difference is −8.1% for a level surface to −11.7% for a wind
speed of 15 m s−1, i.e., polarized ray tracing gives somewhat
less reflectance. The smooth black line in this panel is the
Fresnel reflectance for unpolarized light. This curve is valid
only for uniform sky radiance distributions and a level sea sur-
face. As seen here, for nonuniform skies and/or rough sea sur-
faces, the actual surface irradiance reflectance can be greater or
less than the Fresnel reflectance. The decrease in irradiance re-
flectance for the Sun very near the horizon has been explained
previously [33]. In brief, as the Sun goes from the zenith to the
horizon, the fraction of diffuse sky irradiance increases from
about 25% to over 99%. For solar zenith angles less than about
80 deg, the rapidly increasing Fresnel reflectance of the direct
solar beam dominates and Rsurf increases. But for Sun zenith
angles greater than 80 deg, diffuse radiance from directions
nearer to the zenith dominates, and the lower Fresnel reflec-
tance for those directions reduces Rsurf . A higher fraction of

Fig. 15. Comparison of surface irradiance reflectances Rsurf as functions of solar zenith angle and wind speed for a polarized sky and various
combinations of sea surface model (FFT versus Cox–Munk), ray tracing (polarized versus unpolarized), single versus multiple scattering, Sun
azimuthal angle, and wave age.
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the total radiance, thus, begins to enter the water as the Sun
nears the horizon and Rsurf decreases.

The upper-right panel of Fig. 15 compares Cox–Munk
and FFT surfaces for polarized ray tracing. The corresponding
second section of Table 2 gives 100�Rsurf �FFT�−
Rsurf �Cox-Munk��∕Rsurf �FFT�. Both surface models are, of
course, identical for zero wind speed, corresponding to a level
sea surface. There is very little difference in Cox–Munk and
FFT surfaces for solar angles less than about 50 deg. For wind
speeds less than about 10 m s−1, the Cox–Munk surface has a
greater Rsurf at large solar zenith angles, and, for wind speeds
greater than 10 m s−1, the reverse is true. The two surfaces give
almost identical Rsurf for all zenith angles when the wind speed
is 10 m s−1.

The middle-left panel of this figure compares the commonly
used unpolarized, Cox–Munk calculations with polarized, FFT
computations. The corresponding section of Table 2 gives
100�Rsurf �FFT;pol�−Rsurf �Cox-Munk;unpol��∕Rsurf �FFT;pol�.
Rsurf is 10%–12% greater for FFT surfaces than for Cox–Munk
when the Sun is at the zenith. However, the Cox–Munk values
are greater for large zenith angles, for which the difference is as
much as 18% at low wind speeds.

The above comparisons have included all orders of multiple
scattering during the ray tracing. The middle-right panel of

Fig. 15 and the fourth section of Table 2 compare Rsurf com-
puted for multiple versus single scattering, for polarized ray
tracing and FFT surfaces. The tabulated differences are now
100�Rsurf �multiple� − Rsurf �single��∕Rsurf �multiple�. Multiple
scattering always gives a greater Rsurf than single scattering,
by about 2% to 8%, depending on the solar zenith angle
and wind speed, with the greatest effect for nearly horizontal
incident rays.

The preceding comparisons have been made with the Sun at
ϕsun � 0, so that the Sun’s incoming rays are parallel to the
wind. The lower-left panel of Fig. 15 shows the results for
FFT surfaces and polarized ray tracing when the Sun is located
at ϕsun � 90 deg , for which the Sun’s incident rays are
perpendicular to the wind speed. In this case, the surface reflec-
tance is somewhat greater than for ϕsun � 0. This is because the
cross-wind wave slope variance is less than the along-wind slope,
as seen in Eq. (1b) versus Eq. (1a). Thus, the incoming rays at
right angles to the wind see a somewhat smoother sea surface,
and the reflectance is, consequently, larger than for rays incident
in the along-wind direction. The azimuthal angle is not defined
for polar caps, so there is no difference for the Sun at the zenith.

The wave spectrum of [20] includes a parameter Ωc , which
modifies the spectrum according to the age of the waves, that is,
how long it has been since the wind began to blow. Ωc � 5
gives a very young sea for which the wind has been blowing
only a short time and, thus, only capillary and small gravity
waves are present.Ωc decreases as the waves age and larger grav-
ity waves develop. Ωc � 1 gives a mature sea, and Ωc � 0.84
gives the limiting steady-state case of a fully developed sea. The
lower-right panel of the figure shows the effect of wave age
for very young (Ωc � 5) versus fully developed (Ωc � 0.84)
seas, for FFT surfaces and polarized ray tracing (and
ϕsun � 0). The last section of Table 2 shows the corresponding
percent differences 100�Rsurf �fully devel:� − Rsurf �young��∕
Rsurf �fully devel:�. Young seas have a somewhat smoother sur-
face and, thus, a greater reflectance because they have not had
the time to develop the slope variance that comes with a more
mature sea.

In summary, the various approximations—Cox–Munk, un-
polarized ray tracing, and single-scattering—and environmen-
tal conditions—Sun azimuthal angle relative to the wind
direction, and wave age—all give differences of order 10%
in Rsurf compared to the values computed with FFT surfaces
and polarized ray tracing that includes all orders of multiple
scattering. However, as is clear from Fig. 15, these differences
are considerably less than the systematic decrease in Rsurf at
large solar zenith angles due to wind speed. For zenith angles
greater than 70 deg, Rsurf decreases by about 30% when the
wind increases from W � 0 to 5 m s−1 and by almost 45%
between W � 0 and W � 15 m s−1. For solar angles less than
60 deg, Rsurf decreases by 8% between W � 0 and 5 m s−1,
and by 12% between W � 0 and 15 m s−1.

7. RADIANCE REFLECTANCE FACTORS

The remote-sensing reflectance Rrs is defined as the ratio of the
water-leaving radiance Lw just above the sea surface to the
downwelling plane irradiance Ed incident onto the sea surface:
Rrs ≡ Lw∕Ed . Rrs is the basis of most ocean-color remote sensing

Table 2. Differences in Surface Irradiance Reflectance
Rsurf as Computed in Various Waysa

W �ms−1� θsun � 0 50 87.5

FFT: polarized versus unpolarized
0 �11.4 �1.2 −8.1
2 �11.8 �1.2 −9.7
5 �11.8 �1.3 −10.8
10 �11.6 �1.4 −11.4
15 �11.4 �1.5 −11.7
Polarized: FFT versus Cox–Munk
2 −2.0 −3.3 −7.1
5 −2.3 −5.6 −7.0
10 −0.8 −4.7 −0.1
15 �1.0 −1.0 �5.8
FFT polarized versus Cox–Munk unpolarized
2 �10.0 −2.0 −17.0
5 �9.8 −4.2 −18.0
10 �10.8 −2.7 −11.2
15 �11.9 �1.0 −5.1
FFT polarized: multiple versus single scattering
2 �1.7 �2.2 �5.8
5 �2.2 �2.9 �7.1
10 �2.4 �3.4 �7.5
15 �2.6 �4.3 �8.1
FFT polarized: ϕsun � 0 versus 90 deg
2 0.0 �1.5 �0.1
5 0.0 −0.3 −5.7
10 0.0 −0.8 −6.5
15 0.0 −1.5 −6.9
FFT polarized: fully developed versus young sea
2 −2.6 −2.8 −10.2
5 −3.1 −2.9 −12.4
10 −1.8 −1.6 −6.3
15 −2.2 −2.4 −8.0
aThe numbers for comparisons labeled as A versus B are percent differences

defined as 100�A − B�∕A, as in the discussion of Fig. 15.
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because this apparent optical property is strongly correlated with
in-water optical properties and is minimally sensitive to environ-
mental effects such as solar zenith angle, sky conditions, and
wind speed [34]. However, any measurement of upwelling ra-
diance Lu just above the surface includes both Lw and surface-
reflected sky radiance Lsr, so that Lw � Lu − Lsr. For a level sea
surface, Lsr comes only from sky radiance in the direction that is
specularly reflected into the sensor. In this case Lsr�θv;ϕv� �
ρ�θv;ϕv�Lsky�θv;ϕv�, where Lsky is the sky radiance and ρ is
the radiance reflectance for the angle of incidence θv that con-
nects Lsky and Lsr by specular reflection [35]. In Lsr�θv;ϕv�, θv is
measured from the nadir; inLsky�θv;ϕv�, θv is the same angle but
measured from the zenith. For a level surface and unpolarized
radiance, the radiance reflection ρ equals the unpolarized
Fresnel reflectance, which is a function only of θv.

For windblown sea surfaces, Lsr arises from sky radiance that
is reflected by tilted wave facets from all sky directions into the
sensor. However, for clear skies, it is still reasonable [18]

to define a radiance reflection factor ρ that converts a sky
measurement in a particular direction into an estimate of
the surface reflectance: ρ�θv;ϕv� ≡ Lsr�θv;ϕv�∕Lsky�θv;ϕv�.
In this case, ρ no longer equals the Fresnel reflectance but
rather depends on solar zenith angle, viewing direction, wave
state, and sky condition. The purpose of the ρ factor is to ac-
count for all surface-reflected radiance, including direct (Sun
glint) and diffuse (reflected background sky) contributions.
Of course, when making measurements, a viewing direction
is chosen to minimize the direct Sun glint contribution.
However, some Sun glint is usually present, which is accounted
for in the ρ factor. Thus, ρ is best interpreted as a scale factor
that converts a sky radiance measurement in a particular direc-
tion, Lsky�θv;ϕv�, into the surface reflectance in the corre-
sponding specular direction, for given sky and sea surface
conditions. The desired water-leaving radiance is then obtained
from Lw � Lu − ρLsky. Lu and Lsky are measured by the same
instrument, which is assumed to be insensitive to the state of
polarization. Accurate determination of the value of ρ is the key
to obtaining an accurate value for Lw.

Previous studies [18,36] investigated the dependence of ρ
on the Sun zenith angle, viewing direction, windspeed, and
wavelength for clear sky conditions. (A table of ρ values is avail-
able [37].) These tabulated values are widely used [e.g., 38–40].
However, those values were computed using Cox–Munk sur-
faces and unpolarized ray tracing. The next section reevaluates
ρ using FFT surfaces and polarized ray tracing.

A. ρ for a Level Sea Surface
Consider first the case of a level sea surface and a partially
polarized Rayleigh sky radiance distribution, as described above

and illustrated in Fig. 12, for a solar zenith angle of
θsun � 50 deg . The top panel of Fig. 16 shows the reflectance
factor for a level surface and unpolarized ray tracing. The values
computed by Monte Carlo ray tracing reside along the curve for
unpolarized Fresnel reflectance. The computed values do not
depend on the azimuthal viewing direction ϕv, which is mea-
sured relative to the Sun’s azimuthal direction. That is, ϕv � 0
corresponds to looking toward the Sun, ϕv � 90 deg is look-
ing at right angles to the Sun’s incident rays, and ϕv �
180 deg is looking away from the Sun. The bottom panel
shows ρ�θv;ϕv� for azimuthal directions of ϕv � 90 and
135 deg. Now, however, the ρ value depends on the azimuthal
direction, even for a level sea surface. This ϕv dependence is
easily understood as via a simple numerical example.

The surface radiance reflectance matrix, as defined in
Eq. (15) and computed byMonte Carlo simulation for incident
and reflected angles θi � θr � 40 deg , is

R�40;ϕ; 40;ϕ� �

2
664

2.566 × 10−2 −1.963 × 10−2 3.521 × 10−7 0.0
−1.963 × 10−2 2.566 × 10−2 −7.489 × 10−7 0.0
3.521 × 10−7 −7.489 × 10−7 −1.616 × 10−2 0.0

0.0 0.0 0.0 −1.616 × 10−2

3
775: (16)

This matrix is independent of azimuthal angle ϕ for a level sea
surface. The Stokes vectors of the sky radiances in directions
�θv;ϕv� � �40; 90� and (40, 135) are

Ssky�40; 90� �

2
664
4.931 × 10−2

2.403 × 10−2

1.583 × 10−2

0.0

3
775;

and

Ssky�40; 135� �

2
664

3.932 × 10−2

−1.418 × 10−2

3.262 × 10−2

0.0

3
775:

These sky radiances give �DoP; Q∕I ; U∕I� �
�58.35; 32.10; 48.73� in percent for (40,90) and
�90.45; −36.06; 82.95� for (40, 135), which match the values
plotted at those directions in Fig. 12.

MultiplyingR�40;ϕ; 40;ϕ� times these sky radiance Stokes
vectors gives the corresponding surface-reflected radiances:

Ssr�40; 90� �

2
664

9.547 × 10−4

−5.617 × 10−4

−3.883 × 10−4

0.0

3
775

and

Ssr�40; 135� �

2
664

1.287 × 10−3

−1.136 × 10−3

−5.269 × 10−4

0.0

3
775:
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The corresponding ρ values are

ρ�40; 90� � I sr
I sky

� 9.547 × 10−4

4.931 × 10−2
� 0.0194

ρ�40; 135� � I sr
I sky

� 1.287 × 10−3

3.932 × 10−2
� 0.0327;

which are the values plotted for θv � 40 in the bottom panel
of Fig. 16.

For unpolarized ray tracing, only the (1, 1) element of
R�40;ϕ; 40;ϕ� is nonzero. In this case, for the same polarized
sky radiances, the reflected radiances are

Ssr�40; 90� � �1.265 × 10−3; 0; 0; 0�T

and

Ssr�40; 135� � �1.009 × 10−3; 0; 0; 0�T :

These values give

ρ�40; 90� � 1.265 × 10−3

4.931 × 10−2
� 0.0257

and

ρ�40; 135� � 1.009 × 10−3

3.932 × 10−2
� 0.0257;

which are the values plotted in the top panel of Fig. 16.
Thus, ρ is independent of the azimuthal direction and the

polarization state of the sky for unpolarized ray tracing.
However, for polarized ray tracing, ρ depends on polar and azi-
muthal angles even for a level sea surface because the state of the
sky polarization is different for different directions. The polari-
zation state of the incident radiance determines how much total
radiance is reflected by the surface, hence the value of ρ. This is
an additional complication in the determination of the value of
ρ to be used in processing measured radiances. Not only does ρ
depend on solar zenith angle, viewing direction, and sea state, it
also depends on the state of polarization of the sky radiance
distribution, even though the sensor itself is not sensitive to
polarization.

B. ρ for Windblown Surfaces
Figure 17 shows for reference selected ρ�θv;ϕv� values as com-
puted by unpolarized ray tracing and Cox–Munk sea surfaces. ρ
is shown a function of off-nadir viewing direction θv for Sun
zenith angles of 30 and 60 deg, azimuthal viewing directions of
90 and 135 deg (relative to the Sun at ϕv � 0), and wind
speeds of 2, 5, 10, and 15 m s−1. The plot for 10 m s−1 repro-
duces the θsun � 30 and 60 deg curves of [18, Fig. 6] but with
less statistical noise because more rays are traced. When the Sun
is high in the sky (illustrated here by the θsun � 30 curves) and
the sea surface is rough (wind speeds of 5 m s−1 or greater in the
figure), the ϕv � 90 curves have large ρ values at small θv val-
ues because of Sun glint seen by the sensor measuring Lu. For
large θv, ρ becomes large because of the rapidly increasing
Fresnel reflectance. Based on plots such as these, [18] argued
that θv � 30 or 40 deg and ϕv � 135 is a reasonable choice for
field measurements. This viewing direction is a compromise
that avoids most Sun glint, keeps the instrument from looking
at its own shadow, and gives minimal variability in the ρ values.

The solid-line curves in Fig. 18 show the corresponding val-
ues computed using FFT surfaces and polarized ray tracing.
There is now a greater spread of ρ values for the given envi-
ronmental conditions and viewing geometry. For θv � 40 deg
and wind speeds of 5 and 10 m s−1, the unpolarized case gives
tightly grouped values of ρ � 0.0280 − 0.0285 and 0.0316–
0.0374, respectively. However, the values determined by FFT
surfaces and polarized ray tracing have a larger spread of values:
0.0179–0.0411 for 5 m s−1 and 0.0195–0.0458 for 10 m s−1.
There is, thus, a factor-of-two spread in ρ values for each wind
speed when computed with FFT surfaces and polarized ray
tracing, versus less than 20% spread when computed with
Cox–Munk surfaces and unpolarized ray tracing. This figure
also shows the curves for an azimuthal viewing direction of
ϕv � 135, but for the Sun at a right angle to the wind speed
and for a very young sea (Ωc � 5 in the wave spectrum).

Figure 19 displays ρ values in additional ways. The upper-
left panel shows a plot of ρ�θv;ϕv� for a single Sun angle of
θsun � 40 deg located at ϕv � 0, as computed using FFT
surfaces and polarized ray tracing. The radial distance in the
plot is the off-nadir viewing angle θv; the center of the plot
is looking straight down at the sea surface, and the rim of

Fig. 16. Radiance reflectance factors ρ�θv;ϕv� for a level sea surface
and a Sun zenith angle of 50 deg. The top panel is for unpolarized ray
tracing; the bottom panel is for polarized ray tracing. In both cases, the
incident radiance is that of the single-scattering Rayleigh sky shown in
Fig. 12. The dashed and dotted lines show the Fresnel reflectance for
incident radiance, which is linearly polarized perpendicular (R⊥) or
parallel (R∥) to the incident meridian plane. The solid line without
symbols is the Fresnel reflectance for unpolarized incident radiance.
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the plot is looking toward the horizon. The Sun’s specular di-
rection for a level surface is shown by the white quad centered
at (40,0). The yellow to red colors in this area of the plot show

the high ρ values needed to remove Sun glint. The orange to
red colors around the rim are high ρ values resulting from high
Fresnel reflectances at large incident angles. The curves of

Fig. 17. Radiance reflectance factors ρ computed using Cox–Munk surfaces and unpolarized ray tracing. The curves are for Sun zenith angles
θsun � 30 and 60 deg, azimuthal viewing directions of ϕv � 90 and 135 deg, and wind speeds of 2, 5, 10, and 15 m s−1; θv is the off-nadir viewing
direction.

Fig. 18. Radiance reflectance factors ρ computed using FFT surfaces and polarized ray tracing. The solid curves correspond to the viewing and
wave conditions of Fig. 17. These curves are for a fully developed sea and the Sun’s incident rays parallel to the wind speed (ϕsun � 0). The dotted
curves and diamond symbols show the curves for θsun � 30 and 60 deg, azimuthal viewing direction of ϕv � 135, but with the Sun’s azimuthal
angle at ϕsun � 90, so that the incoming rays are perpendicular to the wind direction. The dashed curves and box symbols show the cases of θsun �
30 and 60 deg azimuthal viewing direction of ϕv � 135, ϕsun � 0, for a very young sea with Ωc � 5.
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Fig. 18 display the values from the center to the rim of the plot
along the ϕv � 90 and 135 deg directions (but for different
Sun zenith angles). The black dot indicates the ρ�θv;ϕv� �
�40; 135� viewing direction. In the present example,
ρ�40; 135� � 0.045. The upper-right panel of the figure shows
ρ�θsun;ϕv� for an off-nadir viewing direction of θv � 40 deg .
Now the center of the plot corresponds to the Sun at the zenith,
and the rim to the Sun at the horizon. Again, the yellow-to-red
colors show the high ρ resulting from Sun glint with looking in

directions too near the Sun’s azimuthal direction. The blue col-
ors along ϕv � 135 indicate ρ values in the 0.02–0.05 range
for all Sun zenith angles except when the Sun is at the zenith or
nearly so, in which case the view includes a significant amount
of direct Sun glint. The bottom two panels of the figure show
the ratios of ρ computed using FFT surfaces and polarized ray
tracing to the values computed using Cox–Munk surfaces and
unpolarized ray tracing. Radial lines in these figures correspond
to the ratios of the curves in Fig. 18 to the corresponding curves

Fig. 19. ρ for a Rayleigh sky and a wind speed of 10 m s−1. The upper-left panel shows ρ as a function of off-nadir and azimuthal viewing
directions (relative to the Sun’s azimuth at ϕv � 0) for a single Sun zenith angle of θsun � 40 deg , computed using FFT surfaces and polarized
ray tracing. The upper-right panel shows ρ as a function of the Sun’s zenith angle (radial distance in the plot) and viewing azimuth for a fixed off-
nadir viewing direction of θv � 40 deg . The black dots indicate the ρ�θv ;ϕv� � �40; 135� viewing direction. The white regions indicate the
specular viewing direction for θsun � 40 deg . The lower two panels show the ratios of ρ computed for FFT surfaces and polarized ray tracing
to the values computed for Cox–Munk surfaces and unpolarized ray tracing, corresponding to the respective left and right upper panels.
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of Fig. 17 for selected Sun and viewing directions. For the
Rayleigh sky and 10 m s−1 conditions of this figure, the
lower-left panel shows that the ratio of ρ�FFT; polarized� to
ρ (Cox–Munk, unpolarized) is 0.91 for θsun � 40 deg and
ρ�θv;ϕv� � �40; 90� and is 1.31 for ρ�θv;ϕv� � �40; 135�
(the viewing direction indicated by the black dot).

The simulations of this section used a wavelength of 550 nm
for generation of the Rayleigh single-scattering sky radiance dis-
tribution. However, ρ also depends on wavelength [36] because
the degree of sky polarization and the ratio of diffuse to direct
solar irradiance vary considerably from blue to red wavelengths.
Similarly, in a real atmosphere, the degree and pattern of sky
polarization for a given wavelength is influenced by the aerosol
type and optical thickness [32]. However, Figs. 17 and 18 are
sufficient to show that the previously computed ρ values based
on Cox–Munk surfaces and unpolarized ray tracing [18,37] are
not adequate for accurate estimation of water-leaving radiance
from above-surface measurements of upwelling and sky radian-
ces. The viewing directions of θv ≈ 40 deg and ϕv ≈
135 deg (relative to the Sun’s azimuthal direction) remain a
reasonable choice. Harmel et al. [17] studied the effects of
polarization on a normalized reflectance, which is equivalent
to the ρ of the present paper. Their study used an analytical
representation of Cox–Munk surfaces with single scattering
but included atmospheric conditions for a range aerosol optical
thicknesses. They, too, reached the same conclusion as the
present study: it is imperative to account for polarization effects
when estimating the amount of surface-reflected radiance in a
measured total above-surface radiance.

Using the correct value of ρ is critical for the estimation of
Lw � Lu − ρLsky because the measured Lsky�θv;ϕv� is typically
an order of magnitude or more greater than Lw. Thus, a small
error in ρ can give a large error in Lw. To address the deficiency
of the ρ values previously computed using Cox–Munk surfaces
and unpolarized ray tracing, a new table of ρ values has been
computed using FFT surfaces and polarized ray tracing for
the Rayleigh sky described above. This table is available
online [37].

8. CONCLUSIONS

Wave variance spectra and fast Fourier transforms are widely
used in science and the movie and video-gaming industries
for the generation of random sea surfaces. The latter applica-
tions, especially, frequently ignore the scale factors needed to
guarantee conservation of wave energy when going from vari-
ance spectra to sea surfaces. This paper has shown in Section 2
how the equations can be formulated to guarantee wave energy
conservation. A new technique was presented in Section 2.C
to account for wave elevation and wave slope variances in
generated sea surfaces, without the need for large numbers
of spatial grid points. Random sea surface realizations were then
used in Monte Carlo simulations of polarized ray tracing of
air- and water-incident light. The ray-tracing algorithm out-
lined in Section 3.B follows each air- or water-incident ray
through any number of ray-wave interactions, during which
a single incident ray can generate any number of daughter rays
by reflection and transmission. Electromagnetic energy is ex-
actly conserved photon by photon because all incident and

daughter rays are traced to completion when they leave the
sea surface region to be tallied.

Sea surface energy reflection and transmission were first
illustrated in Section 4 for the easily understood case of an
unpolarized, collimated incident light source. Section 5 then
illustrated reflection and transmission of partially polarized
sky radiance corresponding to the idealized case of a single-
scattering, molecular (Rayleigh-scattering) atmosphere.

Section 6 studied the irradiance reflection properties of
windblown sea surfaces. Irradiance reflectances Rsurf computed
using Cox–Munk wind-speed wave slope statistics and/or un-
polarized ray tracing were compared with the values computed
using FFT surfaces and/or polarized ray tracing. It was found
(Fig. 15 and Table 2) that differences in Rsurf due to ignoring
polarization were typically greater than differences due to using
Cox–Munk rather than FFT surfaces or differences due to
using single rather than multiple scattering. The differences be-
tween Rsurf computed using Cox–Munk surfaces and unpolar-
ized ray tracing versus FFT surfaces and polarized ray tracing
range from 10% to 12% for the Sun at the zenith to as much as
18% for the Sun near the horizon. This has implications for
modeling of sea surface irradiance reflectance as needed for eco-
system models [33].

The last section studied radiance reflectance factors ρ, which
are used in the estimation of water-leaving radiances from
above-surface measurements of sky and upwelling radiances.
These factors were shown to depend on the polarization state
of the sky radiance distribution even for measurements made
with sensors that are not sensitive to polarization. Moreover, for
a given viewing direction of the sensors, ρ as computed for FFT
surfaces and polarized ray tracing, was found to vary more with
the solar zenith angle and wind speed than the factors previ-
ously computed [18] using Cox–Munk surfaces and unpolar-
ized ray tracing (Fig. 17 versus Fig. 18). The polarization
dependence of ρ was studied only for the limiting cases of no
sky polarization and strongly polarized sky radiance computed
for a molecular, single-scattering sky, which is a model for
extremely clear atmospheric conditions. The degree and pattern
of atmospheric polarization depend on aerosol type and con-
centration. The ρ factors for atmospheres with various aerosols
could be obtained by incorporating the surface modeling tech-
niques developed here into an atmospheric radiative transfer
model capable of simulating the sky polarization conditions
for specific aerosol and other atmospheric conditions. The re-
sulting ρ factors would likely differ somewhat from the values
shown here. Moreover, the ρ factors depend on wavelength
[36], and a detailed study of this wavelength dependence re-
quires use of a vector atmospheric model with proper simula-
tion of the sea surface reflectance. These observations highlight
the difficulty of determining the correct value of ρ to use with
particular environmental conditions of Sun zenith angle, wind
speed, and atmospheric conditions.

In a similar fashion, the effects of hydrosols on the polari-
zation state of underwater radiance distributions can be accu-
rately simulated only via numerical models of underwater
polarized radiative transfer. Detailed calculations of atmos-
pheric and underwater polarized radiances are beyond the scope
of this paper, which seeks only to show how to incorporate sea
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surface effects into coupled atmosphere–ocean models, so that
the wave effects on transmitted and reflected polarized radiance
are accurately modeled.
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