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Introduction

Lots of people—astronomers, geologists, agronomists, the paint industry, the terrestrial

remote sensing community, the stealth aircraft folks—have studied how surfaces reflect light. 

Unfortunately, they often use different measures of “reflectance,” and they all have their own

terminology and notation even when they are measuring the same physical quantity.  There are

many opportunities for losing factors of B and cosines of angles, and it is sometimes nearly

impossible to figure out exactly what is being discussed when you read a paper.

These informal notes were originally written in 1999 for use by investigators in the ONR-

funded Coastal Benthic Optical Properties (CoBOP) research program, during which various

measures of bottom reflectance were made.  The notes are intended to give an overview of 

reflectance definitions, terminology, and notation as needed by oceanographers. .  The notes are

longer than I originally intended, but a bit too much discussion is better than not enough, if it

helps people understand the various measures of reflectance.  No attempt at literacy is made, and

I include a few footnotes (just for your cultural enlightenment) and a sarcastic comment or two.

For the most part, I use the definitions and terminology given in Hapke (1993), which is the

best introductory textbook I've found on reflectance, and in Nicodemus, et al. (1977; referenced

below as NBS160).  NBS160 is a National Bureau of Standards document that discusses the

measurement of reflectance in great detail and is the authoritative document on the subject. 

However, I have changed some notation to correspond to what is commonly used in optical

oceanography, e.g., as seen in Light and Water (Mobley, 1994).  Appendix A compares the

notation used in these books.

Terminology and Notation

For convenience, let the “surface” be a horizontal plane.  This can be a physical surface such

as the water-sand interface of a sandy bottom, or it can be simply a particular depth in the water

column, say at 1 m above a sea grass bed.  To conform to NBS160, I’ll use subscript i to denote

incident and r to denote reflected.  In the oceanographic setting of a horizontal bottom, the light

incident onto the surface is traveling downward, and the light reflected by the surface is traveling

upward.  Thus I'll sometimes use subscript d for downward (incident) and u for upward

(reflected) when necessary to conform to common oceanographic usage.

In nature, light is usually incident onto a surface from all directions, and some of the incident

light gets reflected by the surface into all directions.  Therefore, to completely understand the

optical properties of a surface, we have to know how the surface reflects light going in any



  If the source is the sun and the detector is the moon and the earth is the surface, then the1

phase angle determines the phase of the moon as seen from the earth.  This is the historical origin
of the term “phase function” for the function that describes the angular pattern of scattered light;
note that the scattering angle R is the complement of the phase angle:  R = 180 - >.
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Fig. 1.  Basic geometry for
discussion of surface reflectance. 
The surface is in blue, the incident
light is red, and the reflected light is
green

.

(1)

incident direction into any reflected direction.

Figure 1 shows the geometry used to describe reflectance from a surface.  A cartesian (x,y,z)

coordinate system is chosen with the surface lying in the x-y plane and with the z axis is normal

(upward in our case) to the surface, an element of which is shown in blue.  There is a collimated

i ilight source, which provides the incident light, in direction (2 , N ); and there is a detector, which

r rreceives the reflected light, located at the viewing direction (2 , N ).  Surface optical properties

usually depend on the wavelength 8, so the complete description of the reflectance properties of

i i r ra surface will be a function (the BRDF, defined below) of five variables: 2 , N , 2 , N , 8.  To

make our equations as simple as possible, we'll drop the 8, but keep in mind that everything

discussed below depends on wavelength.

We can simplify things a bit by assuming that the surface is azimuthally isotropic, which

i rmeans that its reflectance properties depend on the difference of N  and N .  (This is not the case

for crops planted in rows or for ripples on a sandy bottom, for example.)  The specular direction

r r i iis the direction that a level mirror surface would reflect light:  (2 , N ) = (2 , N  +180°).  The

r r i iretroreflection direction is the direction of exact backscatter:  (2 , N ) = (2 , N ).  The angle >

between the source and detector is called the phase angle ; it is computed from1
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Fig. 2.  Quantities used in the definition of
the BRDF.

Standards committees recommend using great care and precise language when talking about

reflectance (which pretty much guarantees that almost no one will follow the recommendations,

hence the confusion in the literature).  For example, “reflectance” is supposed to be preceded by

two adjectives:  the first describes the source and the second the detector.  Thus we have

the directional-hemispherical reflectance:  tells how much light is reflected from a particular

i idirection (2 , N ) into the hemisphere of all upward directions

the hemispherical-directional reflectance:  tells how much light is reflected from all

r rdownward directions into a particular direction (2 , N )

the hemispherical-hemispherical (or bi-hemispherical) reflectance:  all downward directions

into all upward directions.  Note that the irradiance reflectance commonly used in optical

u doceanography, R = E /E , is a bi-hemispherical reflectance.

The Bi-directional Reflectance Distribution Function (BRDF)

We now define the bi-directional (i.e., directional-directional) reflectance distribution

function (BRDF), which tells us everything we need to know about how a surface reflects light. 

The following discussion is based on NBS160, which treats these matters in great detail.

i iConceptually, we like to think about a light beam traveling in a particular direction (2 , N )

r rbeing reflected into another particular direction (2 , N ).  But since any source has some finite

divergence, and any detector has some finite field of view, we can associate small solid angles

i rdS  and dS  with the incident and reflected beams, respectively.  The radiance of the incident

i i i r r rbeam is L (2 , N ), and L (2 , N ) is the reflected radiance.  These quantities are shown in Fig. 2,

which is a redrawn version of Fig. 1.



  You will see Eq. (2) rewritten in various ways in the literature.  For example, 2

i i i L cos2 dS is the irradiance of the incident collimated beam onto the horizontal surface, so

r iNBS160 also writes Eq. (2) as dL /dE .  However, Eq. (2) gives us all we need.

 Radiative transfer folks like to measure their irradiances on surfaces normal to the3

direction of light propagation, whereas people who live in the real world like to measure their

iirradiances on the surface of interest.  The cos2  factor just projects the incident beam irradiance
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(2)

(3)

Our goal is to define a quantity that tells us how the reflective properties of the surface vary

with incident and reflected directions.  Therefore, consider a measurement in which we hold the

direction of the detector in Fig. 2 constant while we vary the direction of the source.  The BRDF

is then defined as2

Note that if we change the only the magnitude of the incident radiance, the reflected radiance will

change proportionately, and the BRDF will remain unchanged.  However, if we change the

direction of the incident or reflected beams while holding all else constant, the BRDF will in

general change.

Equation (2) makes for an easy transition to the ivory towers of radiative transfer theory. 

r rSuppose we want to compute the total radiance heading upward in direction (2 ,N ) owing to light

incident onto the surface from all directions.  We then rewrite (2) as

and then integrate over all incident directions to get the total reflected radiance in direction

r r(2 ,N ):

This last equation is exactly what is seen (with slightly different notation) in Light and Water Eq.

i i r r i i r r(4.3), where  r(2 , N , 2 , N ) is called the radiance reflectance function.  Clearly, r(2 , N , 2 , N ) =

i i r r iBRDF(2 , N , 2 , N ) cos2 , and the two functions are equivalent ways of describing a surface . 3



onto the horizontal surface.

 Indeed, this is how Hydrolight models infinitely deep, homogeneous water without4

actually solving the radiative transfer equation to extreme depth.  The BRDF of an infinitely
deep, homogeneous layer of water with known inherent optical properties can be found
analytically (as you recall from Section 9.5 of Light and Water, which you have all read).  Thus,
when Hydrolight simulates infinitely deep water, it first computes the BRDF of the infinitely

maxdeep water below the maximum depth z  you are interested in, and it then uses that BRDF at 

max maxz  just as though there were an actual physical bottom at z .

5

(4)

This is one of those places where it is easy to lose a cosine factor when comparing an

observational paper and a theory paper.  Also, some people like to add a factor of B to the

numerator of Eq. (2).  Finally, note that the BRDF is a reflectance per unit solid angle; it can

have any non-negative value.  As we'll see below, it's only when you integrate the BRDF over

solid angle to get, for example, an irradiance reflectance that the result is bounded by one.

It is emphasized that the BRDF completely describes the net effect of everything that

happens on or below the surface where it is measured.  For example, if the BRDF is measured in

the water column 1 m above a sea grass bed, then all the effects of the light interacting with the

grass, sediments, and water below the 1 m surface are accounted for in this BRDF.  Knowing the

BRDF on this imaginary surface would, for example, allow Hydrolight to compute the radiance

distribution in the region above the depth where the BRDF was measured .  Predicting or4

computing the BRDF of the grass and sediments is quite another story:  to do that you have to

understand all of the extremely complicated interactions of light with the grass and sediment

particles.

By the way, there is an important reciprocity theorem about what happens if you

interchange the positions if the source and detector.  It states simply that

If you measure or conjure up a BRDF and it doesn't obey Eq. (4), then it's simply wrong.



  There is a subtlety in this statement.  For a given incident lighting, the number of5

rphotons reflected by each point of a Lambertian surface is proportional to cos2 , which is why
Lambertian surfaces are sometimes called “cosine reflectors.”  However, if you view the surface
with a radiance detector having a fixed field of view, the area of surface that you are viewing is

r rproportional to 1/cos2 .  Thus the number of photons going into the detector is independent of 2 ,
and the reflected radiance is independent of direction.

6

(5)

Examples of BRDFs

Many researchers in the oceanographic community are unfamiliar with BRDFs other than the

one for Lambertian surfaces.  Therefore it is worthwhile to take a look at a few BRDFs for the

purpose of building intuition about what these things look like.  In particular, we'll learn what

features to look for in our own BRDFs, namely specular reflection and hot spots.  We'll go from

simple to complicated.

Example 1:  The Lambertian BRDF

A Lambertian surface by definition reflects radiance equally into all directions .  Its BRDF is5

simply

where D is called the reflectivity of the surface.  The reflectivity varies from zero for a completely

absorbing (“black”) surface, to one for a completely reflecting surface.  There are no Lambertian

i rsurfaces in nature, but matte paper is a good approximation except at grazing angles (2  and 2

near 90 degrees), where the surface begins to look “shiny.”

In addition to their mathematical simplicity, Lambertian surfaces have an extremely

u dimportant property.  To see what it is, we compute the irradiance reflectance R = E /E  of a

Lambertian surface (here we use d and u subscripts to identify the downwelling and upwelling

irradiances, respectively, which is common usage in optical oceanography, but we'll keep the i

and r subscripts in the integrals):
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(6)

The first equation here is just the definitions of the plane irradiances in terms of the incident

(downwelling) and reflected (upwelling) radiances.  The differential of solid angle is dS =

sin2d2dN.  In going to the second equation, Eq. (3) has been used to write the upwelling

radiance reflected from the surface in terms of the downwelling radiance onto the surface and the

BRDF of the surface.  Equation (6) is completely general and is the fundamental equation for

computing the irradiance reflectance of any surface, given the BRDF of the surface and the

incident radiance onto the surface.

Substituting the Lambertian BRDF of Eq. (5) into Eq. (6) and rearranging gives

i rsince the integrals over 2B  cancel, and the integral over 2B  equals B.  A Lambertian surface thus

has the property that its irradiance reflectance R equals its reflectivity D and, furthermore, its

irradiance reflectance R is independent of the incident radiance.  Both of these results are true

only for Lambertian surfaces.  For non-Lambertian surfaces, R generally depends both on the

surface and on the incident lighting.

Example 2:  A Physically-Based BRDF

BRDFs derived from a rigorous consideration of how light interacts with a surface or a

scattering medium are extremely rare animals.  Here is one such BRDF.  Consider an infinitely

deep layer of particles that scatter light isotropically and  independently of each other.  The

oalbedo of single scattering of the bulk medium is T  = b/(a + b), where a and b are the absorption

and scattering coefficients, respectively, of the medium.  Then the BRDF at the surface of the
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(7)

i i oFig. 3.  The BRDF of Eq. (7) for (2 , N ) = (30°,0) and T  = 0.9.  The red and green lines
correspond to the directions of retroreflection and specular reflection.

infinitely deep layer of scattering particles is given by (Hapke, Eq. 8.47)

o r r iHere : = cos2 and ( = %(1 - T ).  This BRDF is plotted in Fig. 3 as a function of (2 , N ) for (2 ,

i o iN ) = (30°,0) and T  = 0.9.  In this and subsequent figures, we will let the source be in the N  = 0

i r rdirection, in which case our geometry is specified by three angular variables:   2 , 2 , N .  The

razimuthal viewing angle needs to be shown only for 0 # N  # 180° because there is symmetry for

r180° # N  # 360°.  The two directions of particular interest, namely retroreflection and specular

reflection, are labeled.  



  The maximum of the BRDF is not exactly at the specular direction in this simulation,6

which is a consequence of the larger Fresnel reflectances (see Appendix B) for rays reflected

r r r rthrough larger 2  angles when N  = 180°.  The BRDF at N  = 180° drops off for 2  > 50° because
the number of reflected rays decreases faster than the Fresnel reflectance increases.

9

This BRDF is called “physically based” because the optical or physical parameters of the

omedium (in this case, T ) appear explicitly in the formula for the BRDF.   Such models are great

for deducing the characteristics of the medium from BRDF measurements.  In the present case, if

you can justify assuming that the particles in your medium scatter light isotropically and

oindependently, then you can adjust T  until Eq. (7) gives the best fit to your data.  You have then

learned something about the absorbing and scattering properties of the particles.  The problem

for us in CoBOP is that an assumption of isotropic and independent scattering is probably not

justified for sediments whose particles are touching each other.  Thus our sediments have more

complicated BRDFs (Fig. 7, below).  For the record, the derivation of Eq. (7) can be redone for

particles that scatter anisotropically according to a one-term Henyey-Greenstein phase function. 

The resulting BRDF is more complicated, but also more realistic.  See Hapke, Eq. (8.89) for the

details.

Example 3:  A BRDF with Specular Reflection

Many surfaces display at least some specular reflection.  A good example is the sea surface

itself.  Figure 4 shows the BRDF of the sea surface and underlying water body as generated by

i iHydrolight.  To generate this BRDF, Hydrolight was run with the sun at (2 , N ) = (30°,0) in a

black sky (to get a collimated incident irradiance).  The surface was modeled as capillary waves

for a 10 m s  wind speed, and the water was modeled using bio-optical models for case 1 water -1

with a chlorophyll concentration of 2 mg m .  The wavelength is 450 nm.  The reflected radiance-3

used to compute the BRDF is the total of the water-leaving radiance and the surface-reflected

sunlight (sun glitter).

The sun glitter appears in the BRDF as the large bump near the specular direction .  This6

BRDF does not show any noticeable retroreflection.



 This isn't the same thing as “enhanced backscatter,” which occurs within a fraction of a7

degree of the 180° backscatter direction, or the “glory” which you often see in a cloud around
your airplane's shadow.  The hot spot is caused by “shadow hiding” in the leaves or soil particles;
enhanced backscatter is coherent backscatter from densely packed particles; and the glory arises
from rays being refracted by spherical water droplets, somewhat like a rainbow.
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Fig. 4.  The BRDF of the sea surface as computed by Hydrolight for a wind speed 
of 10 m s .-1

This is also a physically-based BRDF in the sense that it was computed by a rigorous

solution of the radiative transfer equation for a highly complicated system of sea surface and

underlying water and phytoplankton.  We just don't have a nice simple formula like Eq. (7) to

show us how the inherent optical properties of the water determine the BRDF.

Example 4:  A BRDF with a Hot Spot

Vegetation canopies and bare soils often show increased reflection near the retroreflection, or

180° backscatter, direction.  This phenomenon  is usually called the “hot spot,” “opposition 7



 The artist Benvenuto Cellini once observed the Heiligenschein (“holy shine”) around his8

own head but not around the heads of his companions.  He took this to be a sign of his own
genius.
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Fig. 5.  Hot spot on the lunar surface.  Note that the ground appears
brighter around the shadow of the photographer's head.  (This is a scanned
image of a halftone picture and doesn't print well.  You have to go to the
moon to get the full effect.)

effect,” or “Heiligenschein.”  Figure 5 shows an example from the surface of the moon.  Note

that the lunar surface is much brighter around the shadow of the photographer's head than it is at

viewing directions to his side .8

The terrestrial remote-sensing community has developed many semi-analytic BRDFs for

vegetation canopies (a good summary is in Cabot and Dedieu, 1997).  These BRDFs usually

parameterize scattering within the medium via a very simple scattering phase function [generally

the One-Term Henyey-Greenstein (OTHG) phase function].  Features like the hot spot are

accounted for by tacking on ad hoc functions with more-or-less the right angular shape.  The

models generally have several free parameters whose values must be determined by a least-

squares fit to a measured BRDF.  These parameters may or may not be relatable to physical

quantities.
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(8)

One of the simplest such BRDFs is given by Rahman, et al. (1993):

where F(g) is the OTHG phase function,

and G is

oThis BRDF model has three parameters, D , k, and g, which must be determined by a best fit to

the measured BRDF.  Equation (8) was not derived from rigorous mathematical arguments

applied to an underlying physical model of how the medium scatters light, as was Eq. (7). 

Equation (8) was pieced together using convenient mathematical functions chosen because they

can give a reasonable reproduction of measured vegetation BRDFs.  The OTHG phase function

is being used to parameterize scattering within the vegetation or soil; the actual scattering is

i rundoubtedly much more complicated.  G is simply a function which has a minimum at 2  = 2

i r oand N  = N  ; the factor [1 + (1 - D )/(1 + G)] is then a maximum, which crudely approximates the

i i ohot spot.   Figure 6 shows this BRDF for (2 , N ) = (30°,0) and for parameter values of D  =

0.133, k = 0.851, and g = -0.114, which were determined by fitting Eq. (8) to BRDF

measurements of a wheat field.  This vegetation BRDF shows an obvious hot spot in the

retroreflection direction, roughly like the one seen in Fig. 5.  There is no noticeable specular

reflection.

i rNote that this BRDF becomes infinite for 2  and 2  both equal to 90°.  This is a common

feature of analytical BRDFs and it is perfectly OK.  Remember, a BRDF basically gives a

(unnormalized) probability of reflection per unit solid angle, and a probability density function

can have any non-negative value.  The only physical requirement is that when you integrate a

BRDF to get a reflectance, as in Eq. (6), then the reflectance must be between 0 and 1.  If you put

i rthe BRDF of Eq. (8) into Eq. (6), then the infinite BRDF at 2  = 2  = 90° is being multiplied by

i rcos2  = 0 and cos2  = 0, and the integral remains finite.
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Fig. 6.  The BRDF of Eq. (8) for parameter values typical of a wheat field.

Example 5:  A Measured BRDF of Sand

Many surfaces display both specular reflection and hot spots to some degree.  Figure 7 shows

a BRDF measured by Ken Voss on a sample of ooid sand at the CoBOP Rainbow Gardens site. 

i iThis figure has the light source at (2 , N ) = (65°,0), which gives a BRDF with a noticeable hot

spot and a bit of specular reflection.  Incident angles nearer to the zenith direction (not shown

rhere) look more Lambertian.  Note that this figure shows the full 360° range of N  in order to

rshow any azimuthal anisotropy of the sample; N  = ±180° are the same direction.  The nominal

wavelength is 568 nm.
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Fig. 7.  BRDF of ooid sand measured at the CoBOP Rainbow Gardens site (data provided by

Ken Voss).

Other Measures of Reflectance

If we could always measure or model the complete BRDF our radiative transfer problems

i i r rwould be solved.  However, measuring even a partial BRDF for a few values of 2 , N , 2 , N , 8 is

a difficult and tedious task in the laboratory.  As far as we know, no one has ever tried to

measure a BRDF under water until CoBOP.  Of course, everyone wants to have some easily

made (compared to a BRDF) measure of surface reflectance that, with appropriate assumptions,

can be used to model the optical properties of the surface.  This leads us to various other

reflectances and quantities derived from the BRDF.

Albedos

There are enough definitions of “albedo” to make you take early retirement.  Hapke's book

defines bolometric, Bond, geometric, hemispherical, normal, physical, plane, single-scattering,

and spherical albedos, as well as an albedo factor.  To add insult to injury, not a single one of
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these albedos corresponds to how “the” albedo is defined in Light and Water (page 193). 

Fortunately, we don't have to deal with all of these albedos in CoBOP, but we should clarify a

point that can cause confusion when reading BRDF papers (which sometimes just say, “...and the

albedos is...” without telling you which one they're talking about).

Optical oceanographers generally think of the albedo as being the ratio of the upwelling plane

irradiance to the downwelling plane irradiance, for whatever conditions of incident lighting you

have in nature at the time of measurement.  (This is how the albedo is defined in Light and

Water.)  This is what you need to know to compute an energy balance in the real world.  Thus the

u doceanographers' albedo is the same as the irradiance reflectance R = E /E , as computed via Eq.

(6).  The surface-reflectance people like to define their albedos and reflectances in terms of

i i iisotropic illumination of the surface, i.e., the incident radiance L (2 ,N ) seen in Eq. (6) is a

i iconstant independent of (2 ,N ).  For isotropic incident radiance, Eq. (6) reduces to just

This quantity is called the Bond or spherical albedo, or the spherical or bi-hemispherical

reflectance, or just “the” albedo, depending on the author's preference.  Note that this A is not

u dequal to R = E /E  unless the incident lighting is isotropic (which never occurs in nature) or

unless the surface is Lambertian (which never occurs in nature).  For a Lambertian surface, A =

D.

The same convention of assuming isotropic illumination of the surface is often used when

defining other reflectances, e.g., the hemispherical-directional reflectance.  Note that the

convention of using isotropic illumination when defining albedos and reflectances isn't

necessarily bad:  it removes a complicating factor—variable incident lighting—from the

discussion of surface properties.  It's just that we don't have that luxury in CoBOP, where we

have to live with whatever incident radiance nature gives us.

The Irradiance Reflectance vs. The Bi-Hemispherical Reflectance

u dAs already noted, the oceanographers' albedo or irradiance reflectance R = E /E  as given by

Eq. (6) is a bi-hemispherical reflectance, but it is not “the” bi-hemispherical reflectance as

defined in books such as Hapke, because our R uses the actual incident radiance distribution in

Eq. (6), rather than an isotropic incident radiance.
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The Remote-Sensing Reflectance

The remote-sensing reflectance,

rshas the same units as the BRDF, but they are not the same thing.  Note in particular that R  uses

dthe total (from all directions) downwelling irradiance E , whereas the incident irradiance in the

definition of the BRDF is in a collimated beam.    [Also, some people call this ratio the “remote-

rsensing reflectance” only if the measurement is being made just above the sea surface and L  is

the water-leaving radiance (the total upward radiance minus the surface-reflected sky radiance).]

The Reflectance Factor and the Radiance Factor

The reflectance factor REFF (also called the reflectance coefficient) is defined as the ratio of

the BRDF of the surface to that of a perfectly diffuse surface under the same conditions of

illumination and observation.  “Perfectly diffuse” means a Lambertian surface with D = 1.  Thus

iThe radiance factor RADF is defined as the reflectance factor for normal illumination, i.e., for 2

= 0.  Thus
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Appendix A:  Comparison of Notation

For those of you who want to refer to Mobley (1997), Hapke (1993), or NBS160 along with

these notes, here are the equivalents for several needed quantities.

Quantity These Notes Mobley (1994) Hapke (1993) NBS160

radiance L L I L

irradiance E E J E

o osingle-scattering albedo T T w —

scattering angle R R 2 —

mean cosine of scattering

angle

g g > —

phase angle > — g —

i iincident polar angle 2 2' i 2

r rreflected polar angle 2 2 e 2

i iincident azimuthal angle N N' set to 0 N

r rreflected azimuthal angle N N R N

solid angle S S S T

i rBRDF BRDF r/cos2 BRDF f

reflectance R R r D
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Fig. 8.  Fresnel reflectance of an air-water
surface for unpolarized incident light.

(9)

Appendix B:  The Fresnel Reflectance as a BRDF

FThe Fresnel reflectance R  is the reflectance of a perfectly smooth surface between two media

Fof different indices of refraction.  Formulas for R  are given, for example, in Mobley (1994, page

F157).  Figure 8 gives R  for unpolarized light incident onto either side of an air-water surface; the

water has a real index of refraction (relative to the air) of n = 1.34.

FR  can be combined with Dirac delta functions to create a BRDF.  Consider the BRDF

Inserting Eq. (9) into Eq. (3) gives

This last equation is the form usually seen in the definition of the Fresnel reflectance as being the

ratio of reflected to incident radiances for angles related by the law of reflection.
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(C1)

(C2)

Appendix C: Using the BRDF as a Probability Distribution

Equation (3) shows how the BRDF is used in Hydrolight, which is always working with

radiances.  In a Monte Carlo simulation, you are tracking many individual photon packets as

they interact with the medium and its boundary surfaces.  In this case, the BRDF must be used as

a probability distribution function (pdf) to determine the direction and weight of the reflected

photon packet whenever a photon packet hits the bottom.  This is a tricky business the first time

you encounter it, and journal articles never give you the necessary details (which, after you spend

days or weeks figuring them all out, are then pronounced to be “obvious”).  With luck, you’ll

never need to know this stuff, so feel free to quit reading now.  But, if you ever have to develop a

Monte Carlo code that includes bottom reflectance, you’ll thank me for putting this on paper. 

So, without further ado:

i i iGiven: A photon packet with weight w  is incident onto the bottom in direction (2 , N ).  The

BRDF of the bottom is known.

r r rNeeded: The weight w  and direction (2 , N ) of the reflected photon packet.

i i i i r rSince the input direction (2 , N ) is known, the BRDF(2 , N , 2 , N ) can be viewed as an

r r(unnormalized) bivariate pdf for the reflected angles 2  and N .  Note that, in general, these angles

are correlated.  Proceed as follows:

i i1) Compute the directional-hemispherical reflectance for the given (2 , N ):

r i i i2) The reflected packet weight is w  = D  (2 , N ) w  .dh

r3) Compute the cumulative distribution function (cdf) for N  by
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(C3)

(C4)

(C5)

Note that the directional-hemispherical reflectance is being used to convert the BRDF into a

r r rnormalized bivariate pdf for 2  and N .  We are then “integrating out” the 2  dependence to leave

r ra pdf for N , which is then being used to construct the cdf for N .

4) Draw a random number U from a uniform [0,1] distribution.  Solve the equation

rfor N .  This is the randomly determined azimuthal angle of the reflected photon packet.

r5) Compute the cdf for angle 2  from

rNote that the angle N  determined in step 4 is used in the BRDF in Eq. (C4) when evaluating the

r r2 intetrals.  This is how the correlation between 2  and N . is accounted for in the determination

of the reflection angles.

6) Draw a new random number U from a uniform [0,1] distribution and solve the equation

rfor 2 .  This is the randomly determined polar angle of the reflected photon packet.  You can now

send the new photon packet on its way.

For all but the simplest BRDFs, Eqs. (C1) to (C5) all must be evaluated numerically for each

photon packet, which can be an enormous computer cost when millions of photon packets are

being traced.



 This BRDF was conjured up to explain the curious fact that the full moon appears9

almost uniformly bright from the center to the edge of the lunar disk.  If the lunar dust were a
Lambertian reflector, the full moon would appear bright at the center and darker at the edge. 
However, the Minnaert BRDF agrees with observation over only a limited range of angles.
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A Simple Example.

The Minnaert BRDF  is9

Note that for k = 0 this reduces to the Lambertian BRDF.  Equations (C1) to (C5) can be

evaluated analytically for the Minnaert BRDF.  Equation (C1) evaluates to

which reduces to D  = D for a Lambertian surface.  Equation (C2) gives justdh

rPlugging this into Eq. (C3) and solving for N  gives

rThus the azimuthal angle is uniformly distributed over 2B radians.  The cdf for 2  as given by

(C4) is

Equation (C5) then gives
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after noting that 1 - U has the same distribution as U.  For a Lambertian surface, the randomly

rgenerated 2  angles are distributed as cos (%U), which certainly isn’t intuitive.  However, this-1

distribution is precisely what is necessary to make the number of reflected photons per unit solid

rangle proportional to cos2 , as mentioned in footnote 5.
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