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An inverse algorithm is developed to retrieve hyperspectral absorption and backscattering coefficients
frommeasurements of hyperspectral upwelling radiance and downwelling irradiance in vertically homo-
geneous waters. The forward model is the azimuthally averaged radiative transfer equation, efficiently
solved by the EcoLight radiative transfer model, which includes the effects of inelastic scattering.
Although this inversion problem is ill posed (the solution is ambiguous for retrieval of total scattering
coefficients), unique and stable solutions can be found for absorption and backscattering coefficients. The
inversion uses the attenuation coefficient at one wavelength to constrain the inversion, increasing the
algorithm’s stability and accuracy. Two complementary methods, Monte Carlo simulation and first-order
error propagation, are used to develop uncertainty estimates for the retrieved absorption and backscat-
tering coefficients. The algorithm is tested using both simulated light fields from a chlorophyll-based case
I bio-optical model and radiometric field data from the 2008 North Atlantic Bloom Experiment. The
influence of uncertainty in the radiometric quantities and additional model parameters on the inverse
solution for absorption and backscattering is studied using a Monte Carlo approach, and an uncertainty
budget is developed for retrievals. All of the required radiometric and inherent optical property measure-
ments can be made from power-limited autonomous platforms. We conclude that hyperspectral measure-
ments of downwelling irradiance and upwelling radiance, with a single-wavelength measurement of
attenuation, can be used to estimate hyperspectral absorption to an accuracy of �0.01 m−1 and hyper-
spectral backscattering to an accuracy of �0.0005 m−1 from 350 to 575 nm. © 2013 Optical Society of
America
OCIS codes: 010.0010, 010.4450, 030.5620, 100.3190, 160.4760, 280.0280.

1. Introduction

Arrays of autonomous and Lagrangian sensors are
being deployed in order to add a vertical dimension
to the near-surface observations from satellite-based
ocean color sensors [1]. As a result, methods for
estimating inherent optical properties (IOPs) and

other biogeochemically significant quantities from
in-water radiometric measurements have gained
renewed interest [2–5]. In addition to measure-
ments of radiance and irradiance, measurements of
chlorophyll fluorescence, backscattering, and beam
attenuation are now possible from power-limited
autonomous platforms [6–11]. Integrating contem-
poraneous measurements from multiple sensors
enhances the type and quality of biogeochemical ob-
servations that can be achieved compared to single
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sensor measurements [3,10,12] and enhances valida-
tion of satellite-based ocean color products [5,13,14].

In the present study, we made hyperspectral radio-
metric measurements with the objective of subse-
quently assessing biologically relevant information
about the natural phytoplankton community where
the measurements are taken. For example, features
of in situ absorption spectra resulting from photosyn-
thetic and accessory pigments can be used to esti-
mate ecologically relevant information about the
phytoplankton community, such as community com-
position [15], size structure [16] and photoadaptive
status [17]. While deciphering the meaning of spec-
tral variations in backscattering remains enigmatic
[18,19], increased spectral resolution of backscatter-
ing has recently confirmed a taxonomic relationship
to algal cell size and cellular particular organic con-
tent [20]. Notably, hyperspectral measurements of
backscattering are limited to those estimated from
hyperspectral radiometry [21], and these estimates
provide an opportunity for additional exploration.

The forward problem in hydrologic optics is defined
by the radiative transfer equation (RTE): given mea-
surements of in-water IOPs and boundary conditions
at the sea surface and bottom, calculate the in-water
light field (radiances and irradiances) [22]. The in-
verse problem estimates in-water IOPs given mea-
surements of the in-water light field. Previous work
shows that the inverse problem for IOPs can be solved
by explicit (closed-form) methods or implicit (itera-
tive) methods [22–24]. Explicit methods manipulate
the RTE or approximate analytic solutions thereof
to derive formulas that estimate IOPs from apparent
optical properties (AOPs) such as reflectance and the
diffuse attenuation coefficient of downwelling irradi-
ance [25–31]. The explicitmethod is illustrated by the
early work of Gordon and Boynton [32], who showed
that reflectance is strongly correlatedwith the ratio of
the backscattering to absorption coefficients, bb∕a.
Explicit approaches essentially constrain solutions
by virtue of the empirical relationships embedded
within their semianalytical models; these empirical
relationships are developed based on regressions of
numerous fieldmeasurements (e.g., [31]) or extensive
forward modeling to cover the range of natural varia-
bility of interest (e.g., [26]). While errors in these re-
lationships can be very carefully propagated through
to IOP uncertainty estimates (e.g., [33]), the statisti-
cal variability about the mean of these relationships
[34] can limit their precisionwith respect to any single
inversion. Garver and Siegel [35] developed a model-
based inversion approach to retrieve IOPs from ocean
color spectra. Uncertainty intervals were quantified
for merged satellite ocean color products, resulting
in a complete error budget that, as in the present
study, characterizes sensor and forward model errors
in order to develop statistically rigorous confidence
intervals in the retrieved products, including
IOPs [36,37].

Implicit methods estimate IOPs by repeatedly
solving the RTE, starting with an initial guess or

an estimate based on a priori knowledge of the IOPs
in the area of study. At each iteration, radiometric
measurements (or AOPs derived therefrom) are com-
pared to the light field estimated by the RTE, and an
objective function is computed that expresses the dif-
ference between the estimated light field and the
measured radiometric values. The IOPs are then
modified to reduce the objective function. Iteration
terminates when the objective function is reduced
to an acceptably small value. Since no (or few) sim-
plifying assumptions are made about the relation-
ship between IOPs and the light field (or related
AOPs), implicit methods can, in principle, be highly
accurate. However, implicit methods incur the added
computational cost of solving the RTE one or more
times for each iteration. Some implicit approaches
avoid the computational cost of solving the full
RTE by employing simplifying assumptions, e.g., an
asymptotic light field [31,38]. Implicit approaches for
which the resulting relation between IOPs and the
estimated light field is exact (according to the RTE)
are rare. Gordon and Boynton [39] have developed
such an inverse algorithm where radiative transfer
includes a coupled ocean–atmosphere model and an
RTE solved by Monte Carlo methods. Their approach
computes IOP estimates that reproduce AOP profiles
that are consistent with the RTE to within experi-
mental error [39–41]. Their approach was used to re-
trieve hyperspectral absorption and backscattering
from oligotrophic Hawaiian waters as well as meso-
trophic waters near San Diego, California and
validated using contemporaneous in situ measure-
ments of multispectral absorption and backscatter-
ing [21]. Spurr et al. [42] have used a coupled
atmosphere–ocean radiative transfer model to simul-
taneously retrieve atmospheric aerosol and ocean op-
tical parameters using an optimization approach
very similar to the one used in this study [43].
However, IOPs are not directly retrieved by their
scheme; rather, they are parameterized using bio-
optical models with assumed spectral shapes for phy-
toplankton and colored dissolved organic matter
(CDOM) absorption as well as particulate backscat-
tering. This explicit model has been used to success-
fully retrieve aerosol and ocean properties from
ocean color satellite data [44] and produce a compre-
hensive error budget for retrievals [45].

An alternative to iterative implicit methods is a
look-up-table (LUT) approach. First, using the RTE,
precompute a database of spectra representing
radiometric quantities or AOPs (e.g., reflectance)
based on a range of input values for IOPs and other
pertinent parameters (e.g., bottom depths and reflec-
tances, solar angles, and viewing directions) with
numerous forward RTE simulations. Then, when
presented with an observed spectrum, search the
database for the best least-squares spectral match
and return the IOPs and other parameters that
generated that spectrum. For this procedure, abso-
lute radiometric calibration of radiometric sensors
is required for the spectral matching scheme to be
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effective. This LUT approach was successfully used
to extract IOPs and related environmental informa-
tion from remotely sensed hyperspectral reflectance
[46]; a small number of IOPs was used in database
generation, based on a bio-optical model. This ap-
proach is ideally suited to environmental classifica-
tion problems where the objective is retrieval from a
tractable set of alternatives. For general IOP retrie-
val, there is a combinatorial explosion in the size
of the LUT as the desired IOP resolution increases,
and database generation and search becomes com-
putationally expensive. However, the LUT approach
points to the value of using hyperspectral measure-
ments: it was precisely the additional spectral infor-
mation available in hyperspectral measurements
that allowed the LUT algorithm to discriminate
between the numerous combinations of IOPs and
environmental parameters [47].

In this paper, we develop an implicit algorithm for
estimating hyperspectral IOPs from in-water hyper-
spectral measurements of upwelling radiance Lu and
downwelling plane irradiance Ed in a vertically well-
mixed regime. The EcoLight radiative transfer soft-
ware efficiently solves the forward radiative transfer
problem [48]. As a result, there is an exact relation-
ship between the retrieved IOPs and the estimated
light field. We use an optimization approach that
integrates contemporaneous measurements of beam
attenuation c at a single wavelength to constrain and
stabilize the inversion. This combination of sen-
sors matches both that of a ship-deployed optical
package as well those mounted on an autonomous
Lagrangian float as part of the 2008 North Atlantic
Bloom Experiment (NAB08) [49]. We use the ship-
based radiometric measurements that also include
vertical profiles of IOPs for validation of our algo-
rithm. The optimization procedure minimizes the
least-squares difference of log-transformed radiance
and irradiance from numerous depths and returns a
locally linear estimate of the RTE, allowing for pro-
pagation of uncertainty in radiometric measure-
ments and other forward model parameters to the
final estimates of IOPs. A core part of this study is
the development of a detailed error analysis, includ-
ing the effects of measurement errors, forward model
parameter errors, and inversion noise, which extends
previous oceanographic work [33,36,37,50,51]. We
explore the uniqueness and stability of estimating
IOPs from such a set of complementary radiometric
and IOP measurements and test the general
sensitivity of the IOP estimates to radiometric mea-
surements. Finally, after fully understanding the re-
trieval algorithm, we apply our inversion and error
analysis techniques to in situ data taken during
the 2008 North Atlantic spring bloom.

2. Retrieval Methodology

In this work, we employ optimization techniques
that require little a priori information about oceanic
IOPs.While databases and large bio-optical data sets
exist (WOOD, Worldwide Ocean Optics Database

[52], SeaBASS [53], NOMAD [54]), few data sets are
available that provide useful priors for the data set
used here, which represents a dynamical period of a
spring phytoplankton bloom in the North Atlantic
[55]. In addition, our approach does not require itera-
tions other than those inherent in the optimization
process and employs coincident IOP measurements
as bound constraints (backscattering) or as forward
model parameters (attenuation) that are supplied
but not retrieved. With this approach, limited a
priori information about forward model parameters
is required to characterize uncertainty in the re-
trieved IOPs.

A. Additive Noise Model

(1) Formulation. For each wavelength λ, radiance and
irradiances are related to in-water IOPs, incident
radiance, and other model parameters via the RTE
through the following additive noise model [43]:

d � G�m; b� � ε; (1)

where d ∈ R2N is a vector of radiance Lu�z� and irra-
diance Ed�z� calibrated measurements at depths
z1;…; zN in the mixed layer,

d � �d1;…; d2N �T

� �Lu�z1�;…; Lu�zN�; Ed�z1�;…; Ed�zN��T: (2)

G: RM → R2N represents the RTE for vertically
homogeneous waters, and m ∈ RM represents the re-
trieval vector, i.e., the vertically homogeneous IOPs
in the mixed layer to be estimated by the inversion
algorithm,

m � �m1;m2;m3�T � �a; bb; b�T: (3)

Absorption and scattering due to particles (phyto-
plankton, detritus) and CDOM, apg and bpg, respec-
tively, are derived from RTE solutions for the total
absorption and scattering coefficients a and b by
simply subtracting pure water absorption aw and
scattering bw. Similarly particulate backscattering
bbp is derived from total backscattering by subtract-
ing pure water backscattering bbw. Vector b repre-
sents additional model parameters that influence the
measurement but are not retrieved:

b � �b1;…; b8�T

� �~β�θ0; θ; λ�; aw; bw; Es; θs; cloud; U10; Chl�T: (4)

These additional model parameters include the scat-
tering phase function ~β, pure water absorption aw
and scattering bw, incident solar downwelling irradi-
ance Es � Ed�0�� onto the sea surface, solar zenith
angle θs, cloud fraction cloud (which influences the
incident radiance distribution), wind speed at 10 m
U10 (which influences the transfer of radiance across
the sea surface), and chlorophyll concentration Chl
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(which is used to estimate chlorophyll fluorescence).
Infinitely deep water is assumed; therefore, no ocean
bottom reflectance parameters are required. The
noise term ε ∈ R2N represents radiometric error
and is assumed to be zero-mean Gaussian noise with
error covariance

Sε � E�εε0�; (5)

where E�·� is the expectation operator. The error cov-
ariance Sε is operationally assumed to be diagonal
with respect to depth, i.e., the error in radiance and
irradiance at each depth are independent and iden-
tically distributed random variables.

(2) Forward Model. The forward model G is the
depth-dependent, azimuthally integrated RTE for
vertically homogenous waters [48]:

cos θ
dL�z; θ; λ�

dz
� −c�λ�L�z; θ; λ�

�
Z

π

0
β�θ0; θ; λ�L�z; θ0; λ� sin θ0dθ0

� S�z; θ; λ�; (6)

where

β�θ0; θ; λ� �
Z

2π

0
β�θ0;ϕ0; θ;ϕ � 0; λ�dϕ0 (7)

is the azimuthally integrated volume scattering
function (VSF) and source function S�z; θ; λ� repre-
sents the contributions from inelastic scattering at
wavelength λ. Equation (6) yields the azimuthally
integrated radiance L�z; θ; λ�, from which the down-
welling irradiance Ed�z; λ� and nadir viewing
radiance Lu�z; λ� � L�z; θ � 0; λ� are obtained. The
backscatter fraction bb∕b is used by EcoLight to
determine a depth- and wavelength-dependent
Fournier–Forand [56] scattering phase function
~β�θ0; θ; λ� (the ratio of the VSF to the scattering
coefficient) [57].

(3)Radiometric Error. The radiometric error vector
ε in Eq. (1) is in radiance and irradiance space and
arises from both random (detector noise) and
systematic errors, including calibration errors, un-
corrected stray light (where light from one measure-
ment channel scatters to other measurement
channels), thermal changes in radiometric dark
values, errors in the immersion factor and cosine
response function, and in-water self-shading [58].
Errors in Lu and Ed are taken as uncorrelated during
optimization. For retrieval error analysis, the radio-
metric error covariance matrices of the random and
systematic forward model parameter error are
assessed a posteriori in Section 3.

B. Constrained Nonlinear Least-Squares Estimation

We wish to find the optimal vector of IOPs m that
yields an RTE solution for the in-water light
field dest � G�m; b� that best fits our radiometric

observations dmeas. We find the best fit by minimizing
the squared L2 distance, in log10 space, between the
measured radiometric variables dmeas and those esti-
mated by the forward model dest � G�m; b�, subject to
IOP lower (l) and upper (u) bound constraints:

min
l≤m≤u

‖log10�dmeas� − log10�dest�‖2
2 � min

l≤m≤u
F�m�; (8)

where F�m� � f�m�Tf�m� is the objective (or cost)
function and

f�m� �

2
6666666664

f 1�m�
..
.

f N�m�
f N�1�m�

..

.

f 2N�m�

3
7777777775

�

2
6666666664

log10�Lmeas
u �z1�� − log10�Lest

u �z1��
..
.

log10�Lmeas
u �zN�� − log10�Lest

u �zN��
log10�Emeas

d �z1�� − log10�Eest
d �z1��

..

.

log10�Emeas
d �zN�� − log10�Eest

d �zN��

3
7777777775
: (9)

Logarithmic transformation of radiometric quanti-
ties is justified because in-water radiances and
irradiances decay roughly exponentially with depth,
resulting in several orders of magnitude change be-
tween z1 and zN . Logarithmic transformation results
in roughly equal contribution of error components
f i�m� to the objective function F � fTf with depth
and the expression of radiometric accuracy as a per-
centage of the total measurement [59,60]. Addition-
ally, radiance and irradiance values, hence their
errors, differ by 2 orders of magnitude; logarithmic
transformation scales these values to roughly the
same range.

The underwater radiance distribution, L�z; θ; λ�,
along with derived quantities Lu and Ed, are non-
linear functions of IOPs. Therefore, to carry out a
bound-constrained, nonlinear least-squares optimi-
zation, we use an efficient trust-region reflective al-
gorithm (MATLAB’s lsqnonlin function [61])
and a version of EcoLight callable as a MATLAB
function [62]. Given a starting point m0, the optimi-
zation procedure minimizes the objective function
F�m� by systematically choosing IOP valuesmwithin
supplied bound constraints �l; u�. At each optimiza-
tion step toward the solution, EcoLight is invoked
several times in order to compute dest � G�m; b�
and f�m� as well as to estimate the objective function
gradient ∇F�m� � 2J�m�Tf�m�. The matrix J�m� is
the Jacobian whose i–j element ∂f i�m�∕∂mj repre-
sents the sensitivity of log-transformed estimates
of Lu and Ed to each IOP mi. The objective function
gradient ∇F�m� is used to help determine the best
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direction to take in the IOP retrieval vector space m
in order to reduce the objective function F�m�. We
find that the Jacobian J�m� has further utility by ap-
plying Taylor’s theorem to the forward modelG�m� to
obtain the local first-order approximation

G�m�Δm; b� ≈ G�m; b� �KmΔm; (10)

where the retrieval Jacobian Km takes into account
the logarithm operation in Eq. (9):

Km � log�10� × diag�Lest
u �z1�;…; Lest

u �zN�;
× Eest

d �z1�;…; Eest
d �zN��J�m�: (11)

Therefore, Km represents a locally linear approxi-
mation of the RTE around the current estimate of the
IOP retrieval vector m and is useful for studying the
stability and uncertainty of the final estimate m̂.

The optimization procedure uses several criteria to
determine when to stop iteration (Table 1). At this
point, the final solution m̂, the Jacobian J�m̂�, and
the estimated light field d̂ � G�m̂; b� are retained
as the solution. The final solution m̂ is optimal in the
sense that, if the errors f i�m� are normally distribu-
ted with equal variance σi, then minimizing F�m�
produces a maximum-likelihood solution, i.e., the op-
timization procedure selects the mostly likely model,
as characterized by the retrieval vector m̂, for the set
of observations dmeas [63]. (The assumptions upon
which such optimality is based will be discussed
further in Section 8.)

As we will show in Section 4, our inverse problem
is underdetermined, meaning multiple solutions are
possible; we expect this ambiguity because we are at-
tempting to estimate three parameters (a, b, bb) from
two radiometric measurements (Lu, Ed) at each
wavelength. In light of this, the optimization proce-
dure is aided by three additional features. First, we
use a quick semianalytic algorithm [31] to establish a
starting point m0�λ1� at the initial solution wave-
length λ1 � 350 nm. In Section 4, we will examine
just how close this starting point needs to be to as-
sure we can achieve a global minimum for F�m�λ1��.
Retrievals of IOPs at subsequent wavelengths use
the solution at the previous wavelength as the start-
ing point. Second, we constrain any estimatem with-
in the prescribed bounds �l; u� based on uncertainty

estimates for apg and bb from the semianalytical
algorithm.

For the third feature of the optimization proce-
dure, we take a slightly different approach. As we
will see in Section 4, the scattering coefficient
bpg is not practically retrievable, but if it is properly
bounded, its value increases the accuracy of the
estimates of apg and bb. We proceed by assuming
we have available one contemporaneous attenuation
measurement c�650; z�, employ a bio-optical model
for the wavelength dependence of c�λ�, and reorga-
nize the inversion as a two-parameter estimation
problem m � �apg; bb�, augmenting the additional for-
ward model parameter vector b with an estimate of
bpg�λ� � cp�λ� − apg�λ�. The wavelength dependence
of particulate attenuation cp�λ� is represented
as [64,65]

cp�λ� � cp�650�
�

λ

650

�
−γ

; (12)

where cp�650� � c�650� − cw�650� and γ � 0.5. While
an approximation with fixed γ implies a fixed particle
size distribution, we will see that it sufficiently con-
strains scattering bpg�λ� and sensitivity to the choice
of γ is small.

3. Error Characterization

A. Linear Retrieval

Here we follow the work in the atmospheric sounding
community by Rodgers [43]. Omitting a priori knowl-
edge of IOPs, if the estimate of vertically homoge-
neous IOPs m̂ is close to the actual values of IOPs
m, the estimated IOPs can be expressed by a linear-
ization about the actual value m:

m̂ � m�Gmε�GmKb�b − ba� � εr; (13)

where ε is the noise vector defined in Eq. (1),m is the
state of the actual in-water IOPs, and εr is noise
introduced by the optimization process. The gain
matrix Gm is defined by

Gm � ∂m
∂G

� �KT
mS−1ε Km�−1KT

mS−1ε ; (14)

Table 1. Optimization Stopping Criteria and Related Evaluation Parameters

Criteria Formal Definition Associated Parametera Value

1. Converged Norm of gradient is close to zero,
‖∇F�m�‖2 < tolFun, and F�m� has positive curvature.

tolFun 1 × 10−6

2. No change in m Change in m at iteration
k, ‖mk −mk−1‖2 < tolX. Can indicate a local minimum.

tolX 1 × 10−7

3. No change in F�m� Relative change in F�m� at iteration
k < tolFun, jF�mk� − F�mk−1�j < tolFun × �1� jF�mk−1�j�.
Can indicate a local minimum.

tolFun 1 × 10−6

Minimum change in m ‖mk −mk−1‖2 ≥ Dif fMinChange DiffMinChange 5 × 10−3

aWhile these parameters are specific to MATLAB’s lsqnonlin routine, other nonlinear least-square solvers have similar stopping
and evaluation parameters.
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where Km is the retrieval Jacobian, as defined in
Eq. (11). The gain matrix Gm is essentially the ratio
between statistical measures of the uncertainty in an
IOP estimate and the uncertainty in a measurement
[66]. Vector b is the true state of the additional for-
ward model parameters that affect forward-modeled
radiance Lu and irradiance Ed (solar zenith angle,
cloud fraction, etc.), and vector ba is the a priori
estimate of those parameters. The Jacobian Kb �
∂G�m; b�∕∂b describes the sensitivity of Lu and
Ed to changes in the additional forward model
parameters.

B. Retrieval Error Analysis

From Eq. (13), the error in the estimated IOPs is the
difference between the estimated and actual IOPs
and is composed of measurement error and systema-
tic errors [43]:

~m � m̂ −m

� Gmε|{z}
measurement error

� GmKb�b − ba�|���������{z���������}
forward model parameter error

� εr|{z}
retrieval noise

: (15)

The first term transforms random and systematic
errors in radiometric measurements to an error in
the retrieved IOPs. The second term transforms er-
rors from the additional forward model parameters
into an error in the retrieved IOPs. Although these
are described as systematic errors, many of the addi-
tional forward model parameters can change with
each retrieval. The last term represents errors sys-
tematically introduced by the optimization process
and may be dependent on the magnitude of the
retrieved values. Similarly, the total IOP retrieval er-
ror covariance matrix St is the sum of the measure-
ment error, forward model parameter error, and
retrieval noise covariance matrices [67]:

St � Sm � Sf � Sr; (16)

where the measurement error covariance is
Sm � GmSεGT

m, the forward model error covariance
is Sf � GmKbSbKT

bG
T
m, and Sb is the forward model

parameter error covariance matrix. The retrieval
noise covariance matrix Sr will be treated as diagonal
and characterized through simulation under condi-
tions where Sm and Sf are zero.

The 95% confidence intervals for individually
retrieved IOPs, m̂� δ0.95, can be estimated from
the diagonal of the total retrieval error covariance
matrix St as [68]

δ0.95 � t0.975�2�;N−p ×
�������������������
diag�St�

p
; (17)

where t0.975�2�;N−p is the two-tailed Student’s
t-xstatistic for N observations (number of radio-
metric measurement depths) and p unknowns (the

length of the IOP retrieval vector m). However, when
estimating more than one parameter simulta-
neously, the joint parameter confidence region
should be examined to see the influence of correla-
tion between the retrieved parameters, expressed
by nonzero off-diagonal elements in St. This correla-
tion significantly reduces the region of uncertainty
from a p-dimensional rectangular region (hypercube)
expressed by Eq. (17) to a p-dimensional ellipsoid
surrounding m̂. Assuming an inverse solution that
is locally linear about the final IOP estimate (an as-
sumption we will test below), the joint confidence
region is defined by an ellipsoid [68]:

N�m̂ −m�TS−1t �m̂ −m� ≤ �N − 1�p
�N − p� Fp;N−p�α�; (18)

where Fp;n−p�α� is the upper α point of the F�p; n − p�
distribution and α � 1 − 0.95 for a 95% confidence re-
gion. This ellipsoid can be drawn to evaluate the joint
confidence region of IOPs and can be projected onto
the retrieval parameter axes to get the following
individual confidence intervals

δ0.95 � �N − 1�p
N − p

Fp;N−p�α� ×
�������������������
diag�St�

p
; (19)

which will be broader than those predicted by
Eq. (17). When jointly estimating only the two IOPs
apg and bb, then p � 2 and the joint confidence region
can be plotted as an “error ellipse.” The error ellipse
provides information about the combinations of IOP
estimates that are “jointly reasonable” [69]. We will
report the broader, more conservative individual
intervals calculated using Eq. (19) and display the
error ellipses at selected wavelengths in order to
visually assess correlation of estimated IOPs and
this jointly reasonable region of IOP estimates.
For less conservative assumptions, see Johnson and
Wichern [68].

C. Relative Errors

Assessment of systematic biases and typical uncer-
tainties between estimated and measured quantities
can be made using the relative percent difference ψ
and its absolute value jψ j, respectively.

For a paired estimate and measurement the
residual and relative errors are

resi�zj� � Xest
i �λi; zj� − Xmeas

i �λi; zj�; (20)

ψ i�zj� � 100
resi�zj�

Xmeas
i �λi; zj�

; (21)

respectively, where an X may be an IOP or radio-
metric value, Xest

i �λi; zj� is an estimated value, and
Xmeas

i �λi; zj� is the corresponding measured value at
wavelength λi and depth zj. Similarly, the average ab-
solute percent difference is computed with jψ i�zj�j.
Average relative error ψ̄ and average absolute error
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¯jψ j are computed by averaging ψ i�zj� and jψ i�zj�j, re-
spectively, over all wavelengths and depths. Finally,
root-mean-square (RMS) error is computed from the
residuals resi�zj�.
D. Radiometric Error Covariance Matrix Sε

Radiometric errors ε are assumed to be uncorrelated
and normally distributed random variables with zero
means and variances σ2Lu

and σ2Ed
. These variances

are considered to be “combined standard uncertain-
ties” of Type A errors (typically random errors where
uncertainties are determined by statistical analysis,
reduced by making additional measurements) and
Type B errors (typically systematic errors where un-
certainties are obtained by heuristic means, reduced
by instrument characterization) [70]. For radiometry,
a typical Type A error is due to sensor noise, and
its error variance is expressed as a manufacturer-
supplied noise equivalent radiance. A typical Type
B radiometric error is radiometric calibration error,
due to, for example, mischaracterizations in the
calibration lamp, cosine collector response, or immer-
sion coefficient, and cannot be reduced by repeating a
measurement. Components of radiometric uncer-
tainty budgets, where Type B errors dominate, are
presented as a percent error in the radiometric mea-
surement [58,60,71]. A common approach to expres-
sing the magnitude of a Type B error is to assume
that the error is a single realization drawn from some
statistical parent distribution of possible Type B
errors [72]. Accordingly, we assume that relative
radiometric uncertainties ΔLu

% and ΔEd
% can be

represented as 95% confidence intervals δLu;0.95 and
δEd;0.95, respectively, for systematic radiometric
errors interpreted as random errors drawn from a
normal distribution, i.e.,

δLu;0.95 � 1.96 × σLu
� ΔLu

∕100 × L̄u;

δEd;0.95 � 1.96 × σEd
� ΔEd

∕100 × Ēd;
(22)

where 95% of the area under the univariate normal
distribution lies within ≈1.96 standard deviations of
the mean. In this case, the radiometric error covar-
iance matrix is Ssimε � diag�σ2Lu

; σ2Ed
�, where Eq. (22)

is solved for σ2Lu
and σ2Ed

. For field measurements with
radiometric instruments where the complete radio-
metric uncertainty budget is not available, we
estimate the standard uncertainty of radiometric
measurements at each wavelength λi from the
residual errors resi with [73]

σ̂2i � 1
ν

XN
j�1

res2i �zj�; (23)

where ν � N–p is the number of degrees of freedom
and the radiometric error covariance matrix
is Smeas

ε � diag�σ̂2Lu
; σ̂2Ed

�.

E. Measurement Error Covariance Sm : Estimates and
Validation

If the first-order linear approximation of the RTE
about the IOP estimate m̂ in Eq. (13) is valid, the
measurement covariance matrix Sm can be calcu-
lated using an estimate of the radiometric error cov-
ariance matrix Sε and a quick matrix computation
Sm � GmSεGT

m. To test the assumption of local linear-
ity, we also estimate Sm using a Monte Carlo ap-
proach and compare this to a first-order estimate
of Sm for the same data point [74]. The Monte Carlo
estimate is trivial to implement, but slow, and
provides an uncertainty estimate that is specific to
the particular inversion being performed. So, in the
end, it is preferable to use the more efficient first-
order error propagation method.

For this comparison, we identified a profile of ver-
tically homogeneous IOPs found in the oligotrophic
waters of the Korea Strait [75], available from the
WOOD [52]. IOPs �a; b; bb�, taken from a data point
at 10m from an optical profile vertically homogenous
to 30 m, were used to compute mean (or “true”)
values L̄u and Ēd by a forward simulation using Eco-
Light. To carry out the Monte Carlo method, we
performed single-wavelength, single-depth uncon-
strained inversions using 10,000 uncorrelated, nor-
mally distributed radiometric samples N �L̄u; σ2Lu

�
and N �Ēd; σ2Ed

�. Sample variances σ2Lu
and σ2Ed

were
computed according to Eq. (22), based on an assump-
tion of ΔLu

� ΔEd
� 5% radiometric error. From the

Monte Carlo inversion results mi for each random
radiometric sample, we estimated the mean of each
retrieved IOP m̄ as well as the measurement error
covariance matrix

SMC
m � 1

10;000

X10;000
i�1

�mi − m̄��mi − m̄�T: (24)

Computed this way, the Monte Carlo estimate SMC
m

would normally include forward model parameter er-
rors, but since we used the same model parameters b
for both forward simulation of L̄u and Ēd as well as
for retrievals of IOPs, forwardmodel parameter error
can be disregarded. For the first-order error propaga-
tion method, the measurement error covariance
matrix Ssimε was populated with the same radiometric
errors σ2Lu

and σ2Ed
that were used as sample var-

iances in the Monte Carlo simulation. The inversion
was carried out using L̄u and Ēd as radiometric input,
and the retrieval Jacobian Km�m̂� was saved from
the final optimization step. The first-order estimate
of the measurement covariance matrix S1m �
GmSsimε GT

m was computed using Eq. (14). We ignored
retrieval noise covariance Sr in both model error
covariance estimates.

The Monte Carlo and first-order error propagation
results are presented in Fig. 1. The 2-D histogram of
the IOP retrievals mi from the Monte Carlo radio-
metric samples is an estimate of the joint probability

1 February 2013 / Vol. 52, No. 4 / APPLIED OPTICS 801



distribution p�apg; bg�. The resulting estimates of the
marginal probability distributions p�agp� and p�bb�
are represented by the projected 1-D histograms
on each IOP axis. These marginal distributions
passed a normality test, consistent with local linear-
ity of the RTE. This implies that the probability dis-
tribution of the radiometric quantities dmeas is
preserved by the inversion; alternative assumptions
about the probability distributions of radiometric er-
rors will similarly be reproduced in the probability
distribution of IOP estimates.

To compare uncertainty estimates, we used
Eq. (18) to plot the 95% joint confidence region for apg
and bb using each of the two covariance matrix esti-
mates SMC

m and S1m, shown in Fig. 1 as the blue and
red 95% confidence ellipses, respectively. The two
error ellipses are very close, and the small relative

error in estimated covariance matrices
‖SMC

m − S1m‖2∕‖SMC
m ‖2 � 11% justifies the use of the

first-order error propagation method. The resulting
univariate 95% confidence intervals differ by 5%
(apg) and 11% (bb). That the first-order estimates
of uncertainty are slightly larger than the Monte
Carlo estimates means that the first-order approach,
in this case, is conservative. The correlation co-
efficient for both covariance matrix estimates is
ρ � 0.86, also demonstrated by the positive slope
of the error ellipses’ major axis. This indicates that
uncertainties in IOPs found by our inversion ap-
proach are not independent. The resulting error
ellipses show that the range of uncertainty in the
two parameters retrieved jointly (area bounded by
the ellipse) is much less than that if estimation er-
rors were considered individually (area of a bounding
box around the ellipses).

In summary, we have found that we can quickly
and accurately estimate the 95% confidence intervals
of IOP estimates using the first-order error propaga-
tion method. The results compare well with Monte
Carlo simulation. The correct interpretation of the
confidence ellipse is that there is a 95% probability
that, when we construct the confidence ellipse,
this ellipse will contain the true mean of both IOP
estimates.

F. Forward Model Parameter Sensitivity Matrix Kb and
Covariance Matrix Sb

Forward model error covariance Sf is derived by cal-
culatingKb, the Jacobian that expresses the sensitiv-
ity of radiometric measurements to the additional
forward model parameters b, and estimating the for-
ward model parameter covariance matrix Sb. The
matrix Kb was obtained by evaluating the RTE using
EcoLight. Each forward model parameter was varied
individually over the range of values shown in
Table 2, with Lu and Ed computed at 5 m intervals
from 5 to 50 m. IOPs were selected from a known ver-
tically homogeneous profile at 490 nm from the 10 m
Korea Strait (Table 3). For each forward model pa-
rameter bi at each depth, a linear fit was computed
for Lu and Ed over the range of parameter; the result-
ing slope is the sensitivity coefficient ∂Lu�zk�∕∂bi and
∂Ed�zk�∕∂bi. The resulting sensitivities were found to
be reasonably linear with parameter range and non-
linear with depth. Therefore, the sensitivities at all
depths are retained, and Kb�z� is evaluated at the
depths used in the retrieval.
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Fig. 1. (Color online) Monte Carlo and first-order uncertainty
analysis results for a single radiometric inversion. (Center) Color
2-D histogram of IOP inversion results for 10,000 samples of
Lu�490� andEd�490�with added Gaussian random noise (see text).
Target IOPs for the mean Lu and Ed are shown as the black cross
at apg � 0.05 m−1, bb � 0.00585 m−1. The color bar indicates sam-
ple count in each 2-D color histogram bin. Uncertainty ellipses
show good agreement between Monte Carlo (blue) and first-order
(red) uncertainty ellipses. Gray 1-D histograms show projected
univariate (apg, bb) sample distributions, with fit of a normal
distribution to the projected data (blue line) and projected 95%
confidence intervals (dashed lines). The elliptical shape and orien-
tation of the 2-D histogram and resulting uncertainty ellipses
indicate positive correlation ρapg;bb � 0.86 between errors in the
absorption and backscattering coefficients, even though errors
in the input Lu, Ed data are uncorrelated.

Table 2. Additional Model Parameters Supplied to EcoLight Forward Model G�m;b�

Forward Model
Parameter Simulation bsim

Range Used to
Determine Kb Entry

Assumed Relative
Error for Sb Entry

Chl 0.01, 0.1, 1, 3, 10 mg m−3

θs 15° 0°–60° �0.42°
Cloud 30% 0.0–1.0 �0.2
U10 5 m s−1 0–12 m s−1 1.5 m s−1

b�λ� c�650� � bio-optical model 0.2–0.8 m−1 See Section 3.F
Es�λ� Simulated by RADTRAN [76,77] 0.8–1.2 × Es �0.075×Es
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The in-water light field is directly proportional to
the incident solar irradiance Es. As a result, the sen-
sitivity coefficients show that Lu and Ed are most
sensitive to changes in incident solar irradiance Es
and solar zenith angle is θs. We found the sensitivity
of the light field to wind is relatively small. The
sensitivity of the Lu and Ed to �35% errors in the
scattering coefficient is relatively small at depths
below 15 m.

The forward parameter error covariance matrix Sb
was constructed as diagonal matrix, implying there
is no correlation between errors in θs, cloud, U10, Es,
and scattering b:

Sb � diag�σ2θs ; σ2cloud; σ2U10
; σ2Es

; σ2b�: (25)

Estimates of all the diagonal entries except σ2b
were based on assigning an assumed relative error
as a 95% confidence interval of a normally distribu-
ted random variable (Table 2). For the scattering
coefficient b, multiwavelength measurements from
10 in situ IOP profiles from the NAB08 data (see
Section 6) were compared to estimates based on mea-
surements at a single wavelength (650 nm) and the
bio-optical model in Eq. (12) to produce residual
errors at eight wavelengths λi � 412, 440, 510,
532, 555, 650, and 676 nm. This yielded 245 residuals
at each wavelength from which the mean variance
σ̄2b�λi� was estimated via bootstrap analysis using
10,000 runs. Estimates of σ2b at other wavelengths
were found by linear interpolation of σ̄2b�λi�.
G. Estimation of Retrieval Noise Sr

Numerical methods such as those used here have
fast convergence properties but can oscillate around
the objective function minimum within the supplied
optimization tolerances (Table 1). Reducing toler-
ances in an attempt to increase numerical accuracy
can result in local, rather than global, convergence.
The Jacobian J�m� in our method is computed using
finite-difference techniques and is less precise than
that derived by analytical (typically linear) approxi-
mations to the RTE [42] or automatic differentiation
[78]. The relative strength of the bio-optical absorp-
tion signal becomes weak at longer wavelengths and
may be difficult to detect. In this section, without pre-
judice to the source of inversion errors, we seek to
establish the floor for noise generated by the inver-
sion method itself.

To assess the ability of our algorithm to retrieve
IOPs in the absence of measurement noise, natural
variability, and forward model parameter errors,

simulations were carried out to generate vertically
homogeneous IOPs and an associated in-water light
field. Then the inversion method was used to retrieve
those very same IOPs from the simulated light field.
Hyperspectral IOPsmsim�Chli� were computed based
on five chlorophyll concentrations Chl � 0.01, 0.1, 1,
3, 10 mg m−3 using EcoLight’s simple Case 1
chlorophyll-based bio-optical model [76]. Using these
IOPs, EcoLight was used to generate azimuthally
symmetric light fields Lsim

u �z; λ�; Esim
d �z; λ� at 10

depths from 5 to 90 m and wavelengths from 350
to 700 nm at 3.3 nm increments, with the scattering
phase function selected using bb∕b. The EcoLight for-
ward model used in the optimization was configured
identically for retrieval, using the same forward
model parameters bsim for light field dsim generation
and estimation of light fields dest.

The resulting spectral estimates for absorption apg
and backscattering bb are shown in Fig. 2. Spectral
relative error ψapg

�λ� increases as the relative contri-
bution of apg to pure water absorption aw declines.
This can be considered a signal detection problem
for the optimization procedure: the apg signal at
Chl � 0.01 mg m−3 varies from 6% to less than 0.2%
of the large pure water aw signal, i.e., there is an in-
herent lack of sensitivity of the light field at longer
visible wavelengths to optical constituents. In gener-
al, relative errors increase with decreasing Chl and
increase markedly when wavelengths greater than
500 nm are considered [Fig. 3(a)]. No significant bias
is evident in radiometric quantities or apg estimates.
The average absolute error in absorption jψ̄apg

j is 1%–
2% when considering wavelengths less than 500 nm;
for wavelengths greater than 500 nm, it varies from
1% to 10%, increasing with lower values of Chl. This
establishes the “noise floor” for our inversions of ab-
sorption. Spectral estimates for backscattering bb
show smaller retrieval errors under these ideal condi-
tions [Fig. 3(b)]. The average absolute error below
650 nm jψ̄bb j is ≈1% except for Chl � 0.1 between
350 and 500 nm. Above 650 nm, bb estimates exhibit
individual errors as large as 10% [see Fig. 2(d)]. We
estimate the retrieval noise covariance matrix Sr by
assigning the square of RMS errors across two wave-
bands (<500 nm, ≥500 nm) for each value of Chl and
assigning them as the diagonal elements:

Sr�Chl;Δλi��
�
ε
apg

RMS�Chl;Δλi�2 0

0 εbbRMS�Chl;Δλi�2
�
; (26)

Table 3. Radiometric and IOP Data Points Used for Simulations

λ
(nm)

z
(m)

θs
(°)

Cloud
(%)

U10

�ms−1�
Es (μW

cm−2 nm−1)
Lu (μW

cm−2 sr−1 nm−1)
Ed (μW

cm−2 nm−1)
apg

�m−1�
bb

�m−1�
bpg
�m−1� Source

490 20 44 30 7 63.5 0.00384 7.50 0.0686 0.0046 0.389 NAB Sta. 34
650 20 44 30 7 49.1 3.29 × 10−4 0.0159 0.0114 0.0021 0.424 NAB Sta. 34
480 20 44 0 5 120 0.617 54.7 0.050 0.00585 0.45 ACE-103,

Korea Strait,
Cast 30 [52]
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where Δλ1 represents <500 nm and Δλ2 represents
≥500 nm; the RMS error values are given in Table 4.

Since identical EcoLight Raman scattering and
chlorophyll fluorescence models were used to gener-
ate the light field and carryout the inversions, we at-
tribute little error in this exercise to uncertainty in
estimating inelastic scattering. Indeed, the chloro-
phyll absorption peaks are reproduced at all Chl val-
ues in Fig. 2(a). However, we expect at wavelengths
greater than 500 nm that apg retrievals will be extre-
mely sensitive to estimation of the true in-water
light field.

4. Existence, Uniqueness, and Stability of IOP
Estimates

A. Theory

The radiometric inverse problem is well posed, in the
Hadamard sense [79], if the entire radiance distribu-
tion and its depth derivative are known [80]. In this
case, a complete IOP solution (absorption coefficient,
VSF and its derived quantities, the scattering coeffi-
cient b, and backscattering coefficient bb) exists, is
unique, and is stable. When less than the full radi-
ance distribution is available, we should expect one
or more of the Hadamard conditions to fail. Indeed,
Sydor et al. [81] as well as Defoin-Platel and Chami
[82] have shown that several combinations of IOPs
(a, bb) can reproduce the same subsurface reflectance

spectrum Rrs � Lu∕Ed; i.e., the inverse solution for
this problem is not unique and limits the precision
of IOP estimates. Observational and methodological
errors (e.g., uncertainty in radiometric measure-
ments and spectral matching criterion, respectively)
may also contribute to ambiguity in the inversion of
remote sensing ratio for IOPs [83]. Since we measure
the irradiance distribution at only one orientation
(Ed) and the radiance at only one direction (Lu), we
cannot recover the radiance distribution, the pro-
blem is ill posed, and one or more of the Hadamard
conditions (existence, uniqueness, stability) will not
be met. Let us consider the Hadamard conditions in
turn for our problem.

B. Existence

Do we have a model that closely fits the data? As dis-
cussed in [22,82], the RTE itself is well posed and is a
result of a phenomenological theory that adequately
describes our macroscopic observations of light in
water. We expect that at least one set of IOPs will
come adequately close to the solution, within the lim-
itations of the RTE implementation [84]. Our model,
EcoLight, may be inadequate because additional
model parameters b may not be adequately known.
By creating sensitivity studies of solutions with
respect to these parameters b, we can explore the
limitations of model uncertainties with respect to
IOP estimates m (see Section 5).
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Fig. 2. (Color online) Hyperspectral (3.3 nm) retrievals of (a) absorption apg�λ� and (b) backscattering bb�λ� from simulated radiometric
data for Chl � 0.01, 0.1, 1, 3, 10 mgm−3. Black dotted curves show true values, colored curves show retrievals. (c) Relative error ψapg

in
absorption retrievals. Chl � 0.01 shown as blue dotted curve. (d) Relative error ψbb in backscattering retrievals.
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C. Uniqueness (Elastic Scattering)

Are inverse solutions from our method unique? To
explore this semiquantitatively, we examined two
NAB08 data points (see Section 6 and Table 3) repre-
senting measurements of Lu, Ed, a, bb, and b inter-
polated to 490 and 650 nm, both 20 m deep. A 3-D
volume of IOP values was created, representing
Na×Nbb ×Nb � 41 × 41 × 41 � 68; 921 IOP combina-
tions centered about the known data point. Forward
RTE simulations were computed using EcoLight
for each IOP value, yielding corresponding radio-
metric volumes for Lu and Ed. As shown in Fig. 4,
isosurfaces were computed for constant values Lu

(blue) and Ed (red) within the 3-D IOP volume, for
λ1 � 490 nm and λ2 � 650 nm. A 3-D isosurface re-
presents the subset of IOPs within the volume that
give rise to the specified values of Lu and Ed. At
490 nm, the two isosurfaces and their intersection
(shown in yellow) lie nearly parallel to the bpg axis,
indicating the solution for the scattering coefficient
bpg is not unique; any value of bpg on the yellow line
yields the specified Lu and Ed, values. The isosur-
faces demonstrate that apg and bb should be retrieva-
ble from simultaneous measurements of Lu and Ed,
but scattering coefficient bpg cannot be retrieved.

If we reduce the measurement space from Lu and
Ed to one AOP, RL � Lu∕Ed, the effect on uniqueness
of the inverse problem can be easily demonstrated by
evaluating an objective function based on reflectance
alone, i.e., by replacing Eq. (9) with

0.01 0.1 1.0 3.0 10.0
0

0.5

1

1.5

2

2.5

Chlorophyll  (mg m−3)

350 − 700 nm
≤ 500 nm
> 500 nm

0.01 0.1 1.0 3.0 10.0
0

2

4

6

8

10

Chlorophyll  (mg m−3)

350−700 nm
≤ 500 nm
> 500 nm

| ψ
a

pg
|  

(%
)

|ψ
b b

|  
(%

)

(a)

(b)

Fig. 3. (Color online) Absolute average error for hyperspectral
(3.3 nm) retrievals of (a) absorption jψ̄apg j and (b) backscattering
jψ̄bb j from simulated radiometric data.

Table 4. Summary Retrieval Statistics for Simulated Light Fields

Chl (mg m−3) Waveband (nm) ε
apg
RMS �m−1� εbbRMS �m−1�

0.01 <500 6.90 × 10−5 1.14 × 10−4

0.01 >500 4.10 × 10−5 2.00 × 10−6

0.1 <500 2.75 × 10−4 3.72 × 10−4

0.1 >500 1.92 × 10−4 1.30 × 10−5

1 <500 4.30 × 10−4 5.30 × 10−5

1 >500 6.94 × 10−4 1.03 × 10−4

3 <500 9.32 × 10−4 1.01 × 10−4

3 >500 1.13 × 10−3 1.83 × 10−4

10 <500 2.02 × 10−3 2.20 × 10−4

10 >500 1.37 × 10−3 2.37 × 10−4

Fig. 4. Isosurfaces for Lu (blue) and Ed (red) at 490 and 650 nm,
representing a subset of the domain of IOPs (apg, bb, bpg) that can
produce given values of Lu or Ed. The yellow cross identifies the
true value of the IOP triplet for the given Lu and Ed. Notice
how isosurfaces at 650 nm have folded closer together than at
490 nm. (a) Isosurface intersection (yellow lines) indicates the
range of possible inverse solutions when given both Lu and Ed, in-
dicating that b is completely ambiguous. (b) The projected dashed
lines show the range of uncertainty in the estimated IOPs apg and
bb if no value of b is specified.
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fR�m� �

2
664

log10�Rmeas
L �z1�� − log10�Rest

L �z1��
..
.

log10�Rmeas
L �zN�� − log10�Rest

L �zN��

3
775; (27)

and computing FR�m� � fR�m�TfR�m� over the same
range of a and bb as above. In Fig. 5, this reflectance-
based objective function is compared to F�m� com-
puted using Eq. (9) with 50% error in b. (See
Media 1 and 2 for an animation of each surface over
the range b � 0.1 to 1.0.) The objective function F�m�
using Lu and Ed [Fig. 5(a)] always has a single mini-
mum (i.e., a unique solution), while the objective
function FR�m� using RL [Fig. 5(b)] always has multi-
ple nearby local minima; the problem has become ill
posed again. This shows the value of basing retrie-
vals on calibrated Lu and Ed spectra.

We conclude that (1) Lu and Ed provide distinct in-
formation regarding the radiance distribution, offer-
ing a nearly unique inverse solution for a and bb, and
(2) if the scattering coefficient bpg can be bounded,
even with substantial uncertainty, then we can re-
strict solutions to a smaller section along the line of
intersection, yielding a smaller IOP subspace and
less uncertainty in apg and bb.

D. Uniqueness (Inelastic Scattering)

At 650 nm, Raman scattered photons contribute to
the light field. In Fig. 4, we observe that the isosur-
faces at λ2 � 650 nm are folded closer together than
at 490 nm, resolving a smaller subspace of IOPs. In
the limit of an isotropic light field, the two surfaces
merge with no unique intersection in the apg–bb
plane. We hypothesize that the light field is more iso-
tropic at 650 nm than at 480 nm due to a greater
number of photons that are inelastically scattered
in a nearly isotropic manner. Figure 6 demonstrates
this phenomenon, based on HydroLight simulations
of the full radiance distribution using a chlorophyll-
based bio-optical model. As we expect, at shorter
wavelengths (400, 500 nm), the radiance distribution
broadens slightly with depth until an asymptotic

radiance distribution is achieved; the light field is
still dominated by downward travelling photons even
at 50 m. At longer wavelengths (600, 700 nm), where
most of the solar photons have been absorbed in the
first 5 m of water, the light field becomes dominated
by photons generated by inelastic scattering. At
20 m, the radiance distribution at 700 nm becomes
nearly isotropic. Note that, even if the inelastic
scattering is isotropic (e.g., chlorophyll fluorescence
or Raman scattering), the radiance is still greater

Fig. 5. (Color online) Single-frame excerpts from animations of two objective function surfaces over a range of scattering b from 0.1 to
1.0m−1. (a) Objective function surface F�Lu;Ed� used in this work shows a single minimum (Media 1). (b) Objective function surface
F�RL� � �Rmeas

L − Rest
L �∕Rmeas

L shows multiple local minima (Media 2).
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Fig. 6. (Color online) Shape of normalized radiance distribution
L�θv; λ� in the plane of the sun as a function of viewing direction θv
and wavelength λ at six depths, as computed by HydroLight for
vertically homogeneous waters, using a chlorophyll based model
with Chl � 1 mgm−3, θs � 50°, U10 � 5 ms−1. Note broadening
of shape at all wavelengths and nearly isotropic shape for
700 nm at 30 m.
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looking upward than downward because the source
strength is stronger above than below the selected
depth. At 600–700 nm, the radiance distribution
shows significant broadening at 40 m. As shown
above, as this broadening occurs, the isosurfaces be-
gin to merge and the radiometric inversion problem
becomesmore ill posed, reducing to that of nearly one
measurement trying to resolve three IOPs. This ex-
ercise demonstrates that unique spatial information
provided by Lu and Ed is lost at wavelengths where
inelastic scattering contributes to the light field, lim-
iting our ability to fully resolve two IOPs. As will be
seen below, a dramatic increase in the IOP retrieval
error occurs at wavelengths where inelastic scatter-
ing is important.

E. Stability

Is the inverse solution stable? Do our IOP estimates
change dramatically when there is (a) a slight change
in the optimization starting point or (b) a small
change inmeasured radiometric quantities?We shall
consider each type of change in turn. To study the
effect of the optimization starting point, we again
performed inversions for Korea Strait data points
(Table 3) and varied the starting point m0 on a grid
surrounding the known solution for apg and bb; scat-
tering b was fixed at 0.225 m−1, representing a 50%
relative error. The absolute error jψapg

j in the result-
ing estimate of apg was computed at each grid
point and mapped in Fig. 7 (left). All the starting
points converge near the true value �apg; bg� �
�0.05; 0.00585�m−1, (shown with cross symbol), with
absolute error shown by the contour region color, ran-
ging from very small (1×10−6%) to substantial (10%).

Notice that starting points in the lower-left corner
where both coordinates (apg, bb) are smaller than
the true value have the lowest average absolute
error. Since it is not immediately obvious why this
should be so, we also computed the value of the ob-
jective function F�m� from Eqs. (8) and (9) as well as
its gradient ∇F�m�, shown in Fig. 7 (right). The vec-
tors in this figure illustrate magnitude and direction
of objective function gradient. Of course, the mini-
mum of F�m� is found at the coordinates of the true
value of apg, and bb (cross symbol) and the gradient
vectors point downhill in the direction of the true va-
lue. Starting points where both coordinates are in the
lower-left corner have the largest gradients, i.e., have
the largest “push” to the objective function mini-
mum, reliably achieving estimates with the lowest
absolute error. These results also show that we need
very little a priori information about the true value;
starting at the smallest coordinate �apg; bb� �
�0.01; 0.001�m−1 does just as well as any other esti-
mate in that region. We also found that starting
points slightly larger than the true value (within
10%) also achieved acceptably small errors in the
apg estimate. We estimate that maximum uncer-
tainty of IOP retrievals based on the choice of start-
ing point is less than 1%.

While we more fully consider the sensitivity of es-
timated IOPs to radiometric measurements and for-
ward model parameters in Section 5, we can quickly
assess the stability of the final estimate by consider-
ing the condition number of the Jacobian at our final
estimate, J�m̂�. Recall from Eq. (10) that J�m̂� repre-
sents a locally linear solution to the RTE. The condi-
tion number of J�m̂� [or equivalently Km�m̂�] is a

Fig. 7. (Color online) Stability of optimization starting points m0 � �apg; bb; bpg� with bpg fixed at 0.225 m−1 (50% error). (Left) Contours
show influence of optimization starting point m0 on absolute error in absorption retrieval jψ̄apg

j at 480 nm. Starting points converge near
the true value �apg; bb� � �0.05;0.00585�m−1 (shown with black cross), with average absolute error shown by the contour region color bar.
Dots indicate the computation grid, decimated by a factor of 4 for clarity. (Right) Contour plot of objective function F�m0� at the same grid
points. Color indicates value of the objective function F�m�. Vectors illustrate magnitude and direction of objective function gradient
∇F�m0�. Notice that starting points in the lower-left corner where both coordinates are smaller than the true value have the lowest
absolute error (left plot) and largest gradients (right plot).
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scalar measure of the sensitivity of the estimated
parameters m̂ (the retrieved IOPs) to changes in
the measured data dmeas (Lu, Ed) [63]. For the inverse
problem where we attempt to retrieve all three IOPs
m � �a; bb; b�T , the condition number of J�m̂� is
O�1010�, indicating that the locally linear solution
to the RTE behaves badly, i.e., is ill conditioned. In
contrast, for the reduced problem where m � �a; bb�T
and scattering b is supplied as a forward model
parameter, the condition number of J�m̂� is O�101�,
indicating that the reduced problem is stable and
locally continuous. Therefore, by transforming our
radiometric inverse problem from a three-parameter
estimation to a two-parameter estimation problem,
the problem is much better posed.

5. IOP Sensitivity Analysis

An important source of errors in our inversion cal-
culations arises from uncertainty in radiometric
quantities dmeas and additional model parameters b.
Uncertainty in additional model parameters arises
from the observations, instruments, or models that
supply latitude, longitude, time, wind speed, cloud
cover, and incident solar irradiance. It is important
to know how changes in these quantities can affect
estimates of IOPs m.

A. Radiometric Sensitivity

The influence of radiometric measurement uncer-
tainty on IOP estimation uncertainty can be ex-
pressed by the “sensitivity coefficient,” defined as the
ratio of the relative standard deviation of an IOP
estimate � aest

pg or bestb to the relative standard devia-
tion of the uncertain parameter

SIOP;R � σIOP∕IOP
σR∕R̄

; (28)

where R is Lu, Ed, or Es [85]. This measure is useful
in that it expresses the fractional change in an
estimated IOP to a given fractional change in a radio-
metric quantity. For radiometric sensitivity studies,
10,000 samples of each radiometric variable R � Lu,
Ed, or Es were generated as uncorrelated, normally
distributed random variables N �R̄; σ2R� for 5%, 10%,
20%, and 50% radiometric error for a light field (Lu,
Ed) at 10 m, where uncertainty σR is estimated from
relative error as in Eq. (22). The mean (or true) va-
lues for the IOPs were based on Korea Strait data
(Table 3); forward simulations were used to establish
the true values for Lu andEd. To simulate a variety of
independent radiometric errors in the in-water sen-
sors, Monte Carlo inversions of Lu and Ed were car-
ried out together: random combinations of Lu and Ed
were produced for each inversion trial with constant
values for all additional forwardmodel parameters b,
including Es. Monte Carlo inversions for Es were car-
ried out for constant values of Lu and Ed to simulate
radiometric errors in a surface-mounted downwel-
ling solar irradiance sensor or uncertainty in Es es-
timates from radiative transfer models of incoming

solar radiation, when a surface-mounted Es sensor
is not available.

The inversion results for radiometric variables are
shown inFig. 8 for 10% radiometric error. At 10m, the
sensitivity coefficients of apg retrievals Sapg;Lu

, Sapg;Ed
,

Sapg;Es
are ≈1 for radiometric errors of 5%–30% in Lu,

Ed, or Es. Thus a 5% radiometric uncertainty trans-
lates into 5% apg uncertainty. The sensitivity co-
efficients of bb retrievals Sbb;Lu

Sbb;Ed
at 10 m are

approximately double (1.78–2.6) those for apg, while
those for incoming solar radiation Sbb;Es

are also ≈1.
Sensitivity coefficients for apg and bb are constant
with increasing radiometric error, consistent with a
locally linear inverse solution m̂ to the RTE for apg

and bb.
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B. Forward Model Parameter Sensitivity

A similar Monte Carlo study was carried out to
assess the sensitivity of retrieved IOPs to changes
to forward model parameters. One thousand samples
were computed and Monte Carlo inversions carried
out separately for each parameter with θs �
N�45°; �4.5°�2�, cloud � N�50%; �30%�2�, U10 �
N�7 ms−1; �3 ms−1�2�, and b � U�0.2; 0.8�m−1 using
the same 10 m radiometric data used for other
sensitivity analyses.

The relationships between IOPs and additional
model parameters θs, cloud, and U10 are reasonably
linear [Figs. 9(a)–9(c)] over the range of simulation,
while for the scattering coefficient b, the relationship
is nonlinear [Fig. 9(d)]. As withKb, IOP estimates are
most sensitive to uncertainty in solar zenith angle θs
[Fig. 9(a)] and incident solar irradiance Es [Fig. 9(e)],
although, as expected, bb estimates are somewhat
sensitive to errors in scattering b. The study also con-
firms the general understanding in ocean optics that
uncertainty in scattering b has little influence on the
ability to retrieve quality estimates of absorption apg
[Fig. 9(d)].

For the purposes of computing sensitivity coeffi-
cients for these additional model parameters and
comparing them to the radiometric sensitivity co-
efficients, we calculated simple linear fits to IOP-
parameter relationships over parameter regions
for which the sensitivity is significant, except a quad-
ratic fit was computed for scattering b. The sensitiv-
ity coefficient is computed as

SIOP;bi �
dIOP
dbi

b̄i
IOP

; (29)

where IOP � apg or bb and additional parameter
bi � θs, cloud, U10, or scattering b. (The sensitivity
to Es was considered in Section 5.A.) The
dIOP∕dbi term is simply the slope of linear fit over
the selected region, and the b̄i∕IOP term is the ratio
of the midpoints of the selected region. The resulting
sensitivity coefficients range in absolute value from
0.0012 to 0.34. Notice that all of the sensitivity coef-
ficients for the selected ranges of additional model
parameters are small compared to the radiometric
sensitivity coefficients, which range from 0.22 to
3.36. The largest sensitivity coefficient is Sapg;θs �
−0.34; i.e., a 10% error in the solar zenith angle
can lead to a 3.4% uncertainty in apg. With global po-
sitioning system coordinates and calibrated clocks,
even autonomous instruments are able to minimize
solar zenith angle estimation errors, so we expect
IOP uncertainty from θs to be negligible despite
the large sensitivity. It is comparatively difficult to
estimate cloud cover accurately from manual obser-
vations or from 1 km resolution satellite products
[86,87]. With Sapg;cloud � 0.065, a 30% error in the es-
timation of cloud fraction >0.25 can yield an addi-
tional 2% uncertainty in the estimation of apg.
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Average wind speed sensitivity coefficients Sapg;U10
,

Sbb;U10
are quite small (≈0.001) over the range of Eco-

Light sea surface files (U10 � 0–15 ms−1). The sensi-
tivity of retrieved apg to changes is dependent on the
modeled value of the scattering coefficient b; values
of Sapg

�b� are negative, ranging from −0.03 to −0.1; an
overestimate of b as a forward model parameter will
lead to a small underestimate in absorption. Since
spectral b is derived from a single-wavelength mea-
surement of attenuation, this also implies that the
sensitivity of apg to the choice of spectral slope for at-
tenuation, γ in Eq. (12), is small. The range of sensi-
tivity of estimates of bb to the value of the scattering
coefficient b, Sbb�b� was larger, ranging from −0.1 to
−0.33. Errors in the scattering coefficient b also cause
errors in the selection of the scattering phase func-
tion β, since EcoLight selects the Fournier–Forand
phase function based on backscattering ratio bbp∕b.

6. NAB08 Data Set

We tested our algorithm’s performance using depth
profiles of Lu�z�, Ed�z�, a�z�, and bb�z� from a calibra-
tion campaign carried out as part of the NAB08 in
support of long-term (51 days) autonomous physical,
optical, and radiometric measurements from a
Lagrangian float [11,49]. The data were obtained
at six process cruise stations during the spring bloom
of May 2008.

Temperature, salinity, pressure, and bio-optical
profiles to approximately 80m depth were performed
during a cruise on the R/V Knorr from 1 to 22 May
2008. A Satlantic Profiler II free-falling optical
profiler was used to measure downward spectral ir-
radiance, Ed�z; λ�, and upward spectral radiance,
Lu�z; λ� at 3.3 nm increments from 350 to 800 nm
with a spectral accuracy of 0.3 nm and a spectral
bandwidth of 10 nm. Profiles were taken within
1.5 h of local noon. Hyperspectral radiometric
data were processed with ProSoft 8-RC5 software

(Satlantic, Inc.) to determine Lu�z; λ� and Ed�z; λ�.
Measured radiometric quantities were not corrected
for out-of-band stray light or thermal responsivity;
the water column temperature gradient was small
(<1°C in the top 50 m).

In situ IOPs were obtained within 15 min of radio-
metric measurements. In two separate casts, a WET
Labs AC-9 absorption and scattering meter mea-
sured total absorption aac−9

t �z; λ� and 0.2 μm filtered
water absorption aac−9

g �z; λ�; a WET Labs BB2F back-
scattering meter measured bb�z� at 470 and 700 nm;
a Sea-Bird Electronics SBE25 CTD measured tem-
perature, salinity, and pressure. The instruments
were factory calibrated prior to field deployment.
Manufacturer-recommended protocols were used to
track instrument calibration during the process
cruise, with the precision of the AC-9 data estimated
to be �0.01 m−1. Absorption data were subsequently
corrected for temperature and salinity [88], and the
absorption coefficient was corrected for scattering
using the wavelength-dependent method [89]. The
precision of the backscattering data is no better than
0.0005 m−1, based on NAB08 backscattering meter
intercalibration [90]. Absorption and backscattering
data were binned into 1 m intervals and then aver-
aged within each bin. Measured IOPs were typically
homogeneous from 0 to 30 m (e.g., Fig. 10). IOP
estimates m̂ were compared to IOPs measured by
the AC-9 and the BB2F; IOP measurements were
vertically averaged over the same depths as radio-
metric measurements. At three stations, water sam-
ples were collected using the ship’s CTD rosette
within an hour of the optical casts, and subsequently
ship-board measurements of spectrophotometric
filter pad absorption were carried out with ∼1 nm re-
solution [91]. For comparison to apg�λ� retrieved from
radiometry, AC-9 and spectrophotometric mea-
surements of CDOM absorption ag�λ� were added
to spectrophotometric measurements of particulate
absorption, i.e., aspec

pg �λ� � aspec
p �λ� � ag�λ�.

0 0.1 0.2 0.3 0.4 0.5 0.6

0

10

20

30

40

50

60

70

80

D
ep

th
 (

m
)

0.001 0.002 0.003 0.004 0.005 0.006 0.007

a(488)
bb(470)

bb(700)

c(488)

10
−4

10
−2

10
0

10
2

Lu(488)

Ed(488)

Es(488)

a, c (m-1)

bb  (m
-1) Lu (µW cm-2 sr -1 nm-1), Ed, Es (µW cm-2 nm-1)
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7. NAB08 Results

We applied our radiometric inversion methodology to
the NAB08 data set. Estimates of chlorophyll con-
centration derived from the BB2F chlorophyll
fluorometer were supplied to EcoLight to estimate
wavelength-dependent chlorophyll fluorescence.
Scattering b is derived from a single-wavelength
measurement of attenuation c�650� as described pre-
viously. Other forward model parameters and solu-
tion depths for each station are shown in Table 5.

Comparison of radiometric measurements and es-
timates across all wavelengths and depths at Station
34 are shown in Fig. 11. The results show that the
optimization procedure does well matching the mea-
sured spectra between 350 and 575 nm but has dif-
ficulty in matching the measured light field beyond
575 nm at depths below 16 m for Ed [Fig. 11(a)] and
at any depth for Lu [Fig. 11(b)]. Radiometric matches,
other than Station 44, show less than 1% bias in Lu
and up to 5% bias forEd. Average absolute error jψ̄ j in
Lu and Ed are less than 6% and 9%, respectively,
within the 350–575 nm region. Average relative error
and absolute error in light field estimates are high at
Station 44, indicating a large source estimation error,
possibly ship shadowing during the radiometric cast.

The IOP retrieval results for all six NAB08 sta-
tions are shown in Fig. 12 (absorption) and Fig. 13
(backscattering). The gray-shaded areas around the
mean IOP estimates (blue dots) represent the 95%
confidence interval based on the error analysis pre-
sented in Section 3; the varying widths from wave-
length to wavelength and station to station are
due to wavelength-dependent measurement and for-
ward model parameter errors as well as lack of strict
vertical homogeneity of IOPs at some stations. In
general, apg and bbp retrievals below wavelengths
with significant contributions from inelastic scatter-
ing were very good, and retrievals above ≈575 nm
were poor. Between 575 and 650 nm, the optimiza-
tion procedure consistently drives absorption apg to
zero and increases particulate backscattering bbp in
an attempt to match the measured light field. At
these wavelengths, EcoLight often generates more
light than was measured, perhaps because the as-
sumed quantum efficiency of chlorophyll fluores-
cence was too high. Above 650 nm, inelastically
scattered light from chlorophyll fluorescence gener-
ates a larger portion of the light field at themeasured
depths. While EcoLight generates inelastically scat-
tered light corresponding to chlorophyll fluorescence
from 650 to 700 nm, nevertheless absorption is over-
estimated and particulate backscattering is underes-
timated. As a result, we will disregard the absorption
and backscattering retrievals above 575 nm; un-
certainty estimates in these regions should also be
disregarded.

Absorption estimates compare well to AC-9 ab-
sorption measurements at wavelengths less than or
equal to 575 nm, with an average absolute error jψ̄ j of
2%–4%, except at Station 44, where jψ̄ j is almost 8%.

Table 5. Forward Model Parameters Used for NAB08 Stations

Station z (m) N θs (°) Cloud (%) U10 �ms−1� Chl �mgm−3�
21 5–25 11 57 30 5 4.6
34 8–28 11 44 30 7 0.7
44 5–17 7 57 40 9 5.7
80 5–31 19 43 50 3 1.6
94 5–31 19 58 80 5 1.1
128 6–28 12 43 10 13 1.1
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The absorption estimates are biased 3%–5% low at
all stations but one (Station 80) relative to AC-9 mea-
surements. Analysis of the t-statistic for comparing
two independent sample means (our estimate versus
the depth-averaged AC-9 measurement) indicates
that the overlapping confidence intervals are statis-
tically significant [73]. For three stations (34, 94, and
128), spectrophotometric absorption measurements
aspec
pg are also shown in Fig. 12. Note that the scan

for each filter pad rotation is shown as a visual as-
sessment of the variability in spectrophotometric
absorption measurements; between 400 and 550 nm,
the variability in spectrophotometric measurements
is comparable to the standard deviation of absorption
estimates derived from radiometry. (Remember that
the gray contours in Fig. 12 indicate 95% confidence
intervals, which are roughly 2 standard deviations
wide about the mean estimate.) The average RMS er-
ror between radiometric absorption estimates and
spectrophotometric absorption measurements is
less than 0.01 m−1 at Station 34 and ≈0.003 m−1 at
Stations 94 and 128. Matchups with spectrophoto-
metric aspec

pg measurements interpolated to radio-
metric measurement wavelengths are shown in
Fig. 14 and confirm the successful estimation of
hyperspectral absorption from in-water radiometry
at wavelengths without source contributions from
inelastic scattering.

We have no means to directly measure hyperspec-
tral backscattering; in fact no such instrumentation
exists. The only validations of the NAB08 particulate
backscattering estimates are BB2F measurements
at 470 and 700 nm (Fig. 13); matchups are shown
in Fig. 14(b). In general, particulate backscattering
bbp is underestimated at 470 nm; the overlapping
confidence intervals for bbp�470� at stations 80, 94,
and 128 are statistically significant. Since the bbp re-
trievals are not accurate above 575 nm, the compar-
ison of retrievals to the 700 nmmeasurements can be
disregarded. However, the observed decreasing trend
of bbp measurements at 470 and 700 nm are consis-
tent with the decreasing trend of bbp retrievals from
350 to 575 nm.

Detailed error budgets for absorption and back-
scattering estimates for NAB08 Station 34 are shown
in Fig. 15. The absorption error budget is dominated
by forward model parameter error [red curve in
Fig. 15(e)]; as we saw in Section 5, absorption esti-
mates are most sensitive to incident solar irradiance
Es. Error ellipses generally show significant positive
correlation between errors in apg and bb below
500 nm and little correlation between 500 and
575 nm. Beyond 575 nm at Station 34, retrievals
have failed, and reversal in the orientation of the
error ellipses may be used as a diagnostic for those
failed retrievals. The backscattering error budget is
more spectrally variable: below 450 nm, the error
budget is dominated by forward model parameter er-
ror, while above 450 nm, radiometric measurement
error dominates. Backscattering error ellipses also
show reversed correlation for failed backscattering

retrievals above ≈555 nm. An unquantified source
of error at each station is oceanic variability; there
may have been advection and/or changes in ship po-
sition during sequential profiling for radiometry,
IOPs, and water samples.

8. Discussion

In this paper, we have demonstrated that hyperspec-
tral estimates of absorption and backscattering can
be computed from hyperspectral radiometry, along
with an error budget and confidence intervals based
on estimates of errors in radiometry and additional
forward model parameters. We have also shown
that estimation of IOPs from radiometry is a mixed-
determined problem [92]; i.e., absorption and back-
scattering may be resolved, but total scattering
may not and is ambiguous. A variety of strategies
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have been proposed by Defoin-Platel and Chami to
“tackle the ambiguity problem” [82], and we applied
some of them here. First, we followed their enrich-
ment strategy, transforming the ill-posed problem
into a well-posed problem by (a) retaining the dis-
tinct information about the light field provided by
both Lu and Ed in our spectral matching criterion
and (b) constraining the optimization with a single
attenuation measurement c�650� and a bio-optical
model. Second, following their divide-and-conquer
strategy, we restricted the solution domain to realis-
tic natural values of IOPs. Third, with a nod to their
integration strategy, we studied the propagation of
probability distributions of simulated radiometric
data through our inverse algorithm to explore the
linearity of our algorithm near the estimated IOPs.

A formal error analysis for IOP retrieval was
carried out. The error was separated into three
components: (1) random error in our radiometric
measurements, (2) model error due to uncertain for-
ward model parameters, and (3) noise introduced by
the inversion process. Each of the components was
evaluated using straightforward a priori model si-
mulation. We found that IOP estimates were largely
insensitive to errors in wind speed, but errors in solar
zenith angle θs and radiometry (Lu, Ed, Es) do matter
and are a large portion of the error budgets. Our suc-
cess therefore relies on having calibrated radiometric
measurements and sufficiently precise estimates of
position and time. The resulting errors in our esti-
mates of absorption are only mildly sensitive to

uncertainty in the scattering estimate derived from
the single attenuation measurement.

The comparison of spectrophotometric and AC-9
in situmeasurements of particulate plus dissolved ab-
sorption apg�λ� demonstrates that our retrieval meth-
od is valid between 350 and 575 nm. Below 575 nm,
we can retrieve absorption with 95% confidence to
approximately �0.01 m−1, similar to the uncertainty
of AC-9 measurements (�0.01 m−1). At very low
levels of absorption O�10−3� m−1, retrieval noise in-
troduced by our algorithm noticeably increases to
2%–3% of the IOP estimate. At wavelengths greater
than 575 nm, absorption retrievals fail because the
apg�λ� signal becomes too weak for this method to de-
tect in the presence of the pure water absorption that
is 2–3 orders of magnitude larger. The failed absorp-
tion retrievals in turn cause complex artifacts in the
bb�λ� between 575 and 650 nm and underestimates
bb�λ� from 650 to 700 nm. Another cause for the failed
retrievals at wavelengths beyond 575 nm is that the
distinct information provided by Lu and Ed is lost as
the light field becomes dominated by inelastic scatter-
ing, resulting in an increasingly isotropic light field,
especially at depths below 30 m. (Remember the fold-
ing of the Lu and Ed isosurfaces at 650 nm in Fig. 4.)
In other words, 2° of freedom start to collapse to 1°
of freedom, creating an ill-posed problem that is
both computationally unstable and without guaran-
tee of a unique solution in this spectral region. Below
these wavelengths, retaining Lu and Ed as separate
measurements creates a well-posed problem (two
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parameters, two unknowns) at the expense of
requiring calibrated radiometric measurements.

9. Conclusion

We conclude that hyperspectral retrievals of absorp-
tion and backscattering are possible when upwelling
radiance Lu and downwelling irradiance Ed mea-
surements are integrated with a single-wavelength
measurement of attenuation c. We have shown that
such retrievals are unambiguous, unlike retrievals
from reflectance, which are inherently ambiguous.
Retrievals fail at wavelengths and depths where the
pure water absorption signal dominates and inelastic
scattering reduces the distinct spatial information
otherwise provided by Lu and Ed. Since low-power,
hyperspectral radiometers and single-wavelength at-
tenuation meters are commercially available, this
approach could be widely deployed on autonomous
and Lagrangian platforms.
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