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Abstract

Science, resource management, and defense need algorithms capable of using airborne or satellite imagery to accu-
rately map bathymetry, water quality, and substrate composition in optically shallow waters. Although a variety of inver-
sion algorithms are available, there has been limited assessment of performance and no work has been published com-
paring their accuracy and efficiency. This paper compares the absolute and relative accuracies and computational effi-
ciencies of one empirical and five radiative-transfer-based published approaches applied to coastal sites at Lee Stocking
Island in the Bahamas and Moreton Bay in eastern Australia. These sites have published airborne hyperspectral data and
field data. The assessment showed that (1) radiative-transfer-based methods were more accurate than the empirical
approach for bathymetric retrieval, and the accuracies and processing times were inversely related to the complexity of
the models used; (2) all inversion methods provided moder-
ately accurate retrievals of bathymetry, water column inher-
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optically deep waters, there is no measurable water leaving
radiance signal from the substratum. Mapping these optically
shallow environments provides essential information in the
form of maps of bathymetry, water quality and bottom prop-
erties, as needed for science, resource management, and
defense operations (Green et al. 2000; Phinn et al. 2005).
Remote sensing offers a practical means of regularly mapping
and monitoring these environments and parameters at spatial
and temporal scales applicable to science, resource manage-
ment, and defense activities. A number of methods currently
exist to map bathymetry, water quality, and benthic/substrate
composition and their properties from remotely sensed data.
However, there is no guidance on which method is most
appropriate or accurate for the range of conditions encoun-
tered in optically shallow waters This work adds significantly
to the IOCCG (2006) evaluation of IOP retrieval algorithms by
demonstrating relative performance for bathymetric and bot-
tom reflectance in addition to IOP retrieval.

The potential to estimate water column depth, constituents
of the water column, and benthic cover types over large areas
and/or in remote locations from remote sensing data have been
discussed for over two decades, with significant attention paid to
empirical approaches (Clark et al. 1987; Lyzenga 1981; Philpot
1989) that may be location- or data-limited (Lee et al. 2001;
Stumpf 1987). Semi-analytical and radiative transfer-based for-
ward models and semi-analytical (SA) or look-up table based
spectrum matching (LUT) inverse-models have several advan-
tages for mapping shallow water environments, presuming that
a remote sensing image has already been corrected for atmos-
pheric and air/water interface effects (Dekker et al. 2007):

1. Repeatability: the method can be applied to multi-tempo-
ral images and corrections for changing water column
depth (tides) and varying concentrations of water column
constituents is possible;

Transferability: application of the models to data from a
variety of imaging sensors is straightforward;

Sensitivity and error analysis can be objectively deter-
mined; and

new knowledge can be added to the simulations and can
be retrospectively applied to remote sensing images and
archives(e.g., global Landsat Thematic Mapper data
archive from 1984 onwards).

The following is a brief summary of the developments in this
area. Lee et al. (1999) first developed a semi-analytical model for
shallow water remote sensing based on radiative transfer. Lee et
al. (2001) used an inversion optimization approach to simulta-
neously derive water depth and water column properties from
hyper-spectral data in coastal waters. Adler-Golden et al. (2005)
present an algorithm similar to that of Lee et al. (2001). How-
ever, it makes the simplifying assumption of constant water
optical properties within the scene. Mcintyre et al. (2006) pre-
sented an application of the (Lee et al. 2001) inversion model-
ing approach to clear waters that included a quantitative com-
parison of model-derived depth with high resolution
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multi-beam acoustic bathymetry data. Several authors recently
extended the method developed by Lee et al. (1999) and Lee et
al. (2001) by incorporating linear unmixing of the benthic
cover. Giardino et al. (2007) used two substrate classes (bare
sand and submerged macrophytes) for the littoral zone of a
lake, whereas Goodman and Ustin (2007) and Klonowski et al.
(2007) integrated a semi-analytical inversion model with a lin-
ear unmixing of three substratum types for coral reef environ-
ments. A different approach, based on matching of image spec-
tra to a precomputed library of spectra corresponding to
different combinations of depth, bottom type, and water prop-
erties, was developed by Louchard et al. (2003) and Mobley
(2005) and applied to coral reef mapping in Lesser and Mobley
(2007).

Potential users of shallow-water spatial information cur-
rently have no objective means to compare and determine the
ideal data set(s) and processing approach(es) for their envi-
ronment, data sets, budget, and processing capabilities. A
detailed assessment and comparison of the methods outlined
in the preceding paragraph is presented in this work to deter-
mine under which conditions these methods work most accu-
rately for mapping and monitoring water depth, water col-
umn constituents, and benthic cover types in optically
shallow environments. The aim of the work presented in this
article was to conduct an independent test of state-of-the-art
published shallow water mapping methods using hyperspec-
tral image data and field survey data from Australian sub-trop-
ical and a Commonwealth of the Bahamas tropical locations
to identify accuracy and processing time of each mapping
algorithm, including variations in image preprocessing after
initial atmospheric correction; conditions under which exist-
ing mapping models do and don’t work; the adaptability of
mapping models to two different locations and two imaging
sensors; recommended products and procedures for mapping
in optically shallow waters; and international best science
practice for this type of image-based analysis.

Materials and procedures

Study sites and data sets

The two study sites are Lee Stocking Island, Common-
wealth of the Bahamas in the northern hemisphere and More-
ton Bay, a subtropical embayment on the eastern Australian
Coast near Brisbane in the southern hemisphere (see Fig. 1).
These sites were chosen for comparing the hyperspectral
inversion methods as they were the best documented and
atmospherically corrected airborne imaging spectrometry and
in situ data were available without intellectual property
restrictions. Both sites were part of several large research proj-
ects that provided sufficient field and image data sources, e.g.,
Lee Stocking (Mobley et al. 2005) and Moreton Bay (Brando et
al. 2009; Phinn et al. 2005, 2008; Roelfsema et al. 2006).
Table 1 summarizes the bathymetric and benthic survey data
and benthic reflectance end members used in this compari-
son. Airborne imaging spectrometry data were acquired with
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Fig. 1. True color airborne hyperspectral images of the study sites at Lee Stocking Island - Horseshoe Reef and Moreton Bay-Rainbow Channel. Yellow
transect lines marked A-B are the location of the acoustic depth transects used to compare image retrieved depth values and measured depth values. In
the Lee Stocking Island image, all the acoustic depth transects are shown in thin yellow lines. The Lee Stocking Island image depths vary from 0.0 m in
the southwest to 13 m in the northeast. The Moreton Bay image depths vary from 0.0 m on the shallow banks (adjacent to masked out exposed banks)
to 10 m deep in the Rainbow Channel.

Ocean PHILLS on 17 May 2000 over LSI using 72 spectral
bands of 5 nm wide over 402 to 748 nm and with the CASI-2
airborne imaging spectrometer on 2 July 2004 over the Rain-
bow Channel in Moreton Bay in imaging mode with 30 bands
(10 to 20 nm wide) over the range of 441 to 847 nm. Table 2
describes the image data in more detail including geometric
and atmospheric correction. The text below provides addi-
tional site information and descriptions of the inherent opti-
cal property (IOP) data sets and parameterizations. These
study sites were chosen a posteriori to data collection (both in
situ and imagery), and therefore, contain different levels and
detail of information with respect to parameterization.
Lee Stocking Island, Bahamas

Lee Stocking Island (LSI), Bahamas, is located near 23°46'N,
76°05'W, northwest of Great Exuma Island. The water visibil-
ity is often in excess of 10 m, as illustrated by the bottom vis-
ibility down to 13 m depth in the LSI image (Fig. 1). The ben-
thos is characterized by carbonate sediments with clean to
biofilmed ooid sands, darker sediments, seagrass beds, macro-
algae, and patch reefs containing a variety of hard and soft
corals (Decho et al. 2003). The water absorption properties are
dominated by colored dissolved organic matter (CDOM)
derived from decay of benthic biota and displays a strong tem-
poral variation as tides exchange low-CDOM open-ocean
water with high-CDOM water from the shallows (Boss and
Zaneveld 2003; Mobley et al. 2005). Scattering is influenced by
phytoplankton, resuspended sediment, and sub-micrometer
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mineral particles that can on occasion precipitate out of the
high salinity waters in this area (Dierssen et al. 2006).

The available ac-9 measurements (Zaneveld and Boss 2003;
Mobley et al. 2005) were used to generate absorption, a, and
scattering, b, end member spectra that should bound the
likely range of these values at the time of image acquisition
(Fig. 2). However, no backscatter data were available. Backscat-
ter measurements in similar waters in the Florida Keys have
particle backscatter fractions as high as 0.04 (P. Bissett pers.
comm.). Therefore, backscattering spectra b, were created
from the total scattering spectra using assumed particle
backscatter fractions B, of 0.01 and 0.04. The resulting IOP
end members were

1. pure water

2. A high-absorption, high-scatter case, with a particle
backscatter fraction of B, = 0.01

3. A low absorption, low scatter case; Bp =0.01

4. The same a and b as set 2, but with BP =0.04

5. The same a and b as set 3, but with BP =0.04

These five sets of a, b, and b, end member spectra were
defined at 5 nm resolution between 402.5 and 747.5 nm for a
total of 70 wavelengths. These wavelengths were later inter-
polated to the hyper-spectral imager spectral bands.
Rainbow Channel, Moreton Bay, Brisbane, Australia

Moreton Bay (27°30'S, 153°30'E) is a large embayment
located on the east coast of Australia. The bay is surrounded
by shallow banks to the north and protected by Moreton and
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Table 1. Study site water and benthos characteristics and field data sets (See Figs. 2 and 3 for related spectra).

Site Water Depths & Benthic Benthic Reflectance Water Column
Survey Data Composition & Spectra composition
Survey Data
Lee Boat-based depth Not collected 1.clean ooid sand a440nm
Stocking sounder 2.heavily biofilmed sand 0.02- 0.12m"
Island, 12000 points with substrate in a sea grass bed
Bahamas differential GPS 3.“dark sediment” Chlorophyll a
4.the brightest of the coral 0.05-0.15mgm™
Corrected for tidal spectra (Boss and Zaneveld
height at the time of 5.the darkest of the coral 2003)
image acquisition spectra
6.an average turf algae B, =0.01 t0 0.04
7.an average macrophyte (no suspended
8.an average sea grass matter
concentration used)
(Zhang et al. 2003) (Decho
et al. 2003; Dierssen et al.
2003; Louchard et al. 2003),
(Stephens et al. 2003)
Rainbow Boat-based depth 56 x 100 m long 1. Seagrass species: 2440 nm
Channel, sounder July-August | transects with GPS | - Halophila ovalis, 0.025-2.63 m™
Moreton 2004 tagged benthic - Halophila spinulosa
Bay, 165 points with photographs taken - Syringodium isoetifolium, suspended matter
Australia standard GPS 0.5 m above the - Zostera muelleri 1.0and 3.3 gm™
bottom at 2 m - Cymodocea serrulata
Corrected for tidal intervals in July- Chlorophyll a
height at the time of August 2004. 2. Brown algae by - 04-1.0mgm”
image acquisition Composition and Hydroclatherus spp. (Brando et al ,
%-cover of the 2009)
photographs 3. Green algae by Ulva spp.
estimated from 24
sample points. 4. Substrate type by:
(Phinn et al. 2008) - Brown mud,
- Light brown mud
- White sand
(Roelfsema et al. 2006),
(Phinn et al. 2008)

Table 2. Characteristics of the hyperspectral airborne image data sets used for Lee Stocking Island-Horseshoe Reef and Moreton Bay-Rainbow Channel.

Site Sensor Type | Pixel Spectral Band: | Acquisition | Corrections Applied
Size - Number Date
- Range
- Width
Lee Stocking | Ocean 1.3m - 128 bands 17 May 2000 | Geometric
Island, PHILLS -400 - 1000 nm Radiometric: Atmospheric
Bahamas - 4.6 nm wide correction using TAFKAA to
Ry, trim to 72 bands, 5 nm wide
between 402.4 and 747.5 nm
(Mobley, Sundman et al. 2005)
Rainbow CASI-2 4.0m - 30 bands 2 July 2004 Geometric
Channel, -441 - 847 nm Radiometric: Atmospheric
Moreton Bay, - 10 nm wide in correction using c-WOMBAT-c to
Australia 500-680 nm Ry
- 20 nm wide in > (Brando et al. 2009)
680 nm
(Brando et al.
2009)

North Stradbroke Islands on the east and southeast sides (Fig.
1). Moreton Bay is representative of the range of water quality
and substratum cover types typically found in eastern Aus-
tralian coastal and coral reef environments (Phinn et al. 2005,
2008). The Moreton Bay substratum contains significant areas
of unconsolidated sediments, ranging from fine-silt muds in
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the western bay to silicate sands in the eastern bay. Extensive
seagrass beds and macro-algae occur throughout the bay, with
some bedrock outcrops and fringing reefs, although the latter
two do not occur in the imagery used. Due to the number of
creeks and rivers that drain into the western part of the bay
and the oceanic openings on its eastern side, the water col-
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Fig. 2. Inherent optical property end-members for absorption (a) (a440 nm) for Lee Stocking Island-Horseshoe Reef, (b) (a440 nm) for Moreton Bay-
Rainbow Channel, (c) back-scattering (b, 555nm) for Lee Stocking Island-Horseshoe Reef, and (d) back-scattering (b,555nm) for Moreton Bay-Rainbow

Channel.

umn usually ranges from freshwater-influenced and often tur-
bid in the western bay to oceanic water-dominated and clear
blue-green waters of the eastern Bay (Phinn et al. 2008). Due
to the bay’s position between several rivers and the ocean, it
can have widely varying levels of chlorophyll, suspended mat-
ter, and CDOM as function of river run-off, algal blooms, or
clear ocean water influx. The study site at Rainbow Channel is
near the ocean and will be mainly influenced by ocean water
running in and out with some mixing of Moreton Bay water.

The inherent and apparent optical properties (Fig. 3) of
Moreton Bay waters were sampled to coincide with an image
acquisition and other field surveys from 27 Jul to 3 Aug 2004
during the Australian winter. In-situ absorption, attenuation,
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backscattering, reflectance, and vertical attenuation were mea-
sured at 20 locations in the bay using ac-9, Hydroscat- and
TRIOS- Ramses instruments (Phinn et al. 2006; Brando et al.
2009), and water samples were collected for measuring in vivo
absorption of CDOM, chlorophyll and NAP, as well as the NAP
and chlorophyll concentrations. All measurements were car-
ried out following (Brando et al. 2009; Oubelkheir et al. 2006;
Phinn et al. 2006).

Based on these field data the fixed values for seven SIOP
scalar parameters (S, Syapr @ nap (440 nm), b'bphy (542 nm),
b’ nap (542 1m), Y, and Y,,) as well the Chlorophyll a spe-
cific absorption spectrum a'phy (M) were estimated (Brando et al.
2009). The values of the SIOP parameters for this study are
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Fig. 3. Benthic reflectance spectra used as end-members in each inversion method for Lee Stocking Island-Horseshoe Reef and Moreton Bay-Rainbow
Channel data sets. Reflectance spectra measurement approaches are outlined in (Phinn et al. 2008) and (Mobley et al. 2005).

similar to those reported previously for Moreton Bay and
other Australian coastal waters (Brando and Dekker 2003;
Oubelkheir et al. 2006; Qin et al. 2007; Blondeau-Patissier et
al. 2009).
Optically shallow water inversion procedures

Many approaches have been developed for inversion of
remote-sensing reflectances to obtain shallow-water bathyme-
try and other environmental information. One of the oldest
published algorithms for bathymetry is the empirical multi-
spectral technique of Polcyn et al. (1970), later modified by
Lyzenga (1981). This algorithm can accurately retrieve bathym-
etry, but only in areas of constant water clarity and homoge-
nous benthos/substrate composition, and it cannot retrieve
water-column IOPs. Because of its historical importance and
continued widespread and somewhat successful use under cer-
tain conditions, we present bathymetry obtained by applica-
tion of the Lyzenga algorithm to our hyper-spectral imagery for
comparison with the more general techniques discussed here.

Statistical or empirical band-ratio bathymetry algorithms,
such as Lyzenga’s, can be tuned to specific data sets, e.g.,
Dierssen et al. 2003. However, band-ratio algorithms are gen-
erally limited by the non-uniqueness of the ratios as functions
of depth, water IOPs, and bottom reflectance. More sophisti-
cated nonlinear inversion techniques, such as neural net-
works, can provide good retrievals provided that an adequate
database from field data or forward bio-optical modeling is
used to connect remote sensing reflectances with environ-
mental conditions. An in-situ measurement-based neural net-
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work training requirement ties the neural network to the envi-
ronment represented in the training data. A neural network
trained by forward modeling (employing radiative transfer or
analytical models) is limited only by the range of inputs used
in the forward model to generate the pseudo-data.

In this intercomparison, we consider only those inversion
algorithms that make full use of radiometrically calibrated
hyperspectral remote-sensing reflectances, R . These inversion
algorithms can all, in principle, function without in-situ infor-
mation regarding deep-water pixels or ancillary observations
made at the location of interest. These inversion algorithms
do, in general, become more accurate with increased a priori
parameterization.

For this exercise, we consider several variants of the semi-
analytical method first developed by (Lee et al. 1999; Lee et al.
1998b). In this inversion method, the radiative transfer equa-
tion (RTE) is simplified so that only a few parameters remain
(e.g., water depth, bottom reflectance, and water absorption
and backscatter at one wavelength), whose values can then be
determined by an optimization technique applied to mea-
sured R _ spectra. We also consider an inversion method (Mob-
ley et al. 2005) in which the RTE is not simplified, but which
uses numerical solutions of the RTE to build up a database of
reflectance spectra that correspond to a wide range of envi-
ronmental conditions. These database spectra are then
matched to the image spectra to obtain a retrieval of the envi-
ronmental conditions. This inversion method is not tied to
site-specific data sets and thus has the potential to be applied
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to a broader range of environments, provided the database is
sufficiently representative of those additional environments.
These techniques all provide a simultaneous retrieval of
bathymetry, bottom classification, and water column IOPs.

The five methods compared were referred to as HOPE,
BRUCE, SAMBUCA, CRISTAL, and ALLUT. All these methods
rely on some form of spectrum matching of modeled
reflectance spectrum using a set of bathymetry, bottom classi-
fication, and water column IOPs values, optimized to match
the image R spectra. HOPE, BRUCE, and SAMBUCA perform
spectrum matching via a nonlinear search that determines the
optimal parameter values for their semi-analytical model,
while CRISTAL performs spectrum matching by searching
through a precomputed database of R spectra. ALLUT is a
hybrid application that merges these two approaches. ALLUT
uses an adaptive LUT method for creating an effective look up
table (LUT) for parameterizing the semi-analytical model and
then applies spectrum matching. Each approach simplifies the
RTE or the inversion of the RTE and its parameters in a slightly
different manner (Table 3). The resulting tradeoffs are that
HOPE, BRUCE, and SAMBUCA assume a limited set of absorp-
tion backscattering and bottom reflectance spectra, ALLUT
uses an adaptive LUT method for parameterizing the IOPs,
whereas the CRISTAL has to model all relevant combinations
of bathymetry, bottom classification, and water column IOPs,
representative of the imaged environment. The accuracy of
the retrieved parameters from HOPE, BRUCE, SAMBUCA
depends on the adequacy of their underlying semi-analytic
model and input parameters to represent the environment,
and CRISTAL and ALLUT results rely on whether or not the
LUT database contains IOP and benthic/substrate spectra rep-
resentative of those in the imaged area.

Intercomparison of shallow water mapping methods

In terms of application purposes, the BRUCE method was
developed for processing large amounts of HyMap data for
whole of reef systems (100s km) rocky reef and sea grass areas
in waters from zero depth to optically deep. The SAMBUCA
method was developed to deal with all optically shallow
through to optically deep aquatic ecosystems. The HOPE and
CRISTAL methods were developed for defense purposes
mainly and specialize in estimating bathymetry in inaccessi-
ble or denied areas where a priori information may not be
available. ALLUT is a recent development that incorporates
parts of the HOPE, SAMBUCA, and the CRISTAL approaches,
and is thus a hybrid version building forth on these develop-
ments. Each of the techniques and their application to the test
data sets is outlined below and uses the parameter settings
outlined in Tables 3 and 4. As the inversion methods were
developed for different applications the pre-processing of
input imagery varied per method. A decision was made to
compare the methods as they are published in literature—
including preprocessing variations that may influence the per-
formance outcomes. Thus this study compares complete
methods rather than focusing solely on the performance of
the RTE-based inversion (where one would need to presume
exact same spectral reflectance inputs).

Hyperspectral optimization process exemplar model
(HOPE)

Remote-sensing reflectance (R ) is the fundamental prop-
erty for inversion of subsurface properties, such as the water
column or bottom composition. For optically shallow waters,
R, not only depends on the absorption and scattering proper-
ties of dissolved and suspended materials in the water column
but also on the depth and reflectivity of the bottom. R _ is also
influenced by contributions from inelastic scattering such as

Table 3. Summary of the parameters and parameter values used for each inversion model.

HOPE HOPE BRUCE BRUCE SAMBUCA SAMBUCA CRISTAL CRISTAL ALLUT ALLUT
LS| MB LS| MB LSl MB LSl MB LS| MB
Initial parameterisation(value or range)
0.05(Rrs(440)/|/Rrs(550)*-  10.05(Rrs(440)/|0.05(Rrs(440)/R
P Rrs(550)*-1.7 |1.7 Rrs(550)*-1.7 |rs(550)*-1.7 0.00-1.58
G 1.5P 1.5P 15P 15P 0.00 - 1.048
Scdom 0.015 0.015 0.0183 0.0157|
X 8 Rrs(660) 8 Rrs(660) |8 Rrs(660) 8 Rrs(660) 0.00 - 0.075
B 4 Rrs(490) 4 Rrs(490) 0.01, 0.02..0.04 |0.01 or 0.03 0.0183
H 1/6P 1/6P
Y 0.50 0.50 1.00 1.00 0.42
C_chl 0.15 (0.01 - 0.02) [0.7 (0.1 - 20.0) 0.10 - 20.00
b*bphy(542) 0.00038 0.00038|
Yphy 1.178 0.681
C_cdom 0.08 (0.008 - 0.15]0.07 (0.01 - 1.00) 0.01-1.00
C_nap 0.15 (0.01 - 0.30) [2.8 (1.0 - 3.3) 0.10 - 10.00
a*nap(440) 0.005 0.0048]
S_nap 0.0101 0.0106
r_rsto R-rs 0.54, 1.5 0.5,1.5 0.55, 1.5
0.07-optically
0.01-optically |deep in
Limited by NedR|Limited by NedR|deep in discrete
to SDI to SDI discrete intervals
Depth(m) calculation calculation intervals (N=84)|(N=42) 0.00 - 20.00 {0.00 - 20.00
|every every |every every discrete discrete
combination |combination of |combination of |combination of |combinations |combinations
of 8 spectra |10 spectra over|2 spectra out of |2 spectra out of |of2 to 4 of2to 4
Benthic model Sand + grass |Sand + grass |over 3 3 classes 8 10 spectra out of 8|spectra out of
Nr of endmembers (or
combinations) 2 2 24 30 28 45| 39 71
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Intercomparison of shallow water mapping methods

Table 4. Composition of benthic cover classes (in terms of bottom irradiance reflectance endmembers) used for mapping benthic cover classes from

retrieved R values in (a) Lee Stocking Island-Horseshoe Reef and (b) Moreton Bay-Rainbow Channel.

(a) Sediment

Vegetation

Coral

(1) clean ooid sand

(1) avg. turf algae

(1) coral (Montastria)

(2) Biofilmed sand in seagrass bed

(2) avg. macrophyte

(2) coral (Dichocoenia)

(3) dark sediment

(3) avg. sea grass

(3) avg. turf algae

(b) Sediment

Green vegetation

Green/Brown Vegetation

(1) white Sand

(1) Zostera muelleri

(1) brown algae

(2) brown Mud

(2) Halophila ovalis

(2) Zostera muelleri

(3) light brown Mud

(3) Halophila spinulosa

(3) Halophila ovalis

(4) Syringodium isoetifolium

(4) Halophila spinulosa

(5) Cymodocea serrulata

(5) Syringodium isoetifolium

(6) green algae

(6) Cymodocea serrulata

(7) green algae

fluorescence and Raman emission (Marshall and Smith 1990;
Lee et al. 1994). However, in optically shallow waters, water
column inelastic scattering contributes relatively little to the
water leaving radiance and is ignored. The spectral R _ can be
conceptually summarized as

R () =f[a(), b,3), p(0\), H, 6, 6, 9] (€3]

where a()) is the absorption coefficient, b, (A) is the backscat-
tering coefficient, p(A) is the benthic spectral reflectance, H is
the bottom depth, 6_ is the sub-surface solar zenith angle, 6, is
the subsurface viewing angle from nadir, and ¢ is the viewing
azimuth angle from the solar plane.

Historically, for the derivation of bathymetry, values for
water-column contributions were approximated from values
of adjacent deep waters (Polcyn et al. 1970; Lyzenga 1981;
O'Neill et al. 1988), or empirically derived from an image by
regression using a few true depths provided by LIDAR or on-
site ship measurements (Lyzenga 1981; Philpot 1989). For
denied places or regions of no a priori knowledge of water
properties, clearly properties of both the water column and
the bottom will have to be derived at the same time. To reach
this goal, Lee et al. (1999) developed a model-driven spectral
optimization technique (Hyper-spectral Optimization Process
Exemplar, HOPE), which is summarized here.

Based on Hydrolight simulations, R of optically-shallow
water with ¢ = 90° is analytically approximated as Lee et al.
(1999)

R

rs r.\'

T
DC KH ||+
cos(@) cos(H) @
[y i)

cos(@)

r~r”1 exp

1
—pex
er p( cos(@)
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with
K =a+b,u=b/(a+b) 3)
D€ ~1.03(1 + 2.4u)°3, and D? ~ 1.04(1 + 5.4u)*® (4)

and,
b,=b,,+b,, ®)

a=a,+a, +d,. (6)

Here r is the sub-surface remote-sensing reflectance, or
ratio of the upwelling radiance to downwelling irradiance
evaluated just below the surface, b, is the backscattering coef-
ficient of pure seawater, while b, is the backscattering coeffi-
cient of suspended particles. 4, is the absorption coefficient
for phytoplankton pigments, and a, is the absorption coeffi-
cient for gelbstoff and detritus (Carder et al. 1999). Two opti-
cal path-elongation factors: one for photons from the water
column (D), and the other for photons from bottom (D?).
These are approximated as in Lee et al (1999). Wavelength
dependence, unless necessary, is omitted for brevity.

Note that both u and « are inherent optical properties, and
it is the combination of Eqs.2-6 that provides the expression
for R . In Eq.2, T is the water-to-air divergence factor (Mobley
1994), and (1-¢ r,) accounts for the internal reflection of the
water-air interface, which is important when r, values are high
for very shallow and/or very turbid waters.

The first term on the right side of the r  equation (Eq.2)
expresses the portion of the path radiance expected for
the presence of a black bottom with depth H, whereas the
second term expresses the bottom contribution propa-
gated to the surface after attenuation by the two-way path
through the water column. ,% is the remote-sensing
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reflectance for optically deep waters for which various R (550) < 0.01 and R (710)/R,(670) > 1.2, (12)
models have been developed.

When R (M) is provided from any spectrometer, retrieval of P’ 1S used; otherwise, p* . is used, and each pixel is
subsurface properties becomes a mathematical problem: deriv- assumed homogeneous in bottom type.
ing the quantities of interest by spectrally decomposing Eq. 2. After the above empirical/semi-analytical models are assem-

If there are n independent channels that have valid R , Eq. 2 is: bled, Eq.7 becomes explicit functions of P, G, X, B, and H:
R (%)= F(a,(A).b, (A).a,(A).a,(A).b, (A).p(A).H)
R (3) = F(a,(A).b, (A,).a ()., (2)b, (). p(0). H) R (A)=F(a,(%).b,(4).P,G, X, B, H)
- 7 R ()= F(a,(3,).b, (). PG, X, B, H)

7S

: (13)
R (%)= F(a,A)b,(4)a,h,)a, )b, (2)0p4,),H)

N

(A,)=F(a ()b, (A).P,GX,B,H)

In this series of equations, there are at least 4 unknown
spectra [aphy(k), ag(k), bbp(}»), and p(A)] and 1 scalar unknown HOPE numerically solves for the 5 unknowns in Eq.13 via
(H) for each R spectrum, as values of a (A) and b, ()) are spectral optimization, i.e., to minimize an objective function
known (Pope and Fry 1997; Morel 1974). This suggests that for (Eq.14) that compares modeled and measured spectral R .
n equations, there are (4n + 1) unknowns to be deduced. To When this function is minimized (optimal consistency
mathematically solve for this many unknowns, additional between measured and modeled R ), the values of P, G, X, B,

relationships have to be established to reduce the number of and H that makes up the modeled R are considered as the

unknowns (or increase the number of equations). solutions. The objective function is defined as
a,, () is simulated by a single-parameter model (Lee et al.
1998a): s R 2
2(1{3 - RHJ + E(Rm - Rm)
Ay ) = [3,) +2,() In(P)] P, ® oy L 7 : (14)
675 800
with P = a , (440), the variable for phytoplankton absorption %Rrs +§Rrs
coefficient at 440 nm. This approach allows a,(A) curvature to .
change with aphy(440) value, consistent with field observa- with R, for values from Eq. 13 and R for values from mea-
tions, at least to first order. surements. The cutoff between 675 and 750 nm is trying to

ag(k) is expressed as (Bricaud et al. 1981; Carder et al. 1999) avoid the influence of solar-stimulated chlorophyll fluores-
cence, which is present in measured R but not in the model.

a,(\) = G S04, 9) For significantly shallow bottoms (<1 m), this spectral window
needs to be included in the inversion, however.
with G = a,(440). S is the spectral slope, and a global average In the HOPE process, values of B, G, X, B, and H are initi-
value of 0.015 nm™ is used as a default. ated pixel-wise (see Lee et al. 1999) as
bbp(}») is expressed as
Y -1.7
b, () - X[SSO) , (10) P 0.05 [Rm(““m)
A R (550)

where X = bbp(SSO), and Y is the spectral shape parameter of G=15P
particle backscattering, which could be estimated via empiri- X =8 R_(660) (15)

cal relationships. As in Lee et al. (2001), a default value of 0.5

is used for all the pixels of this study. B=4R,(490)

1

p(A) is expressed as H=—_
6P
p =Bp* (11)
In the whole inversion process, there is no field data are
with B the bottom albedo value at 550 nm, and p the 550 nm- required/used except the measured R (A) spectrum. Traditional
normalized spectral shapes of a specific bottom type. empirical algorithms for bathymetry, however, require many

Although multiple bottom types could be incorporated into assumptions and ground truth data before the derivation of
the semi-analytical model, the current default version of bottom depth.

HOPE incorporates sand-albedo (p*, ) and grass-albedo Preprocessing of image data before HOPE application
("), and the following empirical criteria is used to select the To minimize the impacts on retrievals from erroneous
bottom spectral shape: if R (A) of a pixel satisfies images, spectral R . was preprocessed before feeding to HOPE.
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This preprocess contains two aspects: 1) spatial smoothing for
wavelengths longer than 600 nm; and 2) white correction for
each pixel. Process 1 reduces image speckle resulting from low
signals in the longer wavelengths of the hyper-spectral
images. Process 2, on the other hand, compensates, to a
degree, for over- or under-correction of the atmospheric
effects (including surface reflectance). This process is the same
as those described in Lee et al. (2001), i.e., it has the following
steps.
Assume R as the product from an image,

R, (A)=R"(A)= R (750)
A =0.0001+0.02R., (650)
R =R\ (A)+A

(16)

This final R _ is then fed to HOPE to derive sub-surface prop-
erties via spectral optimization.

Bottom reflectance un-mixing computation of the envi-
ronment model (BRUCE)

The BRUCE inversion model incorporates the semi-analytic
HOPE model developed by Lee et al. (1999) (see Egs. 1-16),
with a modification to the bottom reflectance parameteriza-
tion (Klonowski et al. 2007). In the BRUCE model, the bottom
reflectance term, p, is parameterized by the linear combina-
tion of three bottom reflectance spectra that are representative
of three key benthic cover classes, namely sediment, vegeta-
tion, and coral. For situations where more than three spectral
end members are available, such as this study, the end mem-
bers are typically separated into their three respective key ben-
thic classes, which allows for various combinations of 3 bot-
tom types by selecting in turn one member from each of the
three benthic classes. The bottom reflectance parameteriza-
tion is thus expressed as,

p()\') = Bsed,pwd, (A) + ng, pveg' + Bwr, p(’or, ()\');Bsed, + Bveg, + er, =1

7

and B

cor;

where B, , B,, , correspond to the fractional weight-
ing coefficient of bottom reflectance spectra within the ben-
thic classes: sediment, vegetation, and coral, respectively.
Pus (A), P, (), and p, (A) are the measured bottom
reflectance spectral end members in each key benthic cover
class.

The water column absorption and backscattering coeffi-
cients are parameterized with P, G, X, and Y as in the HOPE
method. We keep the spectral slope of backscattering, Y, fixed
to a value of 1.0. The BRUCE model is therefore described by
7 model parameters (P, G, X, B, , B,, , B,, and H). Inversion
is performed with Levenberg-Marquardt optimization. For
each image pixel, optimization is achieved by iterating
through all combinations of 3-bottom types and varying the
parameters P, G, X, B, , B,, , B, ,and H. The combination of
retrieved parameters with the best model fit to the measured
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R spectrum is determined and the associated retrieved model
parameters, including the benthic class end member indexes,
are saved.

Preprocessing of LSI image data before BRUCE application

The 8 LSI bottom reflectance spectra (substrate end mem-
bers) were grouped into three key substrate classes: sediment,
vegetation, and coral (Table 4a). The brown algae (avg. turf
algae) end member was also included in the coral class to
account for situations where green and brown vegetation may
occur together. This results in 24 unique end member combi-
nations of three substrates.

Each image R _ spectrum was corrected by subtracting 0.003
Sr! to account for the observed atmospheric under correction
unit of steradian should be sr not Sr (Klonowski et al. 2007). A
further correction was performed to account for sunglint con-
tamination using the assumption that R at near infrared
(NIR) wavelengths are approximately zero. One must note
however that this assumption does not necessarily hold true
for all shallow waters where NIR signals from the seafloor can
be a contributing factor in very shallow clear waters. We mask
out the shallow water pixels by performing a linear regression
of R versus wavelength over the spectral range 610 nm to 900
nm. For pixels where the calculated slope was less than or
equal to -2, it was assumed the spectra were likely to be rep-
resentative of shallow waters and were masked out from the
sunglint correction. For nonmasked pixels the following
sunglint correction was performed:

R“(A)=R

s

(A) - median| R (650nm : 800nm)] (18)
where, R’°“(1) is the sunglint-corrected R
Processing of LSI image data with BRUCE

Image inversion was performed over the first 72 PHILLS
channels (402.5 to 747.5 nm range) with all wavelengths
weighted evenly.

Preprocessing of MB image data before BRUCE application

The 10 MB bottom reflectance spectra (substrate end mem-
bers) were grouped into three key substrate classes: sediment,
green vegetation, and green/brown vegetation (Table 4b). The
6 green vegetation end members were included in the
green/brown vegetation class in an attempt to account for dif-
ferent mixtures of seagrasses. A total of 63 unique end mem-
ber combinations were available for MB image inversion.

The standard BRUCE data processing software requires R _
as the input. Thus, the MB image irradiance reflectance spec-
tra just below the sea surface, R(0-), were converted to above-
water remote sensing reflectance, R , using:

rs’

R = 0.54 R(0-)/Q = 0.135 R(0-), (19)
where Q = 4. No other manipulation of the image spectra was
performed before the inversion process.
Processing of MB image data with BRUCE

Image inversion was performed over the first 25 CASI chan-
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nels (439.3 and 732.5 nm range) with all wavelengths
weighted evenly.

Semi-analytical model for bathymetry, un-mixing, and
concentration assessment (SAMBUCA)

SAMBUCA, is an implementation of the inversion/opti-
mization method by (Lee et al. 1999; 2001) (Egs. 1-15)
enhanced to: 1) retrieve the concentrations of optically active
constituents in the water column (Chl a, CDOM, and NAP), 2)
account for more than one substratum cover type, and 3) to
estimate the contribution of the substratum to the remote
sensing signal (Brando et al. 2009).

The absorption and backscattering coefficients are
described as the sum of the contributions of N constituents
and a constant coefficient for pure water:

a=aw+2

where g, and b, are the absorption and backscattering of pure
water (Morel 1974; Pope and Fry 1997), 4; and p,, are the spe-
cific inherent optical properties (SIOPs) of jth constituent with
concentration C. In the formulation of equation CDOM has
no backscattering term associated with it, and a (440 nm)
represents the concentration of CDOM.

The nonwater absorption terms are parameterized as a
known shape with an unknown magnitude:

aCb+%+E%J

iy

(20)

CDOM

Ay ()”) =Cey 'a;hy (}”) @D
Acpom ()L) = Cepon * a;DoM (}”0 ) exXp [_SCDOM (}L - )] (22)
Aypp ()‘) =Cyp- a;/AP (;‘0 ) exp [_SNAP ()L - )] 23)

where C,,, is the concentration of Chl @ and a,,,(4) is the Chl
a specific absorption spectrum. As the concentration of
CDOM (Cp,y) is represented by a. ., (440 nm), the reference
wavelength A was set at 440 nm, S, is the spectral decay
constant for CDOM absorption coefficient, and a,,, (4,) is set
to 1. C,,, is the concentration of NAP; a,,,(4,) is the specific
absorption of NAP at the reference wavelength, and S, is the
spectral slope constant for NAP absorption coefficient; and the
reference wavelength A was set at 440 nm for NAP absorption
coefficient.

The nonwater backscattering terms are parameterized as
follows:

blip = bbp/ly + thAP (24)
2 Yony
b (2)= Ca i (1) 2 es)
A Yiap
Dyyap ()‘) =Cyp- béNAP (}”o ) (70) (26)
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where b, (4,) is the specific backscattering of algal particles at
the reference wavelength, Y, the power law exponent for the
algal particles coefficient; b,,,,(4,) is the specific backscatter-
ing of NAP at the reference wavelength, Y, ,, the power law
exponent for NAP backscattering coefficient. The reference
wavelength A was set at 542 nm for both algal and nonalgal
particle backscattering coefficient.

In SAMBUCA, the algorithm by Lee et al. (1999; 2001) was
modified to account for more than one substratum cover type
in a pixel or spectrum by expressing the bottom albedo A(A) as
linear combination of two substrata:

p(A)=Bp,(A)+Bp;(1);B;+B; =1 27)

where B;and B; represents the fractional cover of substratum i
and substratum j within each pixel, p, (A) and P; (A) are the
spectral benthic reflectance of substratum i and j, respectively.
When solving for more than two cover types, SAMBUCA
cycles through a given spectral library, retaining those two
substrata and their estimated fractional cover q; which
achieve the best spectral fit.

In summary, the complete model parameterization for
SAMBUCA is:

—f CCHL7CCDOM’CNAP’H’Bi7p1( ) (}L)’SCD(JM’ NAP

YPHY’YNAP’a:’HY()\')’a;/AP()"O) bPHY()"O)’ NAP( )

model
s

(28)

In SAMBUCA, the algorithm by (Lee et al. 1999; (Brando et
al. 2009) was modified to estimate the contribution of the sub-
stratum to the subsurface remote-sensing reflectance signal by
comparing the modeled spectrum using an optically deep sys-
tem (7,"-™*, i.e., the term indicated as ;* in Eq. 2), and the
modeled spectrum for an optical shallow water body as gener-
ated by SAMBUCA (7).

To provide a quantitative indication of the contribution of
the substratum to the subsurface remote-sensing reflectance
signal of the water body (Brando et al. 2009) introduced the
Substratum Detectability Index defined as the absolute value
of the spectral substratum detectability for the band of maxi-
mum penetration:

model

dp _ model
r ap _ C

SDI = max ( - (29)

/NEAQJ

This quantity is sensor dependent and scene dependent:
it quantifies the contribution of the substratum to the sub-
surface remote-sensing reflectance signal for a given sensor
as it uses the noise equivalent difference in reflectance
(NEAr,,) as a scaling factor. SDI allows three classes of waters
to be identified in the imagery: “optically shallow waters”
where the signal from the substratum is directly measurable
and the substratum signal at the surface is more than 5
NEAr . at the band of maximum penetration (SDI > ~5);

rsE
“quasi-optically deep waters,” where the contribution from
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the substratum is weak and the substratum signal at the sur-
face is between 1 and 5§ NEAr,; (i.e., 1 < SDI < §); and “opti-
cally deep waters,” where no signal from the substratum is
measurable (i.e., SDI = 0).

For optically deep waters (i.e., SDI = 0), the estimate of
depth is not possible as no signal from the substratum is meas-
urable. Because of that, the retrieved values of the water depth
from the inversion/optimization can be any of the values
deeper than the depth than sets SDI to 0O, leading to an over-
estimate of the real depth for those pixels. To retrieve an “as
shallow as possible” depth when an optically deep solution is
encountered at the end of a SAMBUCA inversion optimiza-
tion, a secondary iteration was introduced. The retrieved
depth for the optically deep pixels is iteratively decreased
while maintaining SDI = 0. This secondary iteration ensures
the retrieval of an “as shallow as possible” depth value for
each pixel.

In the inversion-optimization scheme in SAMBUCA,
is compared to 7,™" using a goodness-of-fit or error function.
The set of variables that minimizes the difference between
these two spectra is used to estimate the environmental vari-
ables being sought, e.g.,, water column depth, substratum
composition, and the concentrations of the optically active
constituents of the water column.

For the inversion-optimization in SAMBUCA, the Downbhill
Simplex method was adopted. In SAMBUCA, the optimization
residuum, A, is quantified with a hybrid formulation that
combines the spectral matching function (e.g., Spectral Angle
Mapper in Kruse et al. 1993) and the least squares minimum
to balance the requirements for spectral shape and magnitude
matching:

A=axLSQ (30)
where, afrad] is the spectral angle between reference spectra
and the spectra of the pixel in question as defined in the SAM
(Kruse et al. 1993) by

N
2w () (e () * ™ (2)
a=cos™ v = , V21 N » , 172 @31
E(W(Ai)*r’:nndel) :| [E(W(Ai)*rnl-npm()‘;)) :|
i1 i=1
and LSQ is the least square distance:
N 1/2
)L- * ‘mndel )\. _ -i‘npu( )\, 2
Sua) [ 3)- 2 1) | .
LSQ 5
Dow () (%)

i=1

The weighting function, w()\), can be introduced for both
LSQ and a to weight the contribution of different wavelength
bands. For both datasets w(),) was set to 1/NEAr,, to discount
the wavelengths where the signal is less accurate or noisier.
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The parameterization of SAMBUCA relies on field sam-
pling of the optical properties of the water body of interest.
When this is not possible, the semi-analytical model can be
parameterized with appropriate values from the literature.
Based on the field data for the two sites, SAMBUCA was con-
figured to estimate the concentrations of optically active con-
stituents in the water column (Chl a, CDOM, and NAP),
water column depth, and benthic substratum composition
that produces the best fit between modeled and measured r, .
These five environmental parameters are solved for on a
pixel-by-pixel basis.

Processing of MB image data with SAMBUCA

The parameterization of SAMBUCA for MB was based on
the field data acquired in July and August 2004 (see Table 1).
The bottom albedo was expressed as the linear combination of
every possible pair of benthic endmembers (see Table 4). In
this context “endmembers” represent individual, homoge-
neous benthic or substrate cover types. The optimization
ranges for the chlorophyll, CDOM, and NAP concentrations
were wider than the ones applied by (Brando et al. 2009) in
the deeper adjacent Rous Channel area in Moreton Bay to
allow for conditions that were not characterized during the
fieldwork such as sediment resuspension in very shallow
waters and CDOM release by the submerged vegetation
canopies as may occur in the shallow parts of the Rainbow
Channel image.

Processing of LSI image data with SAMBUCA

To parameterize SAMBUCA for LSI the fixed values for
seven SIOP scalar parameters (S Saapr @ npp (440 nm), b*hphy
(542 nm), b, thy and Y_,,) as well the Chl a specific
absorption spectrum a*Phy(k) estimated in a coral reef environ-
ment at Heron Island, Australia were adopted (Wettle et al.
2004). The optimization ranges for the chlorophyll, CDOM,
and NAP concentrations were estimated to cover the measured
IOP ranges presented in Tables 1 and 3.

The environmental noise equivalent reflectance difference
(NEAr ) is used in SAMBUCA to estimate the Substratum
Detectability Index (SDI) as well as weighting function for the
optimization residuum as it provides an integrated measure of
sensor signal-to-noise ratio and scene-specific characteristics
(Brando and Dekker 2003; Wettle et al. 2004). NEAr, . was esti-
mated in the deepest waters in the CASI-2 and PHILLS imagery
in the location identified as being the most homogenous using
the methodology described by Wettle et al. (2004a).

Figure 4 shows that NEAr,, for the CASI-2 imagery is five
times lower than the NEAr , for the PHILLS imagery in the
500-700 spectral range. This difference is mostly due to the
CASI-2 band-set design that optimized the signal-to-noise
ratio (SNR) across the spectrum by using variable bandwidths.
The bands in the blue and near infrared region have a band-
width of ~20 nm, whereas the bands in the 500-680 nm range
have a ~10 nm bandwidth. The PHILLS imagery has a 5 nm
bandwidth across all of the spectral range. The LSI imagery is
also affected by sunglint, whereas the MB imagery is not.

CDOM’
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Fig. 4. The environmental noise equivalent reflectance difference
(NEAr ) estimated in the deepest waters in the CASI-2 and PHILLS
imagery using Wettle et al. (2004 Q13). The CASI-2 band-set has variable
bandwidths, with blue and near infrared bands of ~20 nm, while the
bands in the 500-680 nm range have a ~10 nm bandwidth. The PHILLS
imagery has a 5-nm bandwidth across all the spectral range.

Comprehensive reflectance inversion based on spectrum
matching and table lookup (CRISTAL)

The CRISTAL method for inverting R, (Mobley et al. 2005)
is based on spectrum matching by searching through a pre-
computed database of spectra (Mobley and Bissett 2011). First,
a database of R spectra corresponding to various water
depths, bottom reflectance spectra, water-column IOPs, sky
conditions, and viewing geometries is assembled. This data-
base is constructed using a special version of the HydroLight
radiative transfer numerical model (Mobley et al. 1993; Mob-
ley 1994) (www.hydrolight.info), which provides an exact
solution of the unpolarized RTE for the given input. Each
HydroLight-generated R spectrum in the database is tagged
by indices that identify the bottom depth, bottom reflectance
spectrum, water IOPs (absorption, scatter, and backscatter
spectra), sun zenith angle, etc. that were used as input to the
HydroLight run. At a minimum, this database must contain R |
spectra generated for environmental conditions close to those
occurring in nature at the time and location where the image
was acquired. The database also may contain spectra corre-
sponding to environmental conditions much different from
those of the image under consideration.

Second, the R  spectrum for a particular image pixel is com-
pared with each spectrum in the database and the closest
match to the image spectrum is found using a simple least-
squares metric (Mobley et al. 2005). The environmental con-
ditions in nature are then assumed to be the same as the input
conditions that generated the closest-matching HydroLight-
generated spectrum in the database. The CRISTAL-retrieved
environmental conditions will always be one of the depths, p
spectra, and IOP sets used to create the R database. The
CRISTAL technique does not do “dynamic” mixing of end
members during image processing.
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Finally, for example, the index tag identifying which bot-
tom reflectance spectrum was used to generate the closest-
matching HydroLight R  spectrum can be used to identify the
bottom type at that pixel, or to obtain other information such
as the bottom reflectance or IOPs at a particular wavelength.
This process is repeated for each pixel in the image to gener-
ate corresponding maps of bottom depth, bottom type, or
water-column IOPs. This inversion technique always results in
a retrieval because there is always a closest matching spec-
trum, even if the match is poor. Thus there are no issues of
failure to converge to a solution or of finding a local rather
than a global minimum, as can occur in some iterative inver-
sion techniques. If the database contains spectra representa-
tive of the imaged environment, then good results are
obtained (Lesser and Mobley 2007; Mobley et al. 2005). How-
ever, as will be seen, if the database does not contain R _ spec-
tra corresponding to the environment in an image, then the
CRISTAL technique is likely to provide a poor retrieval.
Database construction for CRISTAL implementation

An R database for use with the LSI image was created as
follows. For bottom reflectance spectra (p) mixtures of the
clean ooid sand and the biofilmed sand end members were
created by 20% steps, i.e., 20% clean sand + 80% biofilmed
sand, 40% clean sand + 60% biofilmed sand, etc. The same
was done with the biofilmed sand and the dark sediment.
Mixtures of the bright and dark corals, and mixtures of the
average turf and average macrophyte spectra, were created by
25% steps. Mixtures of the biofilmed sand and the average sea
grass end members were created by 10% steps. Various mix-
tures of biofilmed sand and corals, e.g., 80% sand, 10% bright
coral, and 10% dark coral were created. Finally, various mix-
tures such as 30% sand, 5% bright coral, 5% dark coral, and
60% turf algae were created. This gave a total of 39 end mem-
ber and mixture bottom reflectances.

For the IOPs, mixtures were created by interpolating
between the high and low sets of a and b by 25% steps. This
gives five sets of a and b spectra. For each of those, backscat-
ter spectra were created from the total scatter spectra using
particle backscatter fractions of 0.01, 0.02, 0.03, and 0.04. This
then gives 5 x 4 = 20 sets of IOPs, plus pure water, for a total
of 21 sets of IOPs. This interpolation between the high and
low a and b end member values means that the retrieved a and
b will be correlated, i.e., a retrieval of high (low) absorption
will also have a retrieval of high (low) total scatter. As will be
seen, this oversimplification of nature proves to be adequate
for LSI waters.

Bottom depths were set at 0.01 m, then by 0.25 m incre-
ments between 0.25 and 15 m, then by 0.5 m increments
down to 25 m, plus 30 and 50 m, and infinity (optically deep
water, for which the bottom reflectance is irrelevant). This
gives a total of 84 depths.

These 39 bottom reflectances, 21 IOPs, and 84 depths give
atotal of 21x (39 x 83 + 1) = 67,998 R  spectra. The specialized
HydroLight runs needed to generate nadir-viewing R spectra
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at 5 nm increments from 402.5 to 747.5 nm took about 45 h
on a 2-MHz personal computer. Although this R database
generation is computationally expensive because the RTE
must be solved for each combination of inputs, it needs to be
done only once. Subsequent image processing is fast.

For the MB image inversion each of the 7 MB biota end
members were mixed with the white sand and dark mud spec-
tra by 20% increments, e.g., 20% white sand and 80% Zostera
muelleri, 40% white sand and 60% Zostera muelleri, etc. Similar
20% increment mixtures were taken of white sand and brown
mud, as well as a 50% to 50% mixture of light brown mud and
dark brown mud. This gave 71 p spectra in all, counting the
end members.

The absorption a and backscatter b, end member spectra for
MB were splined to the CRISTAL database wavelengths of
402.5 to 747.5 by 5 nm increments. Mixtures of these two end
members were then created by 10% steps, for a total of 11 dif-
ferent a and b, spectra. Because there were no data on the scat-
tering coefficient, b spectra were obtained from the b, spectra
assuming particle backscatter fractions 0.01 and 0.03. This
gave 2 b spectra for each combination of a and b, spectra.
Including pure sea water then gave a total of 23 combinations
of a, b, and b,. As with the LSI IOPS, this simple interpolation
between the high and low a and b, end member values means
that the retrieved a and b, will be correlated, i.e., a retrieval of
high (low) absorption will also have a retrieval of high (low)
backscatter. Although expedient for R  database creation, this
oversimplification of MB IOPs proved to be inadequate for the
MB image, as will be seen in the results section.

Bottom depths were placed at 0.01, 0.25, 0.50 . . . (0.25
intervals to) . . . 9.75, 10.0 m, and at infinity. This gives a total
of 42 possible depths for the retrieved bathymetry. The 71 bot-
tom reflectances, 23 IOPs, and 42 depths (41 depths plus one
as infinity) give a total of 23x(41 x 71 + 1) = 66976 R _ spectra.
The HydroLight runs needed to generate the nadir-viewing R _
spectra took about 135 h on a 2-MHz personal computer.

Intercomparison of shallow water mapping methods

Although about the same number of R were created as for LSI
and the deeper bottom depths were omitted, the run time was
longer because the IOPs were generally much greater, so that
the optical depths, hence the time required to solve the RTE,
were much greater in many cases.

Processing of LSI image data with CRISTAL

The CRISTAL-retrieved environmental conditions must
always be one of the depths, p spectra, and IOP sets used to cre-
ate the R database. For LSI, the only preprocessing on the
image data were subtracting 0.003 sr' from each image R spec-
trum to improve the atmospheric undercorrection mentioned
previously. Although some pixels were obviously contaminated
by sunglint, no attempt was made to correct for the glint. The
reason was that glint correction often invalidates pixels at
depths less than 1 m deep, where the glint algorithm confuses
bottom reflectance contributions to NIR R  with glint contribu-
tions in deeper waters. Removal or correction of glint-contami-
nated pixels would likely improve the CRISTAL retrieval statis-
tics in the present comparison, for which the available acoustic
data are at depths of 3 m or more. However, spurious elimina-
tion of very shallow pixels would be detrimental to many appli-
cations of CRISTAL and therefore is not done.

The CRISTAL spectrum-matching software automatically
interpolates the 70 database wavelengths to the image wave-
lengths in the 402.5 to 747.5 nm range. Thus the spectrum
matching was done at the 72 PHILLS bands. Each of the non-
land pixels was processed independently by comparing the
image spectrum with all of the spectra in the database to find
the closest match using a least squares metric (Mobley et al.
2005). All wavelengths were weighted equally.

Processing the LSI image required 23 minutes on a 2 GHz
PC. This required comparing 67,998 R _ spectra for each of the
396,033 non-land pixels, or about 2.7 x 10! spectrum com-
parisons in all. Thus the CRISTAL spectrum matching code
was evaluating almost 20 million possible matchings per sec-
ond. The processing times per image pixel are given in Table 5.

Table 5. Radiative transfer equation inversion methods processing comparison for each site and method: processor type/speed; time required to pre-
process image and other data to run methods (not including image corrections); processing time; and average processing speed in terms of number of

pixels processed per second.

Algorithm Site | Processor Pre- Image pixels Program

processing processing time | processed | Code

time per

second

HOPE LSI 2.66 GHz 48 mins 156.39 C
HOPE MB 2.66 GHz 90 mins 157.01 C
BRUCE LSI 2.40 GHz 12 hours 10.43 C++
BRUCE MB 2.40 GHz 15 hours 15.70 C++
SAMBUCA | LSI * 1147 hours* 0.11 IDL/ENVI
SAMBUCA | MB * 628 hours* 0.38 | IDL/ENVI
CRISTAL LSI 2.00 GHz 45 hrs 23 mins 326.38 Fortran95
CRISTAL MB 2.00 GHz 135 hrs 22 mins 642.32 Fortran95
ALLUT LSI 3.00 GHz 4 mins 12 s 2hrs 2 mins 61.53 C++
ALLUT MB 3.00 GHz 6 mins 48 s 2hrs 32 mins 92.97 C++

* The actual processing was run over 16 processors —thus actual time was 3-4 days.
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Processing of MB image data with CRISTAL

For the MB image data, the following preprocessing was
performed: The MB image file contains nondimensional irra-
diance reflectance spectra just below the sea surface, R(0-).
These spectra were converted to R | just above the sea surface
(as used by the CRISTAL spectrum matching code) using Eq.
19. Other than this conversion of R(0-) to R , no other manip-
ulation of the image spectra was done.

The CRISTAL spectrum-matching software automatically
interpolated the LUT standard wavelengths to the CASI image
wavelengths in the 402.5 to 747.5 nm range. Thus the spec-
trum matching was done at the 25 CASI bands between 439.3
and 732.5 nm. Processing the MB image required 22 min on a
2-GHz personal computer.

Model inversion by adaptive linearized look-up trees
(ALLUT)

The adaptive linearized look-up tree algorithm (Hedley et al.
2009) is an approach to facilitate spectral matching inversion
of any radiative transfer models parameterized by a set of real-
valued and integer parameters. The method used here is iden-
tical to that described in Hedley et al. (2009), but in addition,
includes a local linear gradient calculation. In contrast to using
predetermined parameter value steps to populate the LUT, as
used by the CRISTAL approach, ALLUT construction proceeds
by adaptively subdividing the parameter space to maintain an
approximately evenly sampled spectral space. No a priori deci-
sions on parameter discretization are required other than upper
and lower bounds, the final distribution of parameter values in
the ALLUT is dictated by the distribution of their correspon-
ding modeled remote sensing reflectance vectors in spectral
space. For example, regions of the ALLUT representing deep
water will have comparatively fewer entries and larger parame-
ter value steps for parameters of depth or benthic composition
because these parameters have less effect on above water
reflectance in deeper water. The recursive parameter subdivi-
sion leads to a tree-like structure that enables fast spectral
matching of the above water reflectance by branch-pruning
search algorithms. As a final optimization, the look-up tree is
locally linearized, so that in addition to a point-wise table of
parameter values and modeled reflectances, the gradient of
reflectance in spectral space is calculated at each entry based
on the adjacent LUT points. That is, for each tabulated spectral
reflectance the ALLUT also stores a Jacobian matrix describing
the linear slope of the mapping from parameter space to spec-
tral space at that point. This matrix is determined by a least
squares fit to the adjacent points in parameter space. Instead of
matching reflectance spectra to the tabulated spectra, their dis-
tance to the slope sub-space is evaluated by least squares pro-
jection (Strang 1988) if they lie within the corresponding voxel
of the table (Hedley et al 2009). Essentially, the mapping from
parameter space to spectral space is represented by a series of
linear segments rather than a set of points.

For analysis of the LSI and MB images, two variants of the
semi-analytical model (Lee et al. 1999) were used as the for-

s/
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ward model basis of the ALLUT construction, for the LSI image
the original formulation of the HOPE model was used whereas
for the MB image, because SIOPs were available, the SAM-
BUCA model was employed. In both cases a pair-based ben-
thic endmember model for bottom reflectance, p, was used in
which, identically to SAMBUCA, the ALLUT contains entries
based on every possible pair of benthic endmembers in a lin-
ear mix according to a parameter, O < P < 1. The ALLUT there-
fore differs from the other semi-analytical approaches here pri-
marily in the inversion method, whereas the solution
returned is global, and so not subject to any convergence of
local optima issues of successive approximation, it is subject to
a residual discretization error due to imperfect representation
of the forward model by the ALLUT.

Processing of MB and LSI image data with ALLUT

The input parameter ranges for the two semi-analytical for-
ward models used to process the LSI and MB images are given
in Table 3. For the LSI image, where Lee et al. (1999) formula-
tion requires that the Y parameter, the particulate backscatter
slope, be estimated by a preprocessing step on a pixel-by-pixel
basis, however because the ALLUT must be precalculated and
also to reduce the degrees of freedom in the model Y was fixed
based on the mean calculated over the image according to the
equation given in Lee et al. (1999).

In addition, the semi-analytical model contains a conver-
sion from sub-surface remote-sensing reflectance, r, to above
surface remote sensing reflectance, R =T /(1 - T'r,) where Lee
et al. (1999) estimated € = 0.5 and I" = 1.5 by regression over
many runs of HydroLight with their input data set. In the
ALLUT construction for the MB image processing the value of
C used instead was 0.55. This was estimated from multiple
runs of PlanarRad, an open-source full plane-parallel RTE
solver similar in design to HydroLight (and which has been
validated against HydroLight and other RTE solvers [Hedley et
al. 2009]). The value of ¢ = 0.55 gave a slightly better fit for the
estimates of R and r, computed from PlanarRad over the first
10,000 LLUT entries produced from the SAMBUCA model
parameterized for the MB image (assumption Petzold’s phase
function, giving a backscatter fraction of 0.0183).

As for the other methods, spectral matching was conducted
with even weighting over the 400-750 nm range (72 bands for
LSI, 25 bands for MB). All spectra were resampled to the image
bands before any processing was applied. Processing was con-
ducted on a standard desktop computer, where the primary
limitation was available computer memory, because the con-
struction and search algorithms require that the entire ALLUT
must fit into the memory at once. The machine used had 8 Gb
memory, which allowed the LSI ALLUT to contain 2 x 106
entries, whereas the MB ALLUT could be larger, because the
spectral data have fewer bands and contained 5 x 106 entries.
The times for ALLUT construction and image processing are
given in Table 5. The primary computational cost in the spec-
tral matching search algorithm is the least squares projection
onto the local linear gradient function. In comparison, a stan-
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dard point-wise look-up over the S5 million pre-calculated
spectra, as described in Hedley et al. (2009), processes the MB
image in less than 3 min, but the retrieved parameter values
are potentially subject to greater discretization errors.
Evaluation and intercomparison procedures

Evaluation of the different methods for deriving bathyme-
try, optical properties, and benthic composition, focused on
measurement of absolute and relative accuracies of the
derived parameters in relation to the reference field data sets,
and on comparison of their relative performance in terms of
required time and computation resources. This was to address
the following five points: (1) accuracy and processing time of
each mapping algorithm; (2) conditions under which existing
mapping models do and don’t work; (3) the adaptability of
mapping models to two different locations and two imaging
sensors; (4) recommended products and procedures for map-
ping in optically shallow waters; and (5) international best
science practice.

Direct assessments were able to be made for depth
retrievals, while more indirect assessments of accuracy were
made for optical properties, in terms of spectral absorption,
backscattering, and reflectance. As limited benthic composi-
tion information were available in a suitable reference data
format, the different output reflectance products for each site
were subject to the same image classification routine, and the
resultant benthic composition maps were compared.
Bathymetry

Validation of retrieved bathymetry was performed by
matching boat-based acoustic survey data for each site to the
depth values retrieved for the imaged areas, ensuring the data
were accurately co-registered at a pixel level, then extracting
retrieved bathymetry from the image at each suitable acoustic
depth survey point. This generated > 3500 points for LSI and
163 points for the MB image subsets. An IDL routine was used
to plot the acoustic and retrieved bathymetry and then mea-
sure coefficient of determination (R?) and root mean square
error to provide a visual and quantitative assessment of the
nature and strength of co-variation, and the range(s) of depths
over which the SA and LUT retrievals worked. The use of stan-
dardized scatter-plots and scaled RMSE and R? values made it
possible to compare the relative performance of each algo-
rithm within and between sites.

Optical properties

Validation and intercomparisons of optical properties
retrieved by each algorithm at each site presented more of a
challenge, due to the difficulty in obtaining exact match-ups
in time and location, between image and in-situ mea-
surements of the same property. The optical properties
selected for comparison were a440 nm and b 555 nm and p
555 nm, from a series of selected targets at each study site. To
extract representative a440 nm, b,550 nm, and p555 nm val-
ues, polygons were placed over a range of water depths and
benthic cover types at the LSI and MB sites. This produced 45
polygons at each site, with approximately 9900 pixels in LSI
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and 3300 in MB. The resulting a440 nm, b, 550 nm, and p555
nm values produced by each of the five SA or LUT methods
were then extracted from each polygon and plotted as fre-
quency histograms to provide a visual assessment of the simi-
larities in retrieved a440 nm and b, 550 nm values. No suitable
in-situ a440 nm and b,550 nm data were available to provide
an absolute match-up and accuracy assessment. A similar
approach was used to assess retrieved bottom reflectance at
555 nm values from each SA or LUT inversion. In addition,
representative R, spectral signatures across three benthic cover
types were extracted from ROIs (regions of interest) for LSI and
MB. As this parameter is not retrieved by the HOPE model, as
it only estimates whether a pixel is sand or seagrass, it is not
included in the plot.

Several other forms of assessment were conducted, and
used for discussion amongst the intercomparison team during
the preparation of this manuscript and are not reported
directly here, but were used to support comparisons discussed
in the text. The data used for these assessments came from a
smaller set of polygons, 13 on LSI and 10 on MB, which were
used to extract and plot the mean retrieved a440, b,550 nm,
and pS55 nm at each of the polygons, allowing assessment of
spatial variations in each inversion model’s performance. Scat-
ter plots, coefficients of determination, and least-squares quo-
tients were also computed for the retrieved value from each
inversion method and their group median parameter value.
Image plots of a440 nm, b, 550 nm, and p555 nm values, and
an RGB composite using B: 5 (516nm) G: 10 (584nm) R: 15
(634nm), were also produced for each site, from each of the
inversion models used.

Benthic—Substrate reflectance and mapping

Benthic substrate reflectance and classification was only
carried out for the Moreton Bay image because a lack of suffi-
cient data from the LSI site did not allow a comparable level
assessment. The aim of this section was to subject each of the
R images retrieved for MB from different inversion methods,
to the same classification routine to map sea grass cover and
composition, and then compare each sea grass cover and com-
position map to a reference data source and each other. A full
description of the field data collection and analysis process to
produce georeferenced photo-transects with percentage sea-
grass-composition and -species at each photo point can be
found in Phinn et al. (2008) and Roelfsema et al. (2002). The
56 transects, with 2800 1.0 m x 1.0 m digital photographs at
2.0 m intervals along each transect covered 82% of the study
area, but were limited to depths shallower than 3.0 m. These
data were used to define polygons for training and validation
sources to produce a seagrass cover and seagrass species com-
position map from the R, image produced by each of the
inversion methods except HOPE. Approximately 50% of the
polygons were for training the supervised classification and
50% for validation, with the selection being stratified to cover
a full range of seagrass cover and species in training and vali-
dation sites. The training signatures were gathered for % cover
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and species as follows, seagrasscover classes: 0% to 10%, 10%
to 40%, 40% to 70%, 70% to 100%; and species classes: C.
rotundata, S. isoetofoilum, Z. muelleri, H. ovalis, Z. muelleri /H.
ovalis, sand and deep water. The training sites were then
applied to each R, image using ENVI’s Spectral Angle Mapper,
classification routine with same input parameterization and
decision rules, so that any variation in output classified images
were due to differences in the input R image produced from
each inversion method. Use of SAM as a classifier also pro-
vided a focus on differences in retrieved R spectrum shape,
rather than magnitude.

The output seagrass cover class maps and seagrass species
maps were validated against the 50% of polygons not used for
training. This was done on a polygon by polygon basis to
extract a number of pixels for direct comparison, and yield
error assessment tables, along with overall and individual class
accuracies for cover and species composition in the R pro-
duced by each inversion method (Phinn et al. 2008). As the
training and validation had all been conducted using the same
field data set and methods overall and individual accuracies
could be compared.

Assessment

For the two study sites assessed in this work, all five SA- or
LUT-based inversion methods were able to estimate bathyme-
try, water column composition, and to map the presence and
factional cover of specific benthic substratum and vegetation.
However, the simultaneous retrieval of all these properties
does mean that the accuracy of each estimated property is
highly dependent on the retrieval results of each of the other
properties. For example, benthic reflectance spectra can influ-
ence the bathymetry and water optical properties retrieval or
a too small range of optical variables can influence bathyme-
try and benthic variable retrieval. The relative effects of each
of these depends on water depth and clarity, so sometimes one
parameter has a small effect; sometimes a large effect. The
assessment below shows that relatively high absolute accura-
cies were obtained for bathymetry estimates across all meth-
ods, down to 8-13 m in both study sites. Realistic and compa-
rable water IOP values were estimated from all algorithms for
each of the two sites. For bathymetry, all SA and LUT inver-
sion methods produced more accurate depth retrievals than
the empirical approach by Lyzenga, which was confounded by
dark benthic cover types.

The LUT-based approaches were fast but were sensitive to
choices in discrete parameterization of the water column opti-
cal components for the look-up table generation. The SA
inversion approaches can vary the water column optical prop-
erty parameterizations in a virtually continuous manner. The
HOPE, CRISTAL, and ALLUT methods were quicker and
required less input, but did produce lower accuracy bathyme-
try and IOP values. Variations in the accuracy of all estimated
parameters were related to variations in water depth, and the
level of complexity or detail provided for parameterization of
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IOP and benthic reflectance. In turn, these factors also
affected the relative performance of each SA and LUT inver-
sion method, through differences in the complexity of the
equations used in each method, in terms of representing
bathymetry, IOP and numbers of benthic/substrate features,
and the final retrieval approach. This produced a hierarchy of
methods, ranging from least complex, HOPE and CRISTAL, to
SAMBUCA, BRUCE, and ALLUT. The assessment section
expands these conclusions, by analyzing and comparing
retrieved bathymetry, IOP and then benthic cover maps, and
concluding with an assessment on the main factors affecting
processing time and accuracy.

Before discussing the results, it should be noted that in
optically shallow waters the retrievals of water column IOPs,
bathymetry, and substratum reflectances vary with depth. In
areas with little water column attenuation, the water column
contribution to at-surface reflectance is relatively small, and
the substratum reflectance component is relatively large, thus
giving greater certainty in the retrieval of bathymetry and bot-
tom reflectance. In deeper waters, the water column con-
tributes relatively more to the signal than the bottom
reflectance, and thus the water column composition estimate
becomes more accurate whereas the substratum and depth
estimate become less accurate.

Bathymetry

The results of the bathymetry retrievals are shown in Fig. 5.
The main conclusions from the comparison of the bathyme-
try assessments were that all inversion methods, with the
exception of Lyzenga’s empirical approach (Lyzenga 1978), are
able to estimate depth in these optically shallow waters to
about 7 to 13 m deep over multiple benthic and substrate
cover types. The empirical approach was overall least accurate
as its a-priori assumption is that the optically shallow waters
have a uniform light or dark bottom color and that the water
column is homogeneous.

Significant variations in estimated depths occurred when
optically deep pixels were processed, e.g., beyond 10 m depth
in the MB Rainbow Channel. Unless an inversion method has
a built in method for assessing when a pixel is optically shal-
low or optically deep (e.g., SAMBUCA) the inversion method
may incorrectly retrieve depth estimates. Although not auto-
mated, many of the inversion processes can also deliver infor-
mation that the user can assess to estimate the water-column-
to-substrate relative contributions to surface reflectance.
Following similar methods to those adopted by SAMBUCA,
and by selecting a threshold for water column versus substrate
contributions to the surface reflectance, the user can then
decide which pixels might be less or more accurate in terms of
bathymetry retrievals.

Another reason for depth retrieval variations is the inver-
sion model’s IOP and R end-member parameterization not
being optimized to local environment or levels of variation.
This is the reason the CRISTAL retrieval in MB was poor
beyond 5 m depth. With better IOP parameterization of the
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Fig. 5. Scatter plots and multi-variate statistics for retrieved and measured bathymetry along two transect lines for Lee Stocking Island-Horseshoe Reef
and Moreton Bay-Rainbow Channel for each of the five inversion methods and the Lyzenga (1978) approach. The SAMBUCA plots have fewer validation
points (n) as the method has an inbuilt process for masking out optically/quasi-optically deep pixels and in the MB plot, this increases the R2 and low-
ers RMSE values as discussed in the “Bathymetry Assessment” section. Note the x-axis range differences between the right and left panels.
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database, it is presumed that the CRISTAL would have per-
formed significantly better.

Future application of the SA and LUT inversions should
only provide bathymetry estimates at optically shallow pixels
and classify optically deep pixels as such. This recommenda-
tion is valid in inaccessible areas too. Except for inaccessible
areas it is recommended to focus on using the most represen-
tative IOP and R end-members. This may be enhanced by use
of existing bathymetry or a priori knowledge of R, variability
or IOP ranges or SIOP and concentration ranges to constrain
estimations of bathymetry. For inaccessible areas those codes
that can approximate some of this information from the
image spectra are most appropriate such as HOPE. An example
of the type of output bathymetric map produced by the
ALLUT approach is shown in Fig. 6a for the Moreton Bay
image. For both the LSI and the MB images, Fig. 5 shows all
the bathymetry retrievals in scatter plot form and Fig. 7 shows
comparisons of measured and retrieved depths along two
acoustic survey lines.

Overall, most results were accurate from 0-13 m in LSI and
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0-10 m in MB, with differences between the approaches evi-
dent in the variations of estimated depths, as indicated by
RMS values, and the depth(s) below which the retrieved depth
deviated significantly from actual depth.

For the LSI image, the retrievals ranged from a RMS error of
0.91 m for the BRUCE method to 2.36 m for the ALLUT
method and for the MB image the retrievals ranged from a
RMS error of 0.96 m for the SAMBUCA method to 4.71 for the
CRISTAL method.

In the Moreton Bay image, SAMBUCA was the only algo-
rithm to deal with the transition from optically shallow to opti-
cally deep water at around 10 m. The SAMBUCA method
flagged pixels beyond 7 m as optically quasi-deep or as optically
deep, and therefore did not estimate bathymetry, hence the
smaller number of pixels, low RMS, and higher R2. However,
this sophistication comes at some cost to processing speed as
these calculations are performed for every pixel in the image.

The look-up table based bathymetry retrievals (CRISTAL
and ALLUT) for LSI (Fig. 5) were comparable to those by the
HOPE, BRUCE, and SAMBUCA algorithms. This indicates that
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Fig. 6. Example output images from Moreton Bay-Rainbow Channel showing retrieved parameters from the ALLUT method for (a) bathymetry, (b) a440

nm, (c) b,555 nm, (d) bottom reflectance, R, in blue green and red bands.
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Fig. 7. Comparative plots of measured and retrieved bathymetric cross-sections from the (a) Lee Stocking Island-Horseshoe Reef and (b) Moreton Bay-

Rainbow Channel images, taken along the A-B transects shown in Fig. 1.

all SA and LUT approaches captured the relevant physics of
the RTE in modeling R and the environmental conditions in
the LSI image. Much of the common spread in the retrieved
depths may be due to the imperfections of the LSI image itself,
namely the pixels contaminated by sunglint, pixels with poor
radiometric calibration or atmosphere correction, and mis-
matches between acoustic sounding locations and image pix-
els because of imperfect geolocation. The potential for these
other factors needs to be assessed.

The retrieved bathymetry across transects with in situ
acoustic depth data in Fig. 7 shows how the different methods
behave, for the Lee Stocking Island and Moreton Bay. For LSI
from 0-300 m along the transect all methods (except for
ALLUT) follow the depth from about 13 m to 9 m quite well.
ALLUT overestimates depth quite severely from O to 480 m.
The LSI feature from 300 to 480 m at a depth of 11.5 m posed
a problem for most inversion methods with the HOPE method
giving the most accurate results and Lyzenga the worst. After
480 m through to 720 m, all methods estimated bathymetry
quite well. BRUCE, SAMBUCA, and Lyzenga all are able to fol-
low the acoustic data with a slight overestimation of depth.

For the MB transect CRISTAL underestimates depth signifi-
cantly due to its poor a priori parameterization choices—
although it is the best performer in the shallow areas above 4
m depth from 1300 m to 2200 m along the transect. The
Lyzenga method follows the acoustic depth measurements
closely between 4 and 8 m depth. At 350 m in the MB transect
a shallow feature occurs according to the acoustics, all inver-
sion methods do record a shallow feature there, but not very
accurately. As the acoustics have a geospatial error as well as
the imagery and this feature is quite small, it may negatively
influence these accuracy estimates.

The HOPE method is the simplest version of the semi-ana-
lytical based forward and inverse models, with a fixed a priori
parameterization and using only two benthic reflectance spec-
tra (sand and grass). The results of the HOPE method are
above average for LSI. They appear as below average quality

for MB for bathymetry retrievals in Fig. 5, but with removal of
the three to four outlying deep points, HOPE produces above
average depth retrievals. Similar fine-tuning can occur in the
other algorithms, although SAMBUCA does this automatically
and objectively (note the reduced N in Fig. 5).

The SAMBUCA method performed well for bathymetry in
MB as it deals intrinsically with the conversion from optically
shallow to optically deep waters. This also means it is proba-
bly one of the most suited methods for dealing with turbid
water environments. SAMBUCA performance was similar to
HOPE for LSI. Across LSI and MB, BRUCE had the lowest RMS
of 0.86 m. It is informative to compare the MB results for all
methods for depths less than 7 m (the depth at which SAM-
BUCA defines the water column to be too deep for accurate
bathymetry retrievals). In this depth range HOPE, BRUCE,
SAMBUCA, and ALLUT all appear comparable.

The BRUCE method performs well for estimating bathyme-
try for the LSI image. This may be due to (1) the image pre-
processing applied that ensures sunglint and residual atmos-
pheric correction effects are reduced; and (2) use of a three
component benthic reflectance fractions estimation.

The Lyzenga method produced a wide range of estimated
depths for actual depths, as it assumes only one R, type in its
implementation in this paper. Previous approaches addressed
this limitation by segmenting images into different bottom
types and developing separate depth models with unique R,
values for each and combining the output bathymetric sur-
faces (Green et al. 2000).

Water column optical properties

Establishing direct assessments of error of retrieved water
column optical properties, in terms of matching in-situ and
retrieved parameters was difficult due to a lack of concurrent
in-situ data. Figs. 6b and 6¢ show examples of a440 and b, 555
for MB derived by the ALLUT method. Figure 8 illustrated that
each method retrieved similar ranges of IOP values, which
were within the range of previously collected in-situ IOP data,
especially over deeper water bodies. The CRISTAL approach
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Fig. 8. Frequency histograms of estimated a440 nm (top row) and b, 555 nm (bottom row) pixel values from each of the inversion methods in the Lee
Stocking Island-Horseshoe Reef and Moreton Bay-Rainbow Channel images.

did provide different distributions of retrieved a440nm and
b,555nm, as it assigned data to discrete classes, rather than a
continuous range of data. Deviations between retrieved
a440nm and b, 555nm in both the LSI and MB images may be
due to water column depth effects, with retrieval of a water
column composition having less signal to use in shallower
areas with benthic reflectance signals dominating. Other devi-
ations are caused by a priori parameterization choices for
range or distribution of each algorithm.

Figure 8 shows the frequency distribution of retrieved total
absorption at 440 nm for LSI and MB and the retrieved total
backscattering at 555 nm for LSI and MB. Similar frequency
distributions were retrieved by each method for both sites,
with the most obvious difference being those values from the
CRISTAL method which were binned into set ranges of a440
nm and b, 555 nm values. Both sites had limitations in estab-
lishing a direct match-up between retrieved water column
optical properties and in-situ measurements.

The only ac9 data for LSI were taken either at the time of
the LSI PHILLS overflight, but at a location about 1 km outside
the image, or on a different day, but near the center of the
image used in this study. Colocated, simultaneously acquired
IOP measurements were not available for validation of
retrievals at specific LSI image locations.
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The available ac9 measurements show a440 values in the
range of 0.05 to 0.06 m™, which is consistent with the most
commonly retrieved values from all methods. This indicated
that all inversion methods were able to recover realistic a440nm
values for the LSI image. There is some variability in the distri-
bution of values where the CRISTAL method had a limited num-
ber of discrete a440nm “classes,” whereas most other inversion
methods show a more gradual distribution across the 0.001 to
0.18 m™ a440nm range. CRISTAL inversion values had a maxi-
mum a440 of 0.08 m~!, SAMBUCA a maximum a440 of 0.16 m™!
(most likely due to some pixels being classified as optically deep),
HOPE and BRUCE showed a more gradual decline of a440 at
higher a440 nm values, The ALLUT inversion shows a few more
pixels with values between 0.15 and 0.50 m™' a440.

Although there were no match-up in-situ backscatter data
collected for LSI, the available ac9 scattering coefficients were
in the range of b555nm = 0.10 to 0.13 m™. The backscatter
retrievals have a strong peak at b, 555nm = 0.0008, and except
for HOPE and ALLUT few have pixels with b555nm values
beyond 0.006 m™. These values are consistent with the mea-
sured b and an assumed backscatter fraction of 0.01 (i.e.,
b, 555nm values between 0.0010 to 0.0013 m™). Only the
CRISTAL retrievals show b, 555 values corresponding to higher
backscatter fractions in discrete bands up to 0.006 m.
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For the MB image, more information on potential match-
up IOP values was available. Most of the retrieved a440nm val-
ues cluster between 0.1 and 0.25 m™!, which is at the low end
of the MB IOP end members (measured a440nm for all of MB
ranged from 0.025 to 2.63 m™). Note that the most commonly
retrieved CRISTAL values are the two lowest in its database.
The HOPE and SAMBUCA models also had many pixels
retrieved at very low values. The CRISTAL inversion method
shows discrete peaks in distribution associated with its a priori
choice of allowed ranges and intervals in a440nm. Between a
440nm of 0.8 and 1.5 m™, all methods show varying fre-
quency of a440nm values.

The bulk of retrieved b,555nm values for MB fall between
0.005 and 0.06 m™ for all inversion methods and between
0.055 and 0.063 m™!, with HOPE and BRUCE the only models
also producing b, 555nm values greater than 0.06 m™. Other
methods have applied processing constraints to limit the
range of output values. There was significant difference
between b, §55nm values from 0.045-0.06 b,555nm. All inver-
sion methods had many pixels with very low b, 555 values,
below 0.002 m™.

Two factors may explain some of the observed variance in
retrieved pixel values for a440nm and b, 555nm, in relation to
water depth and algorithm parameterization. In relation to
the first factor, the fraction of upwelling radiance from the
interactions of photons within the water column becomes
less, compared with the fraction derived from the substratum,
as the water column gets shallower and vice versa. As a conse-
quence of this effect, values of absorption and backscattering
of the water column become less reliable as the water column
is shallower, whereas the benthic reflectance contribution
becomes larger, hence retrievals in shallow waters, such as
most of the MB image, which is < 3.0 m depth, may be less
accurate. For the second factor (algorithm parameterization),
some of the choices made in simplifying and parameterizing
the inversion methods can also play a role in very shallow
areas. These points suggest that the most accurate values for
a440nm and b, 550nm are to be derived from optically deep
parts of water-bodies in the imaged areas. The automated
masking of optically deep pixels carried out by SAMBUCA
removes these deep water results from its delivered products.

The five inversion methods varied considerably in their ini-
tial parameterization for optical water column properties,
mainly in terms of using discrete class intervals to simplify
processing (CRISTAL) or a continuous range and distribution
of values. Table 3 summarizes these parameterizations as well
as the ranges used for each IOP. The HOPE method uses an a
priori fixed IOP parameterization and the BRUCE method
parameterizes water column IOP from the image reflectance
itself, SAMBUCA parameterizes using regional optical knowl-
edge and sets knowledge based boundaries on permutations.
The CRISTAL method requires a priori choices to be made for
creating the database, which end up being a choice for certain
discrete intervals in optical water variables. The ALLUT
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approach is a hybrid of all these approaches as indicated by its
parameters in Table 3, which were similar to HOPE, BRUCE,
and SAMBUCA.

Benthic—substrate reflectance and mapping

The aim of this activity was to assess the accuracy of the
retrieved R values from each of the inversion methods. The
results presented must be considered in the light of the depth
limitation of the validation data from O to 3 m deep for More-
ton Bay only, whereas the inversion methods all worked to
about 10 m deep. Thus conclusions reached here may not
apply to inversion results beyond 3 m depth.

Two approaches were used to assess the accuracy of the
retrieved R values between almost zero depth and 3 m depth,
and neither were optimal in terms of a providing a direct spa-
tio-temporal match between pixel-based R, estimates and co-
incident R, measurements. The first approach compared in-
situ field spectrometer R, measurements of the most
commonly occurring benthic cover and substrate types with
sites known to contain these in the retrieved R, images for LSI
and MB. The second approach used the retrieved R, images
from each method from the MB site, subjected them to the
same image classification routine to produce two maps: (1)
four classes of seagrass percent cover and (2) benthic cover and
substrate types. Error matrices (available on request) and accu-
racy measures were produced from each of the maps, for each
inversion method, by using a published seagrass cover and
benthic cover types from the same MB image data (Phinn et
al. 2008; Lim et al. 2009). As the output of the inversion meth-
ods differs significantly between a simple binary choice of
mainly sand or mainly seagrass (HOPE), to more sophisticated
estimates of either the most dominant substratum, or a com-
bination of the two most likely substratum types per pixel
(SAMBUCA), or a combination of the three most likely sub-
stratum types per pixel (BRUCE), or a pre-determined choice
of substratum combinations for a LUT creation (CRISTAL)
direct quantitative comparisons were not possible.

The retrieved R, values for selected benthic features from
both LSI and MB for each inversion method are shown in
Fig. 9. For the LSI image, all inversion methods retrieved val-
ues matching the shape and magnitude of in-situ field spec-
trometer measurements for seagrass, however only ALLUT
matched the coral R, spectra and all methods underestimated
clean white sand. Slightly worse results were observed for the
MB image for each benthic-substrate cover type. For both sites,
with the exception of ALLUT, no method reproduced
reflectance peaks and troughs associated with seagrass.

A more accessible assessment of the differences between the
inversion methods for estimating R, values was provided by
visual and classification analysis of each of their output R,
images. Visual assessment of true color composite images, such
as that shown for the ALLUT method in Fig. 6d in comparison
to the original image (Fig. 1), provide a quick and qualitative
assessment of the precision (radiometric range) and accuracy
(reproduction of all imaged features). The inversion methods
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Fig. 9. Representative R spectral signatures across three benthic cover types extracted for Lee Stocking Island-Horseshoe Reef and Moreton Bay-Rain-
bow Channel, from the retrieved R, image produced by each approach. Note there is no retrieval for the HOPE model, as it does not create an R, spec-
trum (either directly from a spectral library or through combining spectra) and only estimates whether a pixel is sand or seagrass.
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using less endmember reflectance spectra in each pixel appear
to be level-sliced or classified as true-color images, lacking the
full radiometric precision of the original scene. Comparison of
the seagrass-cover and benthic-substrate cover classification
maps and error matrices provided similar results with more
quantitative measures of differences (Fig. 10). Both the output
seagrass cover classification and benthic-substrate cover maps
provide similar assessments to the visual analysis of true color
R, images, with those methods that allowed more detailed rep-
resentations of benthic features making up a pixel (e.g., ALLUT
and BRUCE) producing maps that more closely resembled the

(a) (b)

/
CASI-2 image

N
A

(c) ALLUT
Z. muelleri

(f) ALLUT
white sand

(e) ALLUT
C. rotundata

Fig. 10. Example images from the northeastern section of the Moreton
Bay-Rainbow Channel CASI-2 image, in an area with pronounced depth
variation and mono-specific patches of several types of seagrass. (a) True
color red-green-blue image; (b) independent classification used for the
accuracy assessment: yellow — Cymodocea rotundata; red — Syringodium
isoetofolium; dark green — Zostera muelleri; gray — sand; black — deepwa-
ter/unmapped; (c) - (f) endmember fraction images derived from the
ALLUT method for (c) Zostera muelleri, (d) Halophila ovalis, () Cymodocea
rotundata, and (f) white sand. Note that (b) uses different classes than the
inversion methods (see text for detail).
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reference maps. The overall accuracy figures confirm this visual
assessment, with seagrass cover overall accuracies of: reference
= 89%, ALLUT = 79%, BRUCE = 84%, CRISTAL = 83%, and
SAMBUCA = 59%; and benthic-substrate cover overall accura-
cies of reference = 89%, ALLUT = 78%, BRUCE = 79%, CRISTAL
= 65%, and SAMBUCA = 52%. In all inversion methods, lower
individual class accuracies were associated with low covers sites
(<40%) and mixed benthic-cover zones. Those inversion meth-
ods that allowed more detailed representations of benthic fea-
tures making up a pixel to estimate values, exhibited lower
classification accuracies in mono-specific areas not represented
by their endmembers. This benthic reflectance comparison
exercise was limited to depths of 3 m. Future comparison stud-
ies would benefit from a more rigorous in situ campaign of col-
lecting a representative benthic reflectance, as well as valida-
tion data from depths right down to the maximum of
substratum visibility, which should have been about 10 m
depth for this part of Moreton Bay. GPS-based mapping of
polygons, preferably three times larger than the remote sensing
pixel size, of homogenous areas of substratum and benthic
cover would significantly aid in comparing and improving
methods of inversion.

Findings from the retrieved to in-situ R comparisons (Fig. 9)
and accuracy assessment for MB classifications (Fig. 10) indi-
cated that those inversions using more detailed representations
of the environmental features contributing to R,, i.e., allowing
more benthic features to make up a pixel, more accurately
retrieved the R, shape, producing more accurate benthic-sub-
strate cover classifications. ALLUT, CRISTAL, and BRUCE
allowed more detailed representations of benthic features mak-
ing up a pixel to estimate R, values, whereas SAMBUCA was lim-
ited to a set of three possible components, and HOPE does not
produce an output R, image. Image-based factors contributing
to the pixel value, including atmospheric noise, water-surface
attributes (e.g., glint), and large variations in water column
properties may also have affected retrieved R, values. The latter
point stresses the need for effective atmospheric and air-water
interface corrections to retrieve reliable R, values.

Processing and parameterization

Significant differences between the inversion methods were
recorded for the time each took to process the LSI and MB
scenes (Table 5), with the differences being due to the com-
plexity of the inversion method used, number of parameters,
how the equation and its solution were written in code, and
the software environment used to implement the code. The
processing speeds or efficiencies for each method and scene
reflect the design of these inversion methods: the HOPE and
CRISTAL were the fastest, followed by ALLUT, BRUCE, and
SAMBUCA. These relative differences in processing speeds
mainly reflect the cost for increased detail and complexity in
the SA or LUT inversion and the number of parameters used,
e.g., contrasts HOPE, BRUCE, and ALLUT's parameters (Table
3), and may also reflect inefficient coding of the RTE inversion
methods. For some algorithms, such as SAMBUCA, a large
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number of additional parameters are calculated for each pixel
to provide more quantitative information on the accuracy and
validity of retrieved bathymetry, substratum visibility, 10D,
and the R, values, including signal-to-noise estimates. The
code types and processing environments may not be optimum
for speed or accuracy for each method. Where required, each
of these codes can now be improved with the knowledge
gained during this comparison exercise.

Discussion

Understanding the current status of optically shallow
water mapping to advance this area of research and imple-
mentation

The assessment presented in the last section provides key
points about how this set of approaches for mapping depth,
water quality, and benthic/substrate information from hyper-
spectral airborne data perform relative to a reference data set
and to one another. These assessments identify a continuum
of methods, ordered by number of input parameters, com-
plexity and duration of processing algorithm and environ-
ment, and accuracy/robustness of output. Limitations of each
method were also established; highlighting areas where future
work is required to further test and refine the algorithms.

No previous studies have provided an intercomparison of
the empirical and semi-analytical inversion methods for map-
ping depth, water quality, and benthic/substrate information.
Empirical approaches, such as those used by Lyzenga (1981),
for estimating depth are mostly limited to optically shallow
waters where uniformly clear water bodies over the same ben-
thos/substrate occur. A confirmation and extension to previ-
ously published work was that the SA and LUT inversion
methods were more robust and accurate than the empirical
approach over a range of depths, water clarities, and ben-
thos/substrate types, and that they can be implemented in rel-
atively simple form with limited parameters (hence limited
need for local data), or in more complex forms, requiring
more locally specific input parameters. The approaches pre-
sented here form a continuum from empirical to SA and LUT
with increasing levels of detail in terms of input parameters.
Potential users of these approaches can use our results to select
the approach suited to their information requirements, type
of environment, type of image data; type of field data, hard-
ware/software capabilities, and personnel expertise. A tenta-
tive listing of approaches from simple to complex is (Lyzenga
1981) HOPE, CRISTAL, BRUCE, SAMBUCA, and ALLUT.

The accuracy and computational efficiency of each inver-
sion method was limited by the complexity of the RTE or its
inversion equation used, level of simplification in the input
parameters, and the software environment in which the mod-
els are run. A number of papers have been published examin-
ing the effects of these factors on individual SA and LUT inver-
sion methods, as outlined in the “Introduction” and “Materials
and methods.” By presenting the results of each method
together, the relative effects of these differences become
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apparent, especially in relation to the number and type of IOP
spectra, R, endmembers, and the methods used to mix R, end-
members. Several image correction processes are likely to have
affected the accuracy of retrieved depth, water quality, and
benthic reflectance, and could not be assessed systematically
in this work. We acknowledge they may have affected the
accuracy of our results and require further investigation:
atmospheric correction, geometric correction, air-water inter-
face corrections, and collection of spatial-temporal matched
IOP and benthic feature and reflectance data.
Implications for future optical shallow water mapping
applications

Two critical implications for future application of optically
shallow water mapping algorithms were identified, relating to
a specification for best practice approaches and outstanding
uncertainties about each of the SA and LUT inversion methods.

In terms of “best practice” for selecting algorithms to map
bathymetry, water quality and benthic/substrate information
in optically shallow coastal waters, there is no set list of best
to worst, as an optimal method also depends on type of envi-
ronment to be mapped; range of depths; range of water clari-
ties; number and type of benthic/substrate features; image
type; field data types and extent; available hardware and soft-
ware; and personnel with processing expertise. Potential users
of bathymetry, water quality, and benthic/substrate informa-
tion in optically shallow coastal waters, including scientists,
resource managers, and defense agencies all have different sets
of constraints within the variables listed above. Our assess-
ment shows that all of the SA and LUT inversion methods pro-
vided relatively accurate data at varying levels of processing
speed and with varying amounts of supporting information.
Several of the approaches can be run very quickly on applica-
tions where limited field data on bathymetry, IOP values and
R, spectra are present — HOPE and CRISTAL. LUT-based
approaches do need more time in parameterizing and creating
the Look-Up Tables. However, more accurate and robust
results are provided by using more locally specific data on
IOPs and R spectra, and allowing more complexity and error
checking in the SA and LUT inversion methods, e.g., BRUCE,
SAMBUCA, and ALLUT. If an aquatic environment contains
both optically deep water, due to increased turbidity or depth,
and optically shallow water, an ideal inversion method needs
to incorporate a method for assessing per pixel whether there
is a measurable water leaving radiance or reflectance signal
from the substratum. This will prevent random estimations of
bathymetry and substrate composition by ensuring the spec-
tral information in the water leaving radiance or reflectance is
sufficient for resolving the desired range of benthic variables.

A number of questions still remain concerning the absolute
accuracy and performance of the inversion methods, espe-
cially in relation to their ability to be applied in operational,
large area mapping, and monitoring capacities from satellite
hyperspectral image data. This assessment only covered air-
borne hyperspectral image data from two different coastal
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sites in the Pacific Ocean and Caribbean Sea, and provides a
guide for future intercomparisons, which should be conducted
as a priority on (1) additional sites with similar airborne and
fully matched field data sets, but variable depth and water
clarities; and (2) the same or additional sites with operational
satellite hyperspectral image data. These additional intercom-
parisons would allow complete assessment of IOP and R, spec-
tra retrieval accuracies, and also show if the algorithms can be
applied in simple and more complex forms across a large num-
ber of sites.

On a separate, but related issue, coastal environments
around the world typically experience significant variations in
water clarities and consequent visibility to the substratum. For
bathymetry and substratum mapping, the approaches covered
here only deal with optically shallow areas, which cannot be
used in for mapping bathymetry and substratum reflectance
in optically deep waters. Passive and active (e.g., side-scan
sonar, multi-beam, etc.) mapping approaches for these areas
exist but are usually boat based and can therefore not be used
in shallow waters (<5.0 m deep). Airborne laser depth sound-
ing operates in approximately the same range as the optical
and nearby infrared methods discussed here. Airborne and
spaceborne hyperspectral imagery perform well in the shal-
lowest waters till they are optically deep. Thus, a complemen-
tarity exists between these methods when large coastal or
coral reef areas need systematic mapping.

Comments and recommendations

Our intercomparison of the most commonly used empirical
and semi-analytic and look-up table inversion methods for
mapping bathymetry, water column IOP, and benthic/sub-
strate reflectance provided either absolute or relative assess-
ments of the accuracy of the retrieved parameters, the time
taken to complete the processing and the main attributes of
each method, which controlled their accuracy and processing
time. Absolute accuracy assessment was only possible with
retrieved depths, various forms of relative accuracy assessment
were used for other parameters. The results provide a unique
test of state of the art shallow water mapping algorithms using
hyperspectral image data and field data from two sites. The
assessment results showed:

1. Accuracy and processing time of each mapping algorithm:
The semi-analytic methods were more accurate than the
empirical approach of Lyzenga (1978), and the accuracy
and processing times were inversely related to the com-
plexity of the models used, with the simplest models,
requiring least input data, but being the quickest with
lower accuracies.

2. Conditions under which existing mapping models do and
don’t work: All SA and LUT inversion methods provided
moderately accurate retrievals of bathymetry, water column
IOP, and benthic/substrate reflectance within optically
shallow areas, < 10m depth, with relatively homogenous
benthic/substrate cover types. More accurate retrievals were
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obtained from the more complex and locally parameterized
methods. Several algorithms incorrectly retrieved substra-
tum parameters in optically deep waters (where there is no
measureable signal from the substratum).

The adaptability of mapping models to two different loca-
tions and two imaging sensors: This was only able to be
assessed in a limited context, between two sites and two
airborne hyper-spectral sensors (PHILLS, CASI-2). Each SA
and LUT inversion model performed well across the two
sites, although there were marked differences in perform-
ance of each model between the sites.

Recommended products and procedures for mapping in
optically shallow waters: Due to the number of variables
that control the nature of spatial information required on
bathymetry, water column IOP, and benthic/substrate
reflectance within optically shallow areas, no single
method or data set can be considered optimal. These map-
ping applications fall in between two extremes: (i) map-
ping where access and in-situ data are not possible; and (ii)
full access to a site with collection of bathymetry, water
column IOP, and benthic/substrate reflectance coincident
with image data collection. Our assessment shows that the
simpler, highly efficient algorithms, such as HOPE and
CRISTAL, suit the first type of application, while SAM-
BUCA, BRUCE, and ALLUT, which are more complex and
require local data and take longer to process are at the
other extreme. A recommended approach is to work
within the limits of the image, field data, and processing
capabilities of the coastal environment and group con-
ducting the mapping work, as outlined in the sections
above. For example, limited bathymetric, water column
IOP, and benthic/substrate reflectance data and image-pro-
cessing ability could use the Lyzenga (1978) approach or
HOPE to estimate bathymetry in environments with
homogeneous substrate/benthos and within the known
depth limits of the algorithms. Identification of depth lim-
its is critical, and it is essential that advanced inversion
methods can identify these nonoptically shallow waters
on a per pixel basis to avoid erroneous bathymetry and
substratum mapping.

International best science practice: Each of the SA and LUT
inversion methods has advantages and disadvantages. Best
practice would be to be as pragmatic as possible in terms of
selecting a processing technique to match the environ-
mental variable to be mapped, along with available image
and field data and processing expertise, and ensure that
this is done within known bounds (e.g., depth limits) of
the image and algorithm combination. An ideal algorithm
would synthesize the advantages of each approach out-
lined above into one approach that will deliver accurate
bathymetry, water column optical properties, and substra-
tum composition, in an efficient programming environ-
ment with as many as possible relevant quality control
procedures built in. This approach should also deal with
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optically shallow to optically deep waters explicitly and be
able to work with sub-optimal earth observation data, as
will often be the case when applied operationally. A re-
analysis of these same or additional sites with satellite
hyperspectral image data with lower spatial and radiomet-
ric resolution would be instructive to establish if these
techniques can be applied over a the global range of
coastal environments.

List of Acronyms
ALLUT: Adaptive Linearized Look-up Trees (s)

BRUCE: The Bottom Reflectance Un-mixing Computation of
the Environment model

CASI-2: Compact Airborne Spectrographic Imager type 2
CDOM: Chromophoric (or Coloured) dissolved organic matter

CRISTAL: The Spectrum-Matching and Look-up-Table inver-
sion method

HOPE: Hyperspectral Optimization Process Examplar model
IOP: Inherent optical property

LSQ: Least squares minimum

LSI: Lee Stocking Island Horseshoe Reef(Bahama's)

LUT: Look up table

MB: Moreton Bay Rainbow Channel

NAP: Non algal particulate matter

SAMBUCA: Semi-Analytical Model for Bathymetry, Un-mix-
ing, and Concentration Assessment

SDI: Substratum Detectability Index
SIOP: Specific inherent optical property

TAFKAA: The algorithm formerly known as ATREM (ATmos-
pheric REMoval)

WOMBAT: coastal Waters and Ocean MODTRAN-4 Based
Atmospheric correction”

List of Symbols

R : Remote-sensing reflectance (above surface L /E))
R¥ ( A) : Sunglint-corrected R .

R(0-): Subsurface irradiance reflectance

r Sub-surface remote-sensing reflectance, or ratio of the
upwelling radiance to downwelling irradiance evaluated just
below the surface

% Remote-sensing reflectance for optically deep waters
rdpinmdel

waters

model ,

r**: Modeled remote-sensing reflectance for an optical shal-

low water body

: Modeled remote-sensing reflectance for optically deep

p(M\): Benthic spectral reflectance
NEAr,

rsE*

2004)

Noise equivalent difference in reflectance (Wettle et al.
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A: Optimization residuum
w(),): Spectral band weighting factor

a[sr!]: Spectral angle between reference spectra and the spec-
tra of the pixel in question as defined in the Spectral Angle
Mapper (SAM, Kruse et al. 1993)

a(\): Absorption coefficient

a;h},()»): Chlorophyll-a specific absorption spectrum

a., .
phy

ag,., (AO): NAP specific absorption at reference wavelength

phytoplankton pigments absorption spectrum

a,,,» NAP absorption spectrum
a,: Absorption coefficient of pure water

P: a,(440), the variable for phytoplankton absorption coetfi-
cient at 440 nm

a,: Absorption coefficient for gelbstoff and detritus (Carder et
al. 1999)

Aoy (440 nm): CDOM absorption coefficient at 440 nm
Apom (AU): CDOM absorption normalized at _,

G: Is a,(440) = gelbstoff and detritus absorption at 440 nm
§: Spectral slope of a,

S

Syaps Spectral slope for NAP absorption coefficient;

cpom: Spectral slope for CDOM absorption coefficient

a;: Specific inherent optical absorption properties (SIOPs) of
j™ constituent with concentration o

B: Scattering coefficient

Bp: Particle backscattering coefficient (b,:b)

b,(\): Backscattering coefficient

b, : Backscattering coefficient of pure seawater

b,,: Backscattering coefficient of suspended particles

X: b, (550) backscattering coefficient of suspended particles at
550 nm

Y: The spectral shape parameter of particle backscattering

b;.: Specific inherent optical backscattering properties (SIOPs)
of jt constituent with concentration G

b,;h_v(%)i Specific backscattering of algal particles at the refer-
ence wavelength of 542 nm

Y ,,: Power law exponent for the algal particles backscattering
coefficient

bar(4,) : Specific backscattering of NAP at the reference wave-

length of 542 nm

*

p, () and p, (M) Spectral benthic reflectances of substratum i
and j

B, and B Fractional cover of substratum i and substratum j
within each pixel

p: . Spectrally normalized sand spectral reflectance
P Spectrally normalized grass spectral reflectance

psed, (\): Measured sediment reflectance spectral end member
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pveg, (A): Measured vegetation reflectance spectral end member
pcor, (A): Measured coral reflectance spectral end member

B, : Fractional weighting coefficient of sediment bottom
reflectance spectra

B, : Fractional weighting coefficient of vegetation bottom

reflectance spectra

B  : Fractional weighting coefficient of coral bottom
reflectance spectra

p*: The 550 nm normalized spectral shapes of a specific bot-
tom type

q;: Fractional cover of substratum i and substratum j within
each pixel

B: Benthic reflectance value at 550 nm

H: Bottom depth

0, : Sub-surface solar zenith angle

0,: Sub-surface viewing angle from nadir

@: Viewing azimuth angle from the solar plan

D€ : Optical path-elongation factor for photons from the
water column

D? : Optical path-elongation factor for photons from the bot-
tom

Q: Subsurface upwelling irradiance to upwelling radiance con-
version factor = is taken to be 4

C,;;: Concentration of Chlorophyll a
Cy.p: Concentration of NAP
C.,, Absorption of CDOM at 440 nm

CDOM*
Y, Power law exponent for the algal particles backscattering
coefficient

Y,,p: Power law exponent for NAP backscattering coefficient
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