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Abstract 
For nearly all natural waters, planktonic organisms will be distributed discretely in the fluid mechanical sense. 

This means that the dynamics of planktonic ecosystems occur among discrete particles, not continuous scalar fields. 
This idea was first suggested by Hurlburt (1990) as an explanation for the paradox of the plankton. However, the 
discrete nature of organism distributions has many important implications for the interpretation and modeling of 
planktonic ecosystems. In particular, mass conservation relationship approaches to the modeling of planktonic pop- 
ulations (i.e., resource competititon and its result, competitive exclusion) will not be valid for all natural conditions. 
A microscale model of competition among individual phytoplankton cells was used to investigate the role of 
discreteness on phytoplankton competitition for a single, limiting nutrient substrate. This scaling analysis demon- 
strates that rates of competitition should increase with cellular abundance and phytoplankton size. For a typical 
eutrophic planktonic ecosystem (relatively large cell abundances and cell sizes), resource competitition among 
individual phytoplankters appears to be likely. However, for oligotrophic conditions (low cell abundances and small 
cells), rates of competitive displacement should be greatly reduced. The microscale competition model does not 
predict that the final outcome of competition will differ from resource competition theory when evaluated over 
thousands of division cycles. However the time required for this outcome to occur may be so long that other 
processes, such as episodic nutrient inputs, imposed diel cycles, and specialization of the grazer assemblage, are 
likely to have a dominant role in determining the species composition of an oligotrophic phytoplankton community. 
This seeming violation of the principle of competitive exclusion occurs because nutrient competition in oligotrophic 
environments is governed by interactions among discrete individuals rather than entire populations. Discreteness in 
plankton distributions also creates an ecological subgrid scale (SGS) problem that must be solved as part of most 
mathematical descriptions of plankton population dynamics. Approaches towards solution of the ecological SGS 
problem are suggested; however, a great deal of theoretical and experimental work remains. 

A microscopic examination of a natural water sample of- 
ten reveals a great diversity of planktonic organisms even in 
the open ocean, where it is presumed that low nutrient con- 
centrations will limit phytoplankton production. Assuming 
that phytoplankton growth is limited by the supply of a lim- 
iting nutrient, the one species that is best able to utilize this 
limiting resource will become numerically dominant; this is 
simply an application of the principle of competitive exclu- 
sion (e.g., Tilman 1982). However, diverse assemblages of 
phytoplankton are generally observed in natural waters, es- 
pecially in oligotrophic regions, implying that many phyto- 
plankton species can successfully coexist while competing 
for at most a few limiting nutrients. Hutchinson (1961) re- 
ferred to this apparent exception to the principle of compet- 
itive exclusion as the paradox of the plankton. 

Laboratory experiments have provided important infor- 
mation concerning the rates at which individual phytoplank- 
ton species compete for a limiting nutrient (e.g., Tilman 
1977; Tilman et al. 1981; Sommer 1983, 1985). For 
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example, Tilman et al. (1981) investigated competition be- 
tween two freshwater diatoms (Asterionella formosa and 
Synedra ulna) for a limiting silicate resource in a semicon- 
tinuous batch culture (Fig. 1). Specific growth rates for S. 
ulna are faster than those for A. formosa at all concentrations 
of the limiting substrate, indicating that S. ulna should al- 
ways outcompete A. formosa for silicate (Fig. la). As ex- 
pected, when the two diatoms compete for silicate, S. ulna 
dominates the final assemblage independent of the initial 
abundances of the competitors (Figs. 1d-f). 

These laboratory results have also been successfully mod- 
eled using resource-based competititon theory (e.g., Tilman 
1982; Tilman et al. 1982; Sommer 1989). Resource-based 
competititon theories predict temporal changes in the con- 
centrations of a limiting resource (here, silicon) for each of 
the relevant pools that may be used to forecast changes in 
the composition of an assemblage. Assuming Michaelis- 
Menten uptake kinetics and a constant density-dependent 
mortality rate (m) hold, the competititon equations for the 
present example (Fig. 1) are 
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Fig. 1. The results of a silicate competition experiment between two freshwater diatoms, As- 
terionella formosa (Af) and Synedra ulna (Su). A. f ormosa forms long spindle-shaped chains of 
cells where each cell is 40-130 µm long and l-2 µm across. S. ulna is a narrow pennate species 
with a length of 50-350 µm and a width of 4-9 µm. Results from the semicontinuous batch culture 
experiments are shown as the symbols, and the results of the resource competition model (Eq. 1) 
are shown as the solid lines. The dilution (mortality) rate of the culture is 0.11 d-l and the vessel 
temperature is 24°C. a) The dependence of the specific growth rate of each species on the silicate 
concentration from separate short-term batch culture experiments. Time-course changes in abun- 
dances for monocultures of A. formosa (b) and S. ulna (c) with silicate concentrations. Final silicate 
values are higher for A. formosa (1.0 µM SiO2) than for S. ulna (0.4 µM SiO2), indicating that S. 
ulna will be the better competitor for silicate. Abundance changes of A. formosa and S. ulna (d-f) 
because of resource competition for three different starting abundances for the two species. As 
expected, S. ulna will dominate the final assemblage when both diatom species are competing for 
the limiting silicate resource. Figure is adapted from Tilman (1982). 

where S is the concentration of the limiting silicate substract, 
CAf and Csu are the concentrations of silicone in A. formosa 
and S. ulna, respectively, VmAf and VmSu are their maximum 
specific uptake rates, and KAf and KSu are their half-saturation 
constants, defined as the silicate concentration where the 
specific uptake rates is one-half of VmAf and VmSu. The pre- 
dictions made by this numerical analogy to the culture ex- 
periment are nearly identical to the experimental results (see 
the lines in Fig. 1; where abundance is calculated using mean 
cell quotas). This comparison illustrates that resource-based 
competition models work well for predicting the results of 
these laboratory based experiments. However, natural com- 
munities are often characterized by coexistence of many 
phytoplankton species. This is Hutchinson’s (1961) paradox. 

Many hypotheses have been forwarded to explain the 
cause of the paradox of the plankton. Some have suggested 
that the large observed phytoplankton diversity is a conse- 
quence of simultaneous limitation by many resources (e.g., 
Peterson 1975; Tilman 1977, 1982). Although this multi- 
source limitation is possible, it is unlikely because there are 
often more algal species observed than possible limiting nu- 
trients (e.g., Hutchinson 1961). It has been suggested that 
coexistence may be the result of the infinite number of pos- 
sible ratios of resource concentrations that can occur in 
evolving natural system (e.g., Tilman 1982). Others have 
postulated that the extensive phytoplankton diversity may be 

created by specialization of the grazer community (Paine 
1966). Photocycles can affect nutrient uptake rates and there- 
by be a factor leading to coexistence (Brzezinski and Nelson 
1988). Temporal variations in the external supply of nutri- 
ents may also influence rates of exclusive displacements 
(e.g., Hutchinson 1961; Sommer 1984, 1985). Although a 
high degree of temporal stochasticity in the new nutrient 
supply exists for all natural waters, it remains unlikely that 
the necessary conditions occur for all times and all environ- 
ments. Others still have suggested that the inherent patchi- 
ness in phytoplankton distributions enables competitive dis- 
placements to occur for individual patches (Richerson et al. 
1970). In effect, Richerson and his colleagues suggest that 
each water parcel comprises an autonomous and distinct en- 
vironment in which the plankton reach their temporal equi- 
librium. There have also been suggestions that the random 
sorting of phytoplankton cells by turbulent eddies can pro- 
mote coexistence (Kemp and Mitsch 1979). 

Of the wide variety of hypotheses presented attempting to 
explain Hutchinson’s paradox, each has some merit and 
some defect. It is not the primary intent of this contribution 
to develop another explanation for the paradox of the plank- 
ton but rather to investigate the role of microscale interac- 
tions within a natural phytoplankton community and their 
effect on rates of resource competition. I demonstrate here 
that nearly all natural phytoplankton populations are distrib- 
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uted discretely in the fluid mechanical sense. Hence, the re- 
source-based competititon expressions (Eq. la-c), which are 
essentially conservation of mass approaches for describing 
phytoplankton dynamics, will be valid only rarely for natural 
waters. Scaling analyses are used to develop a discrete-based 
microscale model of phytoplankton competition. These re- 
sults indicate that phytoplankton cells are nearly always too 
far apart from one another to directly interact with their 
neighbors on an instantaneous basis. Only for large phyto- 
plankton cells at high abundances will adjacent cells begin 
to interact with their neighbors. In particular for oligotrophic 
environments, discreteness will reduce rates of species in- 
teraction from estimates based upon vital rates alone. Dis- 
creteness may not affect the final outcome of competititon 
when assessed over many generations. However, it is likely 
that other processes, such as those listed above, will have 
the dominant role in determining phytoplankton community 
composition in oligotrophic waters. I also discuss how the 
effects of discreteness need to be addressed for the modeling 
of planktonic ecosystem dynamics. 

Spatial scales for distributions of organisms 

Implicit in the mathematical statement of resource con- 
servation is the assumption that changes in plankton popu- 
lation density can be modeled in terms of the numerical 
abundance of planktonic organisms within a given volume. 
This volume must be large enough so that determinations of 
organism abundance (number per unit volume) are statisti- 
cally stable. The uncertainty in a mean estimate decreases 
with the square root of the number of individual events 
counted, based upon Gaussian statistics. Hence, statistically 
stable estimates of plankton abundance, P,(t), will occur 
when a large number of individuals are counted or, equiva- 
lently, when a large enough water parcel, VP, is considered. 
Mathematically, the calculation of plankton number density 
can be expressed as 

where zv(t) denotes the spatial location of the jth cells of 
the ith species, 6(? - 2,) is the Dirac-delta function, which 
is equal to zero except at location 2, when it is equal to 1, 
and the summation is over the total number of cells (Ni) of 
species i in the volume Vp. In essence, Eq. 2 “counts” the 
number of organisms within the volume Vp. The linear length 
scale that characterizes this volume, Vp, I denote as the par- 
cel scale, Lp. 

A conceptual depiction of the relationship between Lp and 
other relevant scales that characterize the spatial distribution 
of a population of organisms is shown in Fig. 2. Most no- 
table is the length scale, which characterizes the size of the 
organisms, the equivalent spherical volume diameter (Dee,, ), 
and the mean separation scale between adjacent organisms, 
h. The mean separation scale, equivalent to the mean free 
path, is defined here as the linear dimension of the cubic 
volume occupied by a single phytoplankter and is equal to 
P-“, where P is the plankton abundance. For a random (Pois- 
son) distribution of particles. the expectation value for A is 

Fig. 2. A comparison of the uncertainty in volume averaged 
estimates of plankton abundances as a function of length scale. 
Length scales indicated are the cell’s diameter (Dee,, ), the mean sep- 
aration scale between organisms (A), the parcel scale (L,,), and the 
macrolength scale over which the organism’s population density 
varies due to biological and physical processes (I). Our depiction 
of the uncertainty levels in mean abundance estimation is only an 
educated guess. The lower panel illustrates conceptually the number 
of particles sampled when viewed at the given length scale. 

0.55P-g (Rothschild 1992). This small difference in the def- 
inition of mean separation scale is unimportant in the order- 
of-magnitude scaling analyses explored here. Many organ- 
isms will be counted over a scale Lp, whereas very few will 
be found over a scale A (Fig. 2). Only rarely will a plankter 
be encountered when examined at a scale of the size of the 
organism, Dee,,. The scale over which the organism’s abun- 
dance varies is denoted as l, and this scale-represents the 
tens of centimeters to thousands of kilometers scales over 
which we want to assess and predict changes in plankton 
population density. 

Variations in organism abundance viewed on scales larger 
than Lp will appear continuous, whereas when spatial POP- 
ulation densities are viewed on scales smaller than Lp they 
will appear discrete. This distinction can be understood using 
the analogy of a microscope. If one were to examine plank- 
ton distributions with a microscope that was able to focus 
only on spatial scales 2-L,,, the distribution of organisms 
would appear as a great blur. If this microscope focuses on 
objects much smaller than Lp, individual organisms will be 
discerned. The lower four panels of Fig. 2 represent this 
microscope analogy. 

Critical to application of resource competititon expres- 
sions or other similar population systems is the determina- 
tion of the parcel scale Lp. An estimate for the parcel scale 
may be made by determining the smallest volume that con- 
tains a sufficient number of cells to allow an accurate de- 
termination of cell abundance. As a first approximation, the 
size of Lp can be determined by evaluating the volume oc- 
cupied by 400 organisms. The choice of 400 particles is 
based upon counting statistics, where accurate abundance es- 
timates come from counting large numbers of cells (~1% 
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Table 1. Largest observed phytoplankton abundances from a variety of aquatic environments. Only the largest concentrations are shown; 
1 ml-1 is equal to 106 m-3. The maximum abundances shown were from a survey of more than 50 studies from a variety of aquatic 
ecosystems. For contrast, data from the laboratory simulation shown in Fig. 1 are included. 

Species P (m-3) P (ml-1) Region, reference 

counting error; e.g., Guillard 1973). If the cells are distrib- 
uted in a cubic matrix, each separated by their mean sepa- 
ration scale (h), 400 cells occupy a volume of about 7 
(=400’h) mean free paths on a side. Thus, the parcel scale, 
Lp, is equal to 

The size of the parcel scale is inversely related to abun- 
dance. A parcel scale for an organism observed at an abun- 
dance of 1 m-3 will be 7 m, whereas organisms with an 
abundance of 1 ml-1 ( l06 m-3) will be viewed as a contin- 
uous field if evaluated using a spatial scale larger than 7 cm. 
Values of Lp will become quite large if the plankter is found 
only rarely; however, there will be a lower limit to Lp values 
in nature given by the highest observed abundance. Extreme- 
ly high phytoplankton abundance observations range from 5 
× l05 to l06 ml-1, which corresponds to a minimum parcel 
scale of ~500 µm (Table 1). Thus, values of Lp for natural 
populations of phytoplankton will be >500 µm. The maxi- 
mum cell abundances given in Table 1 were culled from a 
variety of aquatic ecosystem investigations (although a rec- 
ognized oceanographic bias remains). 

By comparison, the largest Lp values for nutrient mole- 
cules are <l0 µm, which are considerably less than the 
smallest Lp scales (>500 µm) found for natural phytoplank- 
ton distributions (Table 2). These maximum Lp values are 
found in oligotrophic regions where recent analytical tech- 

niques have enabled the determination of nutrient concen- 
trations as low as 1 nM (Table 2; e.g., Garside 1985; Brze- 
zinski 1988). Thus, the largest parcel scale for nutrient 
molecules is typically 5 µm (Table 2), about 100 times 
smaller than 500-µm minimum Lp value expected for phy- 
toplankton distributions (Table 1). 

Planktonic organism populations as fluid variables 

A fluid is a collection of molecules or particles whose 
mass, motion, and composition can be assessed by exam- 
ining a small volume, a fluid element, rather than requiring 
a particle-by-particle (or molecule-by-molecule) analysis 
(e.g., Batchelor 1973; Tritton 1988). Thus, the dynamics of 
a fluid system can be completely diagnosed using macro- 
scopic, or fluid, variables. Fluid variables are continuously 
distributed in space and time, and their spatial gradients of 
arbitrary order will also be continuous. Water is obviously 
a fluid. The billions and billions of molecules in a just 1 µl 
of water (actually, ~3 × 1019) illustrate that the effects of 
individual molecular trajectories, such as Brownian motions, 
are unimportant for evaluating the trajectory of this 1 µl of 
water as they are effectively averaged out over the many 
molecules considered. Hence, water itself satisfies the con- 
tinuum hypothesis and is strictly a fluid. 

Application of conservation of mass enables prognostic 
relationships for the concentration of any fluid constituent 
(Ci(~, t)) to be developed, or 

Table 2. Smallest observed nutrient concentrations from a variety of aquatic environments. The minimal nutrient concentrations shown 
were from a survey of low-level nutrient determinations from a variety of aquatic ecosystems. Because it has the lowest possible nutrient 
conditions, which is the focus here, the observations shown are from the oligotrophic Sargasso Sea. 
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Table 3. Typical flow length scales for various physical environments. Turbulent kinetic energy dissipation rates are based upon cruise 
averages of direct observations. 

Environments Reference 

Oakley and Elliott 1982 
Imberger and Ivey 1991 
Gregg 1989 
Imberger and Ivey 1991 
Gregg 1989 

where z(?, t) is the three-dimensional velocity vector, V is 
the gradient operator (=ia/& + jS3y + k&?z), and Gi(. . .) 
represents the net production of Cj(?, t) as a function of 
limiting resource concentrations (S,, . . . , S,) and resource 
concentrations found within each species (C,, . . . , C,,,). This 
expression is identical to conservation relationships devel- 
oped for heat or solute concentration (e.g., Tritton 1988) and 
states that local changes in the concentration of species i(K,l 
dt) are due to advection by the flow field (Z.VCJ and net 
production (Gi(. . .)). 

For a distribution of organisms to be considered a fluid 
variable and thereby satisfying the continuum hypothesis, 
the parcel scale must not be larger than any other relevant 
scale in the flow. Implications of this statement can be ad- 
dressed by examining Eq. 4. First, continuous estimates of 
VCi can be made only over spatial scales larger than L,. 
Hence, advection can be quantified only over scales larger 
than Lp. Second, the flow field will act to advect individual 
organisms rather than move the entire population contained 
in Lp, if Z@, t) varies on scales much smaller than LP. Fi- 
nally, if the limiting resource concentration, S,, varies over 
scales smaller than LP, neighboring organisms can experi- 
ence differing substrate concentrations and hence different 
net production rates (Gi(. . .)). Obviously, if these conditions 
are not met, the application of a conservation relationship 
such as Eq. 4 will not be valid. 

The comparison of a species’ parcel scale with the small- 
est relevant environmental length scale in the flow, Lflow, pro- 
vides a simple criterion for whether the population may be 
considered a fluid variable. That is, if 

Naturally occurring spatial scales in aquatic flows 

Aquatic flows may be characterized by a myriad of length 
scales from basin-scale circulation patterns to microscopic 
scales, where molecular processes are dominant. Relevant to 
the present discussion, turbulent energy dissipation processes 
impose several important flow scales and hence are relevant 
to the present discussion of the interactions among plank- 
tonic particles (e.g., Tennekes and Lumley 1972; Denman 

and Gargett 1983; Gregg 1987; Imberger and Ivey 1991). 
For example, the Kolmogorov scale (LK) may be used to 
characterize the size of the smallest turbulent eddies in a 
flow (e.g., Tennekes and Lumley 1972), which are thought 
to have a role in the feeding efficiency of zooplankton (cf., 
Rothschild and Osborn 1988; Granata and Dickey 1991). 
The Kolmogorov scale is defined as the scale where molec- 
ular viscous and turbulent inertial forces are the same mag- 
nitude in affecting the momentum of the flow field or 

(6) 

where v is the kinematic viscosity of water (10-6 m2 s-l) 
and E is the turbulent kinetic energy dissipation rate (in m2 
s-3). Turbulence kinetic energy dissipation rates found in 
natural waters range from 10-4 to 10-9 m2 s-3 (Table 3), 
where large E values typically occur near a boundary, the 
air-sea interface or benthos, and smaller values are found 
within the quiescent ocean interior (e.g., Gregg 1987, 1989). 
Observations suggest that the size of the smallest turbulent 
eddy will be about 10 times greater than LK (e.g., Gibson 
1980; Oakey and Elliott 1982). Thus, turbulence will act to 
advect materials differentially for scales greater than ~10 LK. 
For a range of aquatic environments, typical values for 10 LK 
range from 3,200 to 56,000 µm (Table 3). 

The smallest scale where turbulence creates fluctuations 
in the nutrient field corresponds to the Batchelor scale, LB. 
The Batchelor scale is defined as the scale where the effects 
of Kolmogorov scale eddies on the nutrient field are bal- 
anced by the molecular diffusion of the nutrient (e.g., Batch- 
elor 1959; Tennekes and Lumley 1972) or 

(7) 

where K is the molecular diffusivity of the nutrient (1.4 X 
10-9 m2 s-l for NO; in seawater, which is similar to values 
for other dissolved ions). The derivation of Eq. 7 requires 
that the Schmidt number for the nutrient, defined as the ratio 
of molecular viscosity to diffusivity, is much greater than 1 
(Batchelor, 1959). The Schmidt number for nitrate in sea- 
water is ~700. For present purposes, the Batchelor scale 
represents the smallest scales where spatial variations in a 
passive scalar will be found (assuming that it is a fluid vari- 
able). A reasonable upper bound for the scale of the smallest 
nutrient micropatch is about 10 times LB (e.g., Lazier and 
Mann 1989). Values of 10 LB for nitrate in seawater range 
from 120 to 2,200 µm for a wide range of environments 
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Fig. 3. Comparison between phytoplankton parcel scale (L,) and ranges for the nutrient m~ro- 
patch length scale (L.,,,) for typical aquatic environments. If L, < L,,,, the phytoplankton are 
distributed continuously; if L,, > L,,,, they are distributed discretely. Values of Leow decrease with 
increasing turbulent kinetic energy dissipation rates (e). The range of Learn values shown here is 
taken from Table 3. 

(Table 3). and the larger nutrient micropatch scales corre- 
spond to environments with the lowest turbulent activity. 
The scale of the smallest nutrient micropatch (10 LB) will be 
much smaller than the scale of the smallest turbulent eddy 
(10 L,; Table 3). Hence, 10 & will represent the smallest 
relevant flow scale, L,,,, for phytoplankton resource com- 
petition. For other ecological problems, other characteristic 
length scales may be more relevant (cf. Lear - 10 & for 
zooplankton feeding). 

In contrast to natural waters, turbulence levels in labora- 
tory culturing apparatus are generally many orders of mag- 
nitude higher. A conservative estimate of the rate of kinetic 
energy dissipation in a continuously stirred, l-liter culturing 
vessel can be made by assuming that 10 W of power are 
required to drive a magnetic stir bar and that only 10% of 
this electrical power is converted into fluid motion. The re- 
sulting kinetic energy dissipation rate estimate is 1 W kg-’ 
(1 m2 SK?). This rate of turbulent energy dissipation is rough- 
ly one million times larger than those found in natural waters 
(Table 3) and corresponds to a nutrient micropatch scale of 
approximately 12 pm. Only a few laboratory experiments 
have been performed to simulate environmentally relevant 
turbulence levels (Pasciak and Gavis 1975; Marrad et al. 
1990; Thomas and Gibson 1990). 

Can phytoplankton populations be considered fluid 
variables? 

The answer to the above question can be found by ex- 
amining the relationship between our estimates of L, and 
L Rnw as a function of numerical abundance (Fig. 3). The di- 
agonal bold line in Fig. 3 is the relationship between L, and 
abundance (Eq. 3), and the horizontal shaded region repre- 
sents the smallest scales characteristic of nutrient micro- 

patches (L,,,; Table 3). If the parcel scale, L,, is much less 
than LRaw, the fluid continuum criterion (Eq. 5) is satisfied 
and the population is distributed continuously. If not, the 
distribution is discrete. From an examination of Fig. 3, cells 
found at abundances greater than 7 X 10’ ml-’ will always 
be distributed continuously, whereas populations with abun- 
dances less than 2 X 10“ ml-’ are discrete. For a range of 
cell abundances (2 X 1On to 7 X 10’ ml-‘), the nature of 
the distribution is dependent upon the turbulent activity of 
the environment, where the smallest L,,, values correspond 
to the highest turbulence levels. 

Only for the greatest observed phytoplankton abundances 
(Table 1) will values of L9 approach those for LRow (Fig. 3). 
Thus for nearly all environments and times, phytoplankton 
cells must be treated as discrete particles. This result is not 
suqxising because there are many species of phytoplankton 
that are larger than the minimum nutrient micropatch scale. 
The lowest observed nutrient concentrations indicate that nu- 
trient molecules are distributed continuously for all aquatic 
environments (Table 2). Therefore, phytoplankton cells are 
discrete particles utilizing a continuous nutrient field about 
them. 

Discreteness in phytoplankton distributions has many im- 
plications. Most importantly, it means that formulations of 
phytoplankton growth and interaction based upon assuming 
that planktonic organisms are fluid variables (such as Eq. 4) 
are inappropriate for modeling phytoplankton population 
variations in natural waters. These models assume a priori 
that phytoplankton populations are distributed continuously 
where every cell will uniformly and instantaneously feel the 
effects of its neighbor. However, because estimates of L, 
(and A) are almost always smaller than LRoiu, adjacent phy- 
toplankton cells will be found in different nutrient micro- 
patches. These microscale spatial variations will greatly in- 
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fluence the manner m which organisms interact with the 
nutrient field and with each other. 

Scales of nutrient micropatches will not be the relevant 
flow scales for evaluating all problems. For zooplankton 
feeding, the relevant L,,, is the smallest scale over which 
turbulence randomly advects prey particles, or - 10 LK (Eq. 
6). Typical values of 10 LK range from 3,000 to 50,000 wrn 
(Table 3). Hence, zooplankton or their prey will be contin- 
uously dishibuted if their concentration is >lO” ml-l, where- 
as they will be discretely distributed if their abundance is 
<lo ml-‘. The range of abundances between these limits 
(10-10’ ml-‘) will be continuous or discrete depending upon 
the ambient turbulence intensity. Thus, zooplankton organ- 
isms themselves probably will be distributed discretely, 
whereas their prey (phytoplankton) are likely to be distrib- 
uted continuously for this particular application. The reso- 
lution of this particular issue is beyond the scope of this 
contribution but is presented to illustrate the discrete nature 
of many aquatic ecosystems. 

Pwameterizing discreteness 

To understand properly phytoplankton competition in nat- 
ural waters, the effects of discreteness must be taken into 
account. Although it is straightforward to simulate on a com- 
puter the dynamics of every phytoplankton cell in a numer- 
ical ecosystem, the computational task would be gargantuan. 
For example, a rather small lake (1 ha by 1 m deep, a volume 
of 1On m’) with an average organism abundance of 1 ml-l 
will contain 1O’O distinct cells. A particle-following model 
for this small domain would daunt even the most capable 
supercomputer (e.g., Reynolds 1989). Clearly, the applica- 
tion of an individual-based simulation model for the Atlantic 
Ocean (a volume of -3.5 X 10” m’) is unrealistic. 

An alternative approach is to parametaize the effects of 
discrete interactions among individuals using population-lev- 
el information. This approach would allow the community 
dynamics to be predicted while accounting for, maybe only 
in a statistical sense, the effects of discreteness. This prob- 
lem is, in essence, a subgrid scale problem where the effects 
of unresolved discrete individual interactions on the larger, 
resolved spatial scales are parameterized in terms of com- 
munity-level parameters. The present problem is analogous 
to the turbulence subgrid scale problem where the effects of 
small-scale mixing are parameterized in terms of eddy trans- 
port coefficients, which arc often pammetexized in terms of 
flow field variables (e.g., Gregg 1987; Lesieur 1987; Reyn- 
olds 1989; Siegel and Domaradzki 1994). 

One approach to developing a community-level parame- 
terization of discreteness would be to assess the spatial ex- 
tent and time scale over which a single planktonic organism 
can influence the environment of its neighbors. Relevant to 
phytoplankton competition, the interplay between nutrient 
uptake and molecular diffusion creates a deficit in the nutr- 
ent field about a cell (e.g., Munk and Riley 1952). This local 
nutrient deficit can be used to define the extent of the sphere 
of influence that each phytoplankter instantaneously has on 
its immediate environment. If adjacent particles have over- 
lapping spheres of influence, then the phytoplankton cells 

DV;, < I DVh> 1 

Fig. 4. The interaction of “spheres of influence” for a com- 
munity of planktonic organisms. The situation on the right shows 
an example where the cell’s sphere of influence (D,,,) is of the same 
order as the mean free path separating panicles (A). For this case, 
spheres of influence overlap and adjacent organisms can compete 
for resources. On the left is the situation where D,,>, is less than A. 
Here, adjacent spheres of influence do not overlap and competition 
is not predicted. 

will be competing directly and instantaneously with one an- 
other for a local pool of nutrients (Fig. 4), whereas if their 
spheres of influence do not overlap, they will not compete 
directly. This idea of discrete phytoplankton competition was 
first suggested by Hulburt (1970). 

This concept of overlapping spheres of influence can be 
evaluated using a single parameter, the spatial distribution 
variable (DVJ. DV, is defined as the ratio of the diameter 
of a particle’s sphere of influence (D,,J to the mean free path 
between adjacent particles (h), or 

If DV, is >l, adjacent spheres of influence are overlapping 
for all time periods and neighboring planktonic organisms 
will compete with one another, whereas if estimates of DV, 
are <l, adjacent cells will be too far apart to compete ef- 
fectively and they will not feel the effects of their neighbors. 
However, when evaluated over longer time scales (such as 
a division cycle), an organism may still be influenced by its 
neighbors. To quantify the relative importance of time scales, 
a temporal distribution variable (DV,) is defined as the ratio 
of a characteristic biological time scale for the organism 
(rblo) to the time scale that an organism will feel the effects 
of its neighbors, (7J, or 

If the value of DV, is 51, the organism’s biological time 
scale is longer than the temporal scale that characterizes the 
influence of its neighboring cells. Hence, adjacent organisms 
will be able to feel the effects of each other over the organ- 
isms’ intrinsic time scale. However, if DV, is much less than 
1, then neighboring organisms will be independent of one 
another over a single generation. Alternatively, values of DV. 
may be defined using the ratio of relevant physical and bi- 
ological nutrient transport rates. 
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The interrelationship of the two DV parameters should be 
apparent. If DV, is > 1, adjacent organisms can influence one 
another at every instant of time and the value of DV, is not 
relevant. If values of DV, are < 1, neighboring cells will not 
affect each other on a continual basis. The influence of 
neighboring cells may still be felt when assessed over longer 
time scales, such as a division cycle, resulting in values of 
DV, that are order 1. 

The scaling arguments presented here provide a set of 
useful parameters for characterizing phytoplankton compe- 
tition on the time and space scales of the individual organ- 
isms. In many ways, these parameters describe the effects 
of discreteness in planktonic ecosystems similar to how val- 
ues of Reynolds numbers describe the turbulent vs. laminar 
nature of a flow field. As presented, the definitions of the 
spatial and temporal distribution variables are general and 
may be easily extended to other ecological and demographic 
systems. 

Parameterizing distribution variables for 
phytoplankton competition 

Application of the DV parameters to a natural ecosystem 
requires order of magnitude estimates for Dsoi, Tag,,, and rh. 
At the scales of individual organisms, the physical transport 
of dissolved nutrients will be regulated by low Reynolds/ 
Peclet number dynamics where molecular diffusion process- 
es are dominant (e.g., Vogel 1981). This is fortunate because 
diffusion processes are often straightforward to diagnose 
theoretically. 

To estimate the spatial distribution variable (DV,) param- 
eter, the diameter of a organism’s sphere of influence (D,,,) 
and its mean separation from neighboring cells (A) must be 
determined. The organism’s abundance provides an estimate 
of A (P- “); however, it is difficult to unambiguously define 
Dsoi. For the case of phytoplankton competition, values for 
Dsoi can be estimated by determining the extent of the dif- 
fusion-driven boundary layer about a cell. This boundary 
layer is created by a balance between the diffusive transport 
of nutrients to the cell wall and the cell’s intrinsic nutrient 
uptake rate. In general, this length scale is a function of the 
size and shape of the plankter, its uptake kinetics, motility, 
and sinking characteristics, the ambient turbulence intensity, 
and the molecular diffusivity of the nutrient (e.g., Munk and 
Riley 1952; Pasciak and Gavis 1974, 1975; Berg and Purcell 
1977; Sommer 1988; Lazier and Mann 1989). For the sim- 
plest case, a spherical, motionless cell is absorbing nutrients 
at a rate specified by the cell’s nutrient transport system and 
the nutrient concentration at the cell wall. At steady state, 
the cell’s nutrient uptake rate is balanced by the transport of 
nutrient to the cell wall by molecular diffusion. The radial 
distribution of nutrient substrate, S(r), may be determined 
by assuming that the radial divergence of the diffusive nu- 
trient transport is zero [d(r2&!?/dr)lar = 0] or by solving for 
S(r), 

where r is the radial distance from the center of the cell, R 

r 

Fig. 5. The sphere of influence around a single phytoplankter. 
The diameter of the sphere of influence (D,,,) is defined here as 
twice the radial distance (Y& where the local nutrient concentration 
is 90% of the ambient or far-field nutrient concentration (SJ. 

is the radius of the cell, S(R) is the nutrient concentration at 
the cell wall, S, is the ambient or far-field nutrient concen- 
tration, and AS is the nutrient deficit at the cell wall because 
of cellular uptake [AS = S, - S(R)]. This expression is valid 
only for r 2 R (Fig. 5). A convenient measure for Dsoi is 
twice the radial distance (r90), where the concentration of 
nutrient is 90% of the far-field concentraiton [S(r,,) = 
O.SOS,]. This length scale definition is analogous to the def- 
inition of a boundary layer thickness (e.g., Batchelor 1973) 
and is equal to 

(10a) 

under the provision that r90 is greater than the radius of the 
cell (Fig. 5). Using this definition, the diameter of a cell’s 
sphere of influence, Dsoi, may be determined using the di- 
ameter of the spherical cell, Dcell, or 

DA = loDcell ($f) = IODcc,,[sm -Sf(R)], (l0b) 

where Dsoi 2 Dcell. Thus, Dsoi is directly proportional to the 
normalized nutrient deficit created at the cell wall and the 
diameter of the cell. If S(R) is equal to zero, Dsoi will be at 
its maximal extent (lODCcl,), whereas the smallest possible 
Dsoi equals Dcell. Here, I assume that Dsoi is equal to 5D,,,,. 
The error caused by this assumption will be small because 
of the limited range of possible values for Dsoi (Dee,, 5 Dsoi 
5 lo&,, 1. 

The diffusion-based theory presented applies only in the 
case of motionless spherical cell in a quiescent fluid. Rela- 
tive motions of the cell will thin the diffusive boundary lay- 
er, increasing the rate of supply of nutrients to the cell wall. 
These relative motions may be driven by cellular motility, 
Stokes sinking, turbulence-generated shears on the scale of 
the cell, or simply fluid mechanical slippage of a cell through 
its water parcel (e.g., Munk and Riley 1952; Pasciak and 
Gavis 1974; Berg and Purcell 1977; Sommer 1988; Lazier 
and Mann 1989; Granata and Dickey 1991; Siegel and 
Plueddemann 1991). The net effect of these relative motions 
will be to reduce the extent of the diffusive boundary layer, 
thereby reducing Dsoi. Because Dsoi cannot be less than Dcell, 
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Abundance (# m-3) 

Fig. 6. Relationship between the spatial distribution variable 
(DV,) and cellular abundance for cell diameters ranging from 1 to 
1,000 µm (Eq. 11). The different cell diameters are shown by the 
diagonal lines. If DV, > 1, direct competition for resources among 
neighboring cells can occur. However, if DV, < 1, direct competi- 
tion is not expected. 

the estimate of 5D,,,, for Dsoi is probably a slight overesti- 
mate. 

Using the above estimate of Dsoi, values of the spatial 
distribution variable (DV,) for phytoplankton competition in 
natural waters can be determined as 

DV, = 5D,,,,p”, (11) 
where P is the phytoplankton abundance (in m-3). A graph- 
ical representation of Eq. 11 is given in Fig. 6 for cell di- 
ameters ranging from 1 to 1,000 µm. Large values of DV,, 
occur when large cells are found at great abundances, which 
occurs rarely for naturally phytoplankton populations (Fig. 
6, Table 1). For example, picoplankton cells (Dee,, ~ 1 µm) 
will compete only if their abundance is >109 ml-1 (Fig. 6), 
which is several orders of magnitude greater than any of the 
highest observed abundances (Table 1). Thus, picoplankton 
cells will infrequently compete with one another for local 
nutrient supplies (although the question of how infrequently 
remains). However, values of DV,, for 100-µm-diameter cells 
approach 1 at an abundance of 1,000 ml-1. Net phytoplank- 
ton have been observed at these abundances (Table l), sug- 
gesting that competition can be direct and instantaneous. 

Phytoplankton abundances used in most laboratory com- 
petition experiments often result in unrealistically high DV, 
values. For example, the DV, value for the final state of the 
competition experiment shown in Fig. 1 is approximately 1 
(based upon Dcell = 100 µm and P = l04 ml-1). Laboratory 
simulations are often high DV,, environments and will not 
correctly represent natural conditions. 

Determination of the temporal distribution variable (DV,) 
requires knowledge of two relevant time scales; a character- 
istic biological time scale for the organism (7bio) and the time 
required for a neighboring organism to feel the effects of its 
neighbors (7J. For the case of nutrient competition, esti- 
mates of DV, can be better stated as the ratio of relevant 

rates; the rate at which neighboring cells are intercepting a 
given cell’s potential nutrient supply in relation to the cell’s 
intrinsic nutrient demand over its division cycle, or 

Dv = intercepted nutrient supply 
7 cellular nutrient demand 

(12) 

If DV, is much less than 1, adjacent cells will not influence 
the nutrient supply expected by a cell during its division 
cycle. However, if DV, approaches 1, neighboring cells will 
have reduced significantly the nutrient requirement of a phy- 
toplankter. 

A cell’s nutrient demand can be estimated knowing the 
amount of nutrient required to undergo a division and the 
cell’s characteristic division time (7div). Alternatively, at 
steady state a cell’s nutrient demand must balance the dif- 
fusive transport of nutrients towards the cell. The diffusive 
nutrient transport rate at the cell wall (in mole N per unit 
time) is equal to mD$,, (- K~S/&-~+,~,, ), which can be ex- 
pressed as ~~KD,,,,AS using Eq. 9. An estimate of the cel- 
lular nutrient demand intercepted by Nn neighboring cells 
can also be estimated using diffusion theory. The diffusive 
flux at a distance h from a given cell is defined as -K&Y&-~,.,,, 

which can be expressed as KASD,,,,/(~A~) (in mole N per area 
per unit time). Each neighboring cell will intercept this flux 
with a cross-sectional area of ~D~bi/4 (or 25/4~D&,, using the 
approximation, Dsoi = 5D,,,,). Thus, the estimate for the nu- 
trient demand intercepted by Nn neighboring cells is (25/ 
8)N,,rr~bSD&,, /A2. The resulting estimates for DV, are 

where the relationship between abundance (P) and mean free 
path is used (h = P +). In the following, I assume that there 
are six neighbors (NJ surrounding the cell consistent with 
our method for estimating A. 

For the case of phytoplankton competition for a limiting 
nutrient substrate, estimates of the value of DV, can be pa- 
rameterized as functions of the phytoplankton abundance, P, 
and the diameter of a cell, Dcell (Fig. 7). Again, large values 
of DV, occur when large cells are found at great abundances. 
For relatively large phytoplankton cell sizes, which often 
characterize eutrophic environments (Dee,, ~ 100 µm), val- 
ues of DV, become appreciable (0.01) for abundances greater 
than ~30 ml-1 and are order 1 when P is ~30,000 ml-1. 
Net phytoplankton are often observed at abundances > 1,000 
ml-l and rarely with abundances >10,000 ml-1 (Table l), 
which suggests that competition for a limiting nutrient sub- 
strate can occur for large phytoplankton species (Dccl, 2 100 
µm) at fairly high abundances (P L 1,000 ml-l). However, 
picoplankton cells (Dee,, = 1 µm) will only begin to compete 
if their cellular abundances are greater than ~5 × 107 ml-1 
(Fig. 7). Picoplankton abundances this large are not found 
in nature (Table l), and picoplankton-size cells will only be 
marginally influenced by their neighbors throughout their di- 
vision cycle. 

The two DV scaling parameters together demonstrate that 
rates of resource competition will be, to first order, a function 
of the phytoplankton abundance and size of the phytoplank- 
ton cells in question. Ecosystems characterized by larger 
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Fig. 7. Relationship between the temporal distribution variable 
(DV,) for phytoplankton-nutrient competition and phytoplankton 
abundance for cell diameters ranging from 1 to 1,000 µm (Eq. 13). 
It is assumed that there are six neighbors (Nn) surrounding the cell. 
If DV, approaches 1, neighboring cells can affect each other’s nu- 
trient supply over a division time. However, if DV, < 1, competi- 
tion is not expected. 

phytoplankton species (Dcell L 100 µm) are likely sites for 
nutrient competition when abundances are greater than ~ 100 
ml-1. However, for oligotrophic ecosystems dominated by 
small phytoplankton cells, rates of competition will be great- 
ly reduced from those predicted by resource competition the- 
ory (Eq. la-c). 

Scenarios for discrete resource competition 

The microscale phytoplankton competition model intro- 
duced here makes some important predictions for the role of 
phytoplankton competition in natural waters and provides a 
simple resolution for Hutchinson’s (1961) paradox of the 
plankton. To simplify the following discussion, I define, 
without proof, a community-based DV parameter. XDV, 
which will account for the combined effects of DV, and DV, 
for a community of phytoplankton. The exact method for 
making this transformation is an open question, although 
values of XDV will be an increasing function of cell abun- 
dance and size. The basic interpretation of the scaling anal- 
ysis will remain the same as the community-level DV pa- 
rameter, ZDV, is applied to assess microscale interactions 
for several important planktonic ecosystems. 

First, the microscale interactions within an idealization of 
a steady state planktonic oligotrophic ecosystem are exam- 
ined. For this environment, ambient nutrient concentrations 
and phytoplankton abundances are low and the dominant 
phytoplankters are generally nanoplankton and smaller (Pee,, 
I 10 µm; e.g., Murphy and Haugen 1985; Chisholm 1992). 
The resulting ZDV values should be much less than 1 and 
individual phytoplankton cells will grow by independently 
utilizing their local nutrient concentrations. Because this is 
a steady state ecosystem, the community averaged nutrient 

Fig. 8. The linked cycle of nutrient flux processes that are re- 
quired for the present idealization of a steady state oligotrophic 
ecosystem. No new sources of nutrients are considered. At steady 
state, the nutrient flux through each process must be balanced. How- 
ever, if the ecosystem is not at steady state, the flux processes shown 
here are not required to be in balance and materials can accumulate 
within the various pools of the cycle. 

uptake rate must equal the rate that grazing and reminerali- 
zation processes recycle these nutrients. Thus, there exists a 
linked cycle of processes that describes nutrient flow through 
this community (Fig. 8). This cycle is closed by a mecha- 
nism (i.e., turbulence) that transports nutrients from the sites 
of the individual grazing-remineralization events to the in- 
dividual phytoplankton cells. 

The time and space scales for grazing-remineralization 
events have an important role in maintaining phytoplankton 
diversity in an oligotrophic eocsystem. If grazing events are 
sporadic and separated by huge intercellular distances, graz- 
ing, remineralization, and intercellular nutrient transport pro- 
cesses act to randomize the supply of nutrients to the indi- 
vidual phytoplankton cells. However, if these events occur 
uniformly in space and time, the growth of each cell will be 
identical because they will respond to the same nutrient sup- 
ply rate. A hint of these space/time scales may be derived 
by examining their parameterization in the competition equa- 
tions (Eq. la-c), or 

= -mC, 
LOSS 

(14) 

where C is the nutrient content in phytoplankton and m is 
the grazing-remineralization rate. For small changes in time 
(At << m-1), the fractional change in C(AC/C) is equal to 
mAt (which is equivalent to the fractional change in abun- 
dance assuming a constant cell quota). For a phytoplankton 
grazing rate of 1d-1, 1 cell out of 86,400 will be grazed and 
remineralized each second. The length scale separating these 
events will be >40 times [86,400)1/3] larger than the algal 
cell separation scale, A, which corresponds to a spatial scale 
of 44 cm for an abundance of 1 ml-1. Thus, grazing-remi- 
neralization events will be intermittent in time and space, 
which randomizes the resupply of recycled nutrients to in- 



On discrete competition 1143 

dividual phytoplankton cells. Because turbulence cannot dis- 
criminate among the various algal species present, it is un- 
likely that competitive exclusion due to nutrient competition 
can occur in an oligotrophic ecosystem. For exclusion dis- 
placements to occur, one species must be grazed consistently 
and receive no recycled nutrient to support its growth. It 
seems much more likely that the stochastic nature of the 
grazing-remineralization events, as well as the turbulent re- 
supply processes, will preclude this possibility. Further, the 
low SDV values characterizing the oligotrophic environment 
indicate that rates of cellular nutrient demand will be unaf- 
fected by neighboring cells. Hence, both mechanisms predict 
a tendency towards neutral stability for an oligotrophic phy- 
toplankton assemblage. 

The present idealization of an oligotrophic ecosystem as- 
sumes steady state conditions. This means that the flux 
through each process of the nutrient cycle illustrated in Fig. 
8 is in exact balance. If the system is not in steady state, 
one of the linkages between the coupled processes is broken 
and materials can accumulate within the possible pools. The 
input of new nutrients into an initially low XDV assemblage 
is an important example of an unsteady aquatic eocsystem. 
Rapid inputs of new nutrients can occur by a variety of pro- 
cesses, including vertical entrainment, wind-driven upwell- 
ing, convective mixing, lateral transport, and rain deposition 
(e.g., Sverdrup 1953; Klein and Coste 1984; Siegel et al. 
1990; Michaels et al. 1993). For this unsteady ecosystem, 
nutrients are taken up by the cells and their abundance in- 
creases. The increased ambient nutrient conditions also en- 
able the larger phytoplankton cells in an assemblage to grow 
more rapidly (e.g., Banse 1976; Sommer 1983). The result- 
ing estimates of SDV will increase correspondingly, leading 
to competition among individual phytoplankton cells for the 
limiting nutrients. In time, this competition can lead to a 
reduction in the community’s diversity because of competi- 
tive displacement. This transition to competitive dynamics 
will occur for robust and mature algal blooms, where the 
new nutrient supply can support the escalating needs of the 
community. Laboratory competition experiments may be 
characterized by high XDVvalues and result in species abun- 
dance dynamics that are accurately predictable using re- 
source competition theory. 

should be expected. This is not saying that coexistence is 
expected for a low EDV environment because only neutral 
stability of the assemblage is predicted (and then for XDV 
+ 0). Hence, the final outcome of competition may not be 
changed, only the time required to achieve that outcome. For 
these conditions, exclusion is likely to take so long that other 
processes will be more important than resource competition 
in determining the diversity of the community. These pro- 
cesses may include temporal fluctuations in the new nutrient 
supply, imposed diel cycles, and specialization of the grazer 
community. Thus, the microscale competition model pro- 
vides a simple explanation of Hutchinson’s (1961) paradox 
of the plankton by providing quantifiable bounds for the ap- 
plication of resource competition and its result, competitive 
exclusion, to natural planktonic ecosystems. 

Modeling planktonic ecosystems 

The inapplicability of mass conservation approaches, such 
as resource theory, to the modeling of low XDV phytoplank- 
ton assemblages raises the question of how should these sys- 
tems be modeled. Plankton-following models will not be of 
much direct application because of their intensive compu- 
tational demands. Hence, we need to evaluate the effects of 
discreteness on the temporal evolution of a community by 
developing discreteness indices, which may be evaluated us- 
ing community-level information. We must solve the eco- 
logical subgrid scale (SGS) problem. 

A first order SGS model for phytoplankton competition 
can be constructed by recognizing the effects of discreteness 
on rates of phytoplankton competition. If XDV is large, the 
effects of discreteness are not important, and resource-based 
competitition expressions (Eq. la-c) may be applied without 
alteration. However if XDV values are much less than 1, 
there should be minimal rates of resource competition. To 
account for discreteness, the resource-based competition the- 
ory (Eq. la-c) can be recast with an additional ad hoc factor, 
SGS,,, which accounts for the effects of discreteness. An 
example for changes in the concentration of nutrient in the 
ith component of an phytoplankton assemblage would look 
like 

If the rate of new nutrient supply cannot keep pace with 
the demands of the phytoplankton community, the ambient 
nutrient concentrations must decrease in time, as would be 
expected because values of XDV are initially of order 1. The 
coupled cycle of nutrient redistribution processes (Fig. 8) is 
broken because nutrient recycling and resupply rates cannot 
keep pace with the increasing nutrient demands of the com- 
munity and the pool of dissolved inorganic nutrients must 
decrease in time. As ambient nutrient levels drop, the com- 
munity will slowly shift to the discrete oligotrophic case and 
values of ZDV will decrease. 

(15) 

where the parameters Ci, Ki, Vmi, and m are defined as before 
(see Eq. la-c). 

A reasonable first guess for the functional relationship of 
SGS,, on EDV is shown in Fig. 9. The limiting behavior 
of SGS,, should be apparent. If the value of ZDV is <l, 
SGS,, should be <l and temporal changes in Ci will be 
less than predicted using vital rate information alone. Where- 
as if ZDV 2 1, then SGS,,, = 1. 

The microscale competition model here makes a serious 
prediction concerning Hutchinson’s (1961) paradox of the 

Obviously, the details of the SGS,, relationship are un- 

plankton. The present scaling analysis and the previous ar- 
known at this time. Even its functional form is questionable. 
To answer these questions, much new experimentation is re- 

guments concerning the stochastic nature of the nutrient re- 
supply process indicate that rates of resource competition 

quired. For example, empirical determinations of SGS,, can 

will be greatly reduced for low SDV conditions. Hence, little 
be made by performing laboratory experiments at environ- 
mentally relevant turbulence intensities and cell abundances. 

change in diversity in a steady state oligotrophic community Progress may also be made by performing detailed numer- 
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Fig. 9. A first order SGS model for describing the effects of 
discreteness in resourse-based competition models. SGS,),. The im- 
portant parameter is the community level DV parameter, XDV. Val- 
ues of SGS,, will be large only if the XDV is of order 1. Whereas 
for small TiJlV, values of SGS,), will be small. Again, the functional 
relationship shown is only an educated guess. 

ical experiments using individual particle-following models 
(e.g., Yamazaki et al. 1991; Blackburn et al. 1997). Although 
these models will not be useful for simulating any ecosystem 
of reasonably size, their application for examining ecosystem 
dynamics for small domains may be important for determin- 
ing functional relationships for SGS,,. For the particular 
problem of zooplankton feeding, excellent examples of this 
approach have been proposed (e.g., Rothschild 1991; Davis 
et al. 1991). 

In a sense, the present solution to the discreteness problem 
is similar to SGS parameterizations used for evaluating the 
effects of turbulence in fluid flows. In the simulation of a 
turbulent flow, spatial covariation within the unresolved or 
SGS velocity field gives rise to SGS Reynolds stresses (e.g., 
Leonard 1974; Lesieur 1987; Siegel and Domaradzki 1994). 
These SGS Reynolds stresses must be parameterized in 
terms of resolved scale flow field if the equations of fluid 
motion are to be solved. Here the unresolved covariation 
among the location of phytoplankton cells and the micro- 
scale nutrient fields gives rise to the ecological SGS prob- 
lem. 

A final comment 

The numerical modeling of plankton population changes 
may be problematic unless the ecological SGS problem is 
solved. Plankton biologists have long used detailed numer- 
ical models to investigate phytoplankton and zooplankton 
population variability (e.g., Riley et al. 1949; Steele 1974; 
Fasham et al. 1990). However, because these models have 
been formulated assuming that each pool (i.e., phytoplank- 
ton, zooplankton, etc.) is distributed continuously, these 
models will predict rates of material transfer between pools 
that are too fast if values of SDV are < 1. Hence, models of 
this type probably will not be able to correctly model plank- 
ton species distributions for all conditions. 

As we all know (and would probably rather not admit), 

there is a certain amount of “art” involved in developing a 
numerical model for any ecosystem. There are many poorly 
understood physical and biological processes that must be 
represented mathematically (cf. mixing, grazing, remineral- 
ization, dissolved organic pool dynamics, etc.). These pro- 
cesses are often parameterized using adjustable constants 
that are determined by examining how a given model 
“works” compared with observations. In this way, many of 
these interaction terms are simply “fit” to match observa- 
tions. However, the results of this curve fitting exercise solve 
not only their intended problem (parameterization of grazing 
rates, uptake, etc.) but the ecological SGS problem as well. 
Thus, although the SGS problem is not accounted for ex- 
plicitly, it is accounted for implicitly if the interaction terms 
in the given model are determined empirically. Unfortunate- 
ly, this does not mean that these models will work if applied 
to another site or time. 

Detailed ecosystem models are beginning to be used to 
evaluate the roles of aquatic environments in the global bio- 
geochemical cycling of materials with important global pol- 
icy implications (e.g., IPCC 1995; Sarmiento and Lequere 
1996). If these models are to accurately accomplish their 
intended tasks, they must hold for naturally occurring values 
of all relevant ecosystem parameters, which includes the 
XDV parameter. The ecological SGS problem must be 
solved. Only by developing mechanistic ecosystem models 
that explicitly account for naturally occurring microscale in- 
teractions among individual organisms will plankton popu- 
lations be predicted from a causal rather than a correlative 
basis. 
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