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a b s t r a c t

A discrete random medium is an object in the form of a finite volume of a vacuum
or a homogeneous material medium filled with quasi-randomly and quasi-uniformly
distributed discrete macroscopic impurities called small particles. Such objects are
ubiquitous in natural and artificial environments. They are often characterized by analyzing
theoretically the results of laboratory, in situ, or remote-sensing measurements of
the scattering of light and other electromagnetic radiation. Electromagnetic scattering
and absorption by particles can also affect the energy budget of a discrete random
medium and hence various ambient physical and chemical processes. In either case
electromagnetic scattering must be modeled in terms of appropriate optical observables,
i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical
instrument or the electromagnetic energy budget. It is generally believed that time-
harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering
bymacroscopic particulate media that change in timemuchmore slowly than the incident
electromagnetic field. However, direct solutions of these equations for discrete random
media had been impracticable until quite recently. This has led to a widespread use of
various phenomenological approaches in situations when their very applicability can be
questioned. Recently, however, a new branch of physical optics has emerged wherein
electromagnetic scattering by discrete and discretely heterogeneous random media is
modeled directly by using analytical or numerically exact computer solutions of the
Maxwell equations. Therefore, the main objective of this Report is to formulate the
general theoretical framework of electromagnetic scattering by discrete random media
rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and
numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we
trace the development of the first-principles formalism enabling accurate calculations
of monochromatic and quasi-monochromatic scattering by static and randomly varying
multiparticle groups. We illustrate how this general framework can be coupled with
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state-of-the-art computer solvers of theMaxwell equations and applied to direct modeling
of electromagnetic scattering by representative random multi-particle groups with
arbitrary packing densities. This first-principles modeling yields general physical insights
unavailablewith phenomenological approaches.We discuss how the first-order-scattering
approximation, the radiative transfer theory, and the theory of weak localization of
electromagnetic waves can be derived as immediate corollaries of the Maxwell equations
for very specific andwell-defined kinds of particulatemedium. These recent developments
confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-
medium regimes and help evaluate the numerical accuracy of widely used approximate
modeling methodologies.

Published by Elsevier B.V.
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1. Introduction

In this Report we discuss fundamental aspects of the scattering of electromagnetic radiation by a discrete random
medium (DRM), i.e., an object in the form of a distinct finite volume of a vacuum or a homogeneous material medium
filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. The
general subject of electromagnetic scattering is extremely broad and can hardly be fully covered in a single review, which
necessitates exercising proper selectivity and a careful delineation of the overall scope of the discussion. Therefore, themain
purpose of the opening section is to introduce, in a somewhat ad hoc and qualitative manner, several basic definitions and
notions and to explain the main focus of this Report.

1.1. Small particles

The term ‘‘small particles’’ or just ‘‘particles’’ is ubiquitous in the discipline of light (or, more generally, electromagnetic)
scattering [1–35] and even enters the very titles of several specializedmonographs [1,8,11,13,16,18,20,24–26,28–30,34,35].
However, it may not be straightforward to give a universal and unambiguous physical definition of this term. For the pur-
poses of this Report, a small particle is defined as a small yet optically macroscopic body. More specifically, a small particle is
a finite discrete physical body that is ‘‘small’’ (or ‘‘tiny’’ or ‘‘minute’’) and yet consists of a number of atoms large enough that
the body can be characterized by bulk optical constants such as the electric permittivity, magnetic permeability, and con-
ductivity. The adjective ‘‘discrete’’ means that the body can be thought of as having a distinctmacroscopic surface separating
it from the surrounding host medium and acting as an optical interface between the interior and exterior materials with
different refractive indices. The distribution of the refractive index inside the particle does not need to be homogeneous.

We will see later that the requirement of being characterized by optical constants appropriate to bulk matter allows
one to define rather unambiguously the minimal permissible size of a small particle. It is not as straightforward to define
the requisite ‘‘smallness’’ of the particle. More often than not, the characterization of being small follows from the human
visual perception or from the need for an optical or electronic microscope to even see the particle. Often however it is more
appropriate to refer to the optical size of the particle (or its size parameter), defined as the ratio of the circumference of the
particle’s smallest circumscribed sphere to the wavelength of the incident electromagnetic wave. Then the smallness of a
particle may be defined by restricting the dimensionless particle size parameter to be a few orders of magnitude or less.
For example, leaves, birds, or decimeter-sized clumps of ice forming Saturn’s rings do not appear to be small particles when
looked at by a human eye, but they are small particles from the perspective of probing them electromagnetically with a
remote decimeter-wavelength radar. The factor that makes it convenient and possible to define the smallness of a particle
in terms of its size parameter is the fundamental so-called scale invariance rule of electromagnetic scattering. This rule states
that all dimensionless scattering and absorption characteristics of a finite object depend only on the ratio of the object’s size
and the wavelength of radiation but not on their individual values [36].

Fig. 1 shows that in many cases the above definition of a small particle can be rather unequivocal. Fig. 2 illustrates
however that a degree of ambiguity can remain in some cases. Indeed, on one hand a fractal soot aggregate with touching
components can be considered an individual particle when it is suspended in the atmosphere and is widely separated from
other atmospheric particulates. On the other hand, it can also be considered a composite object consisting of individual
particles in the form of soot spherules. The possibility of this and similar ambiguities should always be kept in mind.

1.2. Discrete random media

Using the above definition of a small particle, a Type-1 discrete random medium (DRM; see Fig. 3a) can be defined as a
morphologically complex object in the form of an imaginary volume V populated by a large number N of small particles in
such a way that

• the spatial distribution of the particles throughout the volume is quasi-random and quasi-uniform, and
• the physical states of the individual particles are statistically independent of each other and of the particle positions

(e.g., [7,12,19]). The physical state of a particle is defined as the combination of the particle’s size, morphology (including
the spatial distribution of the refractive index), and orientation. A defining trait of electromagnetic scattering by a DRM is
the absence of speckles in scattering patterns.

It is imperative to recognize that at any moment in time, the spatial distribution of particles in a multi-particle group is
definite rather than random. Therefore, if the group is illuminated by a monochromatic or quasi-monochromatic1 parallel
beam of light then statistical randomness and spatial uniformity of a DRM and the requisite absence of speckles can be
achieved only over a sufficiently long period of time owing to random temporal changes of particle positions. This is precisely
what happens naturally in a multi-particle group suspended in a gas or a liquid and causes smooth, speckle-free patterns of
electromagnetic scattering.

1 According to conventional terminology, the qualifier ‘‘monochromatic’’ refers to a purely time-harmonic electromagnetic field, while the qualifier
‘‘quasi-monochromatic’’ refers to a time-harmonic electromagnetic field subjected to relatively slow quasi-random fluctuations.
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Fig. 1. Examples of manmade and natural small particles. (a) Commercial glass spheres (after [37]). (b) Sahara desert sand (after [38]). (c) Dry sea-salt
particles (after [39]). (d) A 6-mm-diameter falling raindrop. (e) 40-nm-diameter gold particles (after [40]). (f) Interplanetary dust particle U2012C11
collected by a NASA U2 aircraft. (g) Red blood cells.

Fig. 2. (a) Natural and (b) modeled soot fractals (after [41–43]).

In some cases (e.g., in a particulate surface) the particles do not move relative to each other and yet, from the perspective
of electromagnetic scattering, can often be thought of as forming a DRM. This can happen, for example, when particle
positions in a group are ‘‘maximally random’’ and ‘‘maximally uniform’’, while the entire multi-particle group is moving
relative to the source of light and/or the detector. Then even small changes of the source-of-light→ multi-particle group
→ detector configuration during the measurement are equivalent to multi-wavelength shifts in particle positions and
can, in essence, result in a random particulate sample generating speckle-free scattering patterns [44,45] (see also Section
1.4 of [25]). Another way to achieve a speckle-free regime is to illuminate a fixed quasi-random multi-particle group by
incoherent polychromatic and/or uncollimated light. Such scattering scenarios help broaden the notion of a DRM and often
lead to useful practical applications.

The volume V hosting the N-particle group can also have a distinct physical boundary S separating the finite interior
and the infinite exterior space with different refractive indices (Fig. 3b). Such a heterogeneous object can be classified as a



M.I. Mishchenko et al. / Physics Reports 632 (2016) 1–75 5

Fig. 3. Two types of discrete randommedium. (a) Type 1: particles are randomly distributed throughout an imaginary volume V . (b) Type 2: particles are
randomly distributed throughout a host volume V having a refractive index different from that of the surrounding infinite space.

morphologically complex DRM as well, provided that the distribution of particle positions throughout the actual physical
volume V is sufficiently random and uniform. We will refer to such an object as a Type-2 DRM.

In reality, the spatial distribution of the constituent particles can never be completely random and statistically uniform
because the particles are not allowed to overlap and because their cumulative volume Vpart (defined as the union of the
individual particle volumes) is nonzero. For the same reason the orientations of nonspherical particles cannot be completely
independent of each other and of the particle coordinates. We will assume however that the particles are distributed
throughout the (physical or imaginary) volumeV as randomly anduniformly as the volumepacking densityρ = Vpart/V < 1
permits.2 In this regard the morphology of a DRM is fundamentally different from that of fractal-like multi-particle clusters
such as those studied, e.g., in [41–43,46–49] and illustrated in Fig. 2. On a somewhat pedestrian level, the spatial distribution
of the particles can be considered statistically quasi-uniform if the average number of particles per unit volume n(r) is
independent of the position vector r over distances of the order of several times the average separation between two
neighboring particles. Of course, n(r) is allowed to change over much greater distances. An instructive discussion of various
mathematical parameterizations of physical disorder can be found in [50].

1.3. Why to study electromagnetic scattering by discrete random media?

Discrete randommedia are ubiquitous in natural and artificial environments. Typical examples are clouds of interstellar
dust; the cloud of interplanetary dust in the solar system; dusty atmospheres of comets; particulate planetary rings; clouds
in planetary atmospheres; geophysical, biomedical, and technical particle suspensions; aerosol particles with numerous
inclusions; heterogeneous polymeric materials; and particulate surfaces (cf. Figs. 4 and 5a–d). Another important class of
DRMs is represented by technical coatings such as layers of paint [54] (Fig. 5e, f).

The extreme morphological complexity of the majority of natural and artificial DRMs makes their characterization a
daunting task. More often than not, one has to infer the micro- and macrophysical parameters of a DRM by analyzing
theoretically the results of laboratory, in situ, or remote-sensing measurements of light and other electromagnetic radiation
scattered by the medium. Thus the use of electromagnetic scattering as a potent noninvasive characterization technique
represents a major reason to study this phenomenon. Another major reason has to do with the fact that scattering
and absorption of electromagnetic radiation by particles can affect the energy budget of a volume of DRM and hence
various ambient physical and chemical processes. In either case electromagnetic scattering must be described in terms
of appropriate optical observables, i.e., quadratic or bilinear forms in the electromagnetic field that quantify the reading of a
relevant optical instrument and/or the electromagnetic energy budget.

1.4. The general scope of this Report

The practical solution of optical-characterization and energy-budget problems has the following four main ingredients:

• Formulation of appropriate optical observables for a given DRM and a specific type of illumination.
• Theoretical modeling of these observables for a specific DRM (the so-called direct scattering problem).

2 Note that the volume packing density ρ of a DRM can vary from essentially zero for a cloud to more than 0.5 for a particulate surface.
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Fig. 4. Examples of natural discrete random media. (a) Clouds of interstellar dust, arranged in huge patches and tentacles, appears dark when they
are silhouetted against the stars in the midplane of the galaxy NGC 891. Image taken with NASA’s Hubble Space Telescope. (b) Ghostly glow caused by
the scattering of sunlight by the interplanetary dust cloud. (c) The dusty atmosphere of the comet ISON photographed on 10 April 2013 with NASA’s
Hubble Space Telescope. (d) Particulate Saturn’s rings photographed from NASA’s Cassini spacecraft. (e) Jovian clouds photographed from NASA’s Cassini
spacecraft. (f) Thin diffuse clouds in the atmosphere of Mars photographed from NASA’s Opportunity rover. Cirrus (g) and liquid–water (h) clouds in the
Earth’s atmosphere. (i) Raw milk.

• Practical measurement of these observables.
• Solution of the so-called inverse scattering problem, i.e., finding the physical model of a DRM that provides the best fit

of theoretical simulations of electromagnetic scattering to the measurement data.

To keep the size of this Report manageable, we will focus only on the first two ingredients. Specifically, our primary
objective is to outline the first-principles theoretical framework of electromagnetic scattering by DRMs rooted in the
microscopic Maxwell–Lorentz equations and discuss its immediate analytical and numerical consequences.

1.5. The need for first-principles approach

Until quite recently, theoretical calculations of electromagnetic scattering by a DRM had typically been based on
ad hoc approaches with poorly known or undefined accuracies and ranges of applicability. Perhaps the most notable
examples are the phenomenological3 radiative transfer theory [7,12,19,55–71] originally developed for sparse turbid media
such as clouds, effective-medium rules [32,72–78], and the geometric-optics ray-tracing method [79–83]. Even simplistic

3 A physical theory is called phenomenological if it expresses mathematically the results of observed phenomena without tracing and clarifying their
fundamental origin and significance. Typically, the development of a phenomenological theory is based on heuristic (i.e., experience-based) shortcuts
lacking rigorous justification.
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Fig. 5. Examples of natural and manmade discrete random media. (a) Cross-section of a ∼2.2 µm highly porous natural organic-matter aerosol particle
(after [51]). (b) Transmission electron micrograph of a high-impact polystyrene sample cut with an oscillating diamond knife. The large composite particle
has a diameter of ∼3 µm (after [52]). (c) Backscattered electron micrograph of the cross section of an olefin polymer blend polished using an oscillating
diamond knife at room temperature (after [53]). (d) Particulate surface composed of glass microspheres. (e) Electron micrograph of a paint film formed by
TiO2 particles immersed in a binder. (f) Dense coating formed by 30 nm Y2O3 crystals.

phenomenological approaches such as the Gershun theory of the light field [84] or the Kubelka–Munk [85–89] and
Hapke [90] theories, have found frequent – even though questionable – use (cf. [91,92]). The underlying principles of some
of these methodologies can be traced all the way back to the classical yet thoroughly outdated work by Pierre Bouguer
[93,94], Johann Lambert [95], August Beer [96], Eugen von Lommel [97], Orest Khvolson [98], and Arthur Schuster [99]
(see [100] for an account of the history of the phenomenological radiative transfer theory). The basic ‘‘physically obvious’’
premise in many studies of electromagnetic scattering by DRMs has been the belief that if the individual far-field scattering
properties of each constituent particle are known then all scattering properties of the entire DRM can somehow be
constructed from those of the constituent particles. This generally incorrect assumption is based on the lack of recognition
that from the perspective of electromagnetics, the entire DRM is a unified scattering target, while the only essential
consequence of the complex object’s morphology (e.g., being composed of what appears to the human eye as discrete units,
called particles) is to make the corresponding electromagnetic boundary conditions more complicated.

The main objective of this Report is to expose the fundamental physical nature of the phenomenon of electromagnetic
scattering by a DRM and introduce the general theoretical formalism enabling first-principles modeling of relevant optical
observables. We demonstrate how recent advances in the development of computer solvers of the macroscopic Maxwell
equations and the availability of powerful computers and computer clusters have made possible direct modeling of
electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. Furthermore,
we discuss how the first-order-scattering approximation, the radiative transfer theory and the theory of weak localization
of electromagnetic waves can be derived as immediate corollaries of Maxwell’s electromagnetics for very specific and
well-defined kinds of DRM. These recent developments have decisively brought the subject of electromagnetic energy
transport in macroscopic DRMs and their optical characterization into the realm of physical optics. In particular, they have
helped establish amesoscopic link between themacrophysical regime of radiative transfer, weak localization, and effective-
medium approximations on one hand and themicroscopicMaxwell–Lorenz equations on the other.Wemake a special effort
to state explicitly what results have been established definitively and what aspects of this research discipline necessitate
further analysis.

The unquestionable advantage of the first-principles approach is that it yields the definitive physical understanding of
the phenomenon of electromagnetic scattering by a DRM and its corollaries. However, technical complexities of solving the
Maxwell equations directly (both analytically and numerically) often diminish the applicability of the first-principles ap-
proach to real physical systems encountered in practice. As a consequence, it is reasonable to expect that various analytical,
phenomenological, and heuristic approximations such as those mentioned above will still be widely used in the foreseeable
future. Hence an important function of the first-principles approach is to characterize the accuracy and range of applicability
of these approximations. To illustrate this function, we include a discussion of how direct computer solutions of the macro-
scopic Maxwell equations can be used to quantify the errors of such popular modeling tools as the first-order-scattering
approximation, the radiative transfer equation, the theory of weak localization, and the effective-medium approach.
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1.6. Further guidelines

To make the scope of this Report manageable, we will discuss only elastic scattering of electromagnetic waves. In other
words, nonlinear optics effects will be excluded by assuming that the optical constants of the scattering object as well as of
the surrounding medium are independent of the electric and magnetic fields.

We will also exclude from specific consideration the small Doppler shift of frequency of the scattered light relative
to that of the incident light due to the movement of particles with respect to the source of illumination. Furthermore,
we will not discuss the scattering of transient electromagnetic fields such as ultra-short laser pulses (cf. [101]) and will
discuss only frequency-domain electromagnetic scattering by assuming that all ‘‘quasi-instantaneous’’ fields and sources
are time-harmonic and satisfy the frequency-domain Maxwell equations. In other words, we focus on the scattering of a
monochromatic or quasi-monochromatic electromagnetic field and assume that the scattering object varies in time much
more slowly than the field.

In the majority of this Report we will assume that the randomness of a particulate medium is ensured by its temporal
variability. The extension of the concept of a DRM to a fixed particulate medium illuminated by an incoherent source will
be discussed in Section 12.

2. Electromagnetics, optical observables, and averaging

The most advanced theory of light–matter interactions available today is quantum electrodynamics (QED) [102–108]
followed, in the hierarchy of generality and complexity, by the semi-classical approach [109–111] and theMaxwell–Lorentz
microscopic electromagnetics [112–116]. Since the specific subject of this Report is elastic (i.e., not involving changes in
frequency) electromagnetic scattering, we will assume that from the standpoint of a wide range of practical applications, all
relevant physics can be adequately captured by the classical microscopic Maxwell–Lorentz equations.

Despite this simplification, the actual quantification of electromagnetic scattering by a DRM is still highly problematic
because solving the Maxwell–Lorentz equations either analytically or numerically is essentially impossible given the
enormous number of elementary electric charges forming macroscopic objects. This makes it imperative to derive a
theoretical formalism that is much simpler than the microscopic Maxwell–Lorentz electromagnetics and bypasses the
unnecessarily detailed computation of the actual electromagnetic field. It turns out that doing this is feasible by exploiting
the two-layer structure of electromagnetics along with making hierarchal use of volume, time, and/or ensemble averaging.

Indeed, in the words of Freeman Dyson [117],

The modern view of the world that emerged from Maxwell’s theory is a world with two layers. The first layer, the
layer of the fundamental constituents of the world, consists of fields satisfying simple linear equations. The second
layer, the layer of the things that we can directly touch andmeasure, consists of mechanical stresses and energies and
forces. The two layers are connected, because the quantities in the second layer are quadratic or bilinear combinations
of the quantities in the first layer. To calculate energies or stresses, you take the square of the electric field-strength or
multiply one component of the field by another. . . . The objects on the first layer, the objects that are truly fundamental,
are abstractions not directly accessible to our senses. The objects that we can feel and touch are on the second layer,
and their behavior is only determined indirectly by the equations that operate on the first layer.

Owing to this two-layer structure, the framework of the simplified theoretical formalism can be formulated as the following
two-stage procedure:

• first, define relevant optical observables as quadratic and bilinear forms in the electromagnetic field that (i) can be directly
measured with suitably designed instruments, and/or (ii) quantify the energy budget of a macroscopic object4; and
• second, develop an efficient way to directly calculate appropriate averages of these observables even if the detailed

computation of the exact (microscopic) electromagnetic field itself is sacrificed.

Indeed, the majority of applications do not require the knowledge of instantaneous (or quasi-instantaneous) local values
of the optical observables but rather deal with averages taken over extended time intervals and/or finite (rather than
infinitesimal) volume elements. Simple examples of the experimental use of time averages are the exposure time of a
camera, the integrating time of the rod cells in our eyes, and the signal integration over the sensitive face of a detector.
Moreover, in many situations time averaging can be replaced by ensemble averaging, thereby resulting in further dramatic
simplifications.

In what follows, we will discuss how the two-layer structure of electromagnetics in combination with appropriate
averaging procedures yields an important effective-field approximation called macroscopic electromagnetics. This
approximation is based on the introduction of a mathematical entity called the macroscopic electromagnetic field and can
be used to quantify time-harmonic electromagnetic scattering by a fixed macroscopic object. Although the macroscopic
electromagnetic field in and of itself is not an actual physical field, it can yield suitably averaged optical observables directly,

4 Note that this definition of optical observables does not exclude quadratic and bilinear forms in the field that cannot be measured directly. The prime
example of a bilinear form that often is not measurable is the Poynting vector [34].



M.I. Mishchenko et al. / Physics Reports 632 (2016) 1–75 9

i.e., without the prior computation of the exact (i.e., microscopic) electromagnetic field. A straightforward generalization
makes this approach applicable to quasi-monochromatic macroscopic fields and/or time-variable macroscopic objects.
The resulting formalism enables the computation of relevant time-averaged optical observables for a DRM by
using analytical expressions and equations completely devoid of the actual electromagnetic field scattered by the
medium.

All three types of averaging mentioned so far (i.e., volume, time, and ensemble averaging) have been used in various
publications on electromagnetic scattering. Some of these publications may give the impression that different types of
averaging may be used interchangeably or that a type of averaging can be selected almost at will. It is imperative to keep in
mind however that each type of averaging has its own conditions of applicability and that indiscriminate use of any one of
them can lead to physically meaningless results. Therefore, in what follows we will be very explicit in justifying the use of
a specific type of averaging and explaining why an alternative choice can be inappropriate.

3. Macroscopic Maxwell equations

War es ein Gott, der diese Zeichen schrieb (?) (Was it a God who wrote these signs (?))
[Ludwig Boltzmann [118], from Goethe’s Faust]

From a long view of the history of mankind – seen from, say, ten thousand years from now – there can be little doubt that
the most significant event of the 19th century will be judged as Maxwell’s discovery of the laws of electrodynamics. The
American Civil War will pale into provincial insignificance in comparison with this important scientific event of the same
decade.

[Richard P. Feynman [119]]

The macroscopic Maxwell equations (MMEs) were postulated by James Clerk Maxwell 150 years ago [120] as the
most fundamental laws of electromagnetics consistent with the totality of experimental data accumulated by that time.
Maxwell’s ideas, summarized in his famous Treatise [121], were picked up, systematized, and reworked mathematically by
his immediate followers [122,123], most notably by Oliver Heaviside [124]. The subsequent notion that theMMEsmust be a
corollary of themore fundamental microscopic Maxwell–Lorentz equations [125] was put forth by Hendrik Lorentz in [112]
and has been further developed by many authors [113–116,126–142].

In the framework of classical electromagnetics, the microscopic electromagnetic field is the only actual physical field
which, in the vast majority of situations, is an extremely intricate function of the position vector r and time t . The
basic idea of macroscopic electromagnetics is that the detailed knowledge of the exceedingly complex dependence of the
microscopic field on r and t is often not required in practice. Instead, this dependence is artificially simplified by averaging
the microscopic field over either r or t , thereby yielding contrived macroscopic field vectors. It is imperative to recognize
that these fictitious mathematical entities can only be useful to the extent to which they simplify the computation of
macroscopic optical observables. In this respect macroscopic electromagnetics is the prime example of an effective-field
approximation.

The temporal variability of the microscopic electromagnetic field inside a macroscopic object is caused by the incessant
microscopic movements of the constituent elementary charges, by macroscopic temporal changes of the object, and
by time-harmonic oscillations and quasi-random fluctuations induced by the external sources. Throughout this Report,
we will assume that field variations caused by macroscopic changes of the object occur much more slowly than those
caused by the microscopic movements of the constituent elementary charges as well as much more slowly than the
externally induced time-harmonic oscillations and, potentially, quasi-random fluctuations. Furthermore, we will assume
that the quasi-random oscillations of the field occur much more slowly than its time-harmonic oscillations. A fundamental
corollary of these assumptions is that monochromatic and quasi-monochromatic electromagnetic scattering by the slowly
varying macroscopic object can be described at any moment in time by assuming that the object is fixed and solving the
corresponding quasi-instantaneous boundary-value problem for the frequency-domain MMEs.

3.1. Averaging over physically small volume elements

The fundamental equations governing electromagnetic phenomena for point charges serving as building blocks of a
macroscopic material medium are the four microscopic Maxwell–Lorentz equations:

∇ ·e(r, t) =
η(r, t)
ε0

, (1)

∇ × e(r, t)+
∂b(r, t)
∂t

= 0, (2)

∇ ·b(r, t) = 0, (3)

∇ × b(r, t)− ε0µ0
∂e(r, t)
∂t

= µ0j(r, t), (4)
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where e and b are the microscopic electric and magnetic fields; η and j are the microscopic charge and current densities;
ε0 and µ0 are the electric permittivity and the magnetic permeability of a vacuum; and 0 is a zero vector. Fundamentally,
the microscopic fields are functions of r and t only. This implies that the position vector and time are the only parameters over
which e(r, t) and b(r, t) can in principle be averaged.

According to the first averaging approach dating back to Lorentz [112], the microscopic field is homogenized, at any
moment in time, over ‘‘physically small’’ volume elements δV centered at r in order to smooth out drastic variations of
e(r, t) and b(r, t) over interatomic distances [114,126–128,133]:

EδV (r, t) = ⟨e(r, t)⟩δV , (5)

BδV (r, t) = ⟨b(r, t)⟩δV . (6)

The well-known result of this approach is the system of the four MMEs:

∇ ·DδV (r, t) = ρδV (r, t), (7)

∇ × EδV (r, t)+
∂BδV (r, t)

∂t
= 0, (8)

∇ ·BδV (r, t) = 0, (9)

∇ × HδV (r, t)−
∂DδV (r, t)

∂t
= JδV (r, t), (10)

where HδV (r, t) is the macroscopic magnetic intensity vector; DδV (r, t) is the macroscopic electric displacement vector;
ρδV (r, t) and JδV (r, t) are the macroscopic free charge density and current density, respectively. In the case of a
macroscopically isotropic and time-dispersive material, the macroscopic field vectors entering the MMEs (7)–(10) are
further related by the constitutive relations [116]

DδV (r, t) =
 t

−∞

dt ′εδV (r, t − t ′)EδV (r, t ′), (11)

HδV (r, t) =
 t

−∞

dt ′
1

µδV (r, t − t ′)
BδV (r, t ′), (12)

JδV (r, t) =
 t

−∞

dt ′σ δV (r, t − t ′)EδV (r, t ′). (13)

One must recognize that this averaging procedure yields artificial field vectors formally satisfying the MMEs rather than
an exact physical electromagnetic field. Furthermore, the problem of actual practical significance is to computemacroscopic
averages of specific optical observables, including quantities describing electromagnetic energy budget. In other words,
one needs volume averages of quadratic and bilinear forms in the electromagnetic field, such, for example, as the Poynting
vector [143,144]

s(r, t) =
1
µ0

e(r, t)× b(r, t). (14)

This implies that for a mathematical solution of the MMEs to be physically significant and practically useful, it must enable
the computation of relevant macroscopic optical observables, including the macroscopic Poynting vector

SδV (r, t) = ⟨s(r, t)⟩δV =
1
µ0
⟨e(r, t)× b(r, t)⟩δV , (15)

by a simple substitution of the macroscopic field vectors for the microscopic ones, e.g.,

SδV (r, t) =
1
µ0

EδV (r, t)× BδV (r, t). (16)

Since the average of the vector product of two vectors in Eq. (15) is not necessarily equal to the vector product of the
individual averages, Eq. (16) is highly nontrivial and by no means obvious.

To the best of our knowledge, Eq. (16) has been derived rigorously only for structured periodic nonmagnetic materials
and only for the case of time-harmonic fields [141,142], while in all other situations (e.g., in the case of amorphous solids
and liquids), it still has to be postulated. It must be recognized however that without Eq. (16) and similar formulas for other
relevant second moments of the electromagnetic field the MMEs would largely lose their physical significance and become
irrelevant or not helpful if one wishes to make useful predictions.
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Let us now assume that the macroscopic field vectors are monochromatic, while the medium is non-magnetic. It is
convenient to represent the real field variables as real parts of the respective complex time-harmonic variables:

EδV (r, t) = Re[EδV (r) exp(−iωt)], (17)

BδV (r, t) = Re[BδV (r) exp(−iωt)], (18)

DδV (r, t) = Re[DδV (r) exp(−iωt)], (19)

HδV (r, t) = Re[HδV (r) exp(−iωt)], (20)

ρδV (r, t) = Re[ρδV (r) exp(−iωt)], (21)

JδV (r, t) = Re[JδV (r) exp(−iωt)], (22)

where ω is the angular frequency, i = (−1)1/2, and ‘‘Re’’ stands for ‘‘the real part of’’. It is then straightforward to show that
the macroscopic field vectors satisfy the standard frequency-domain MMEs

∇ ·DδV (r) =ρδV (r), (23)

∇ ×EδV (r)− iωBδV (r) = 0, (24)

∇ ·BδV (r) = 0, (25)

∇ ×HδV (r)+ iωDδV (r) =JδV (r) (26)

supplemented by the constitutive relationsDδV (r) =εδV (r, ω)EδV (r), (27)

HδV (r) = 1
µ0

BδV (r), (28)

JδV (r) = σ δV (r, ω)EδV (r), (29)

where the frequency-dependent electric permittivityεδV (r, ω) and conductivityσ δV (r, ω) are, in general, complex valued:

εδV (r, ω) = 
∞

0
dt εδV (r, t) exp(iωt), (30)

σ δV (r, ω) = 
∞

0
dt σ δV (r, t) exp(iωt). (31)

According to Eq. (16), the near-instantaneous time-independent macroscopic Poynting vector is now given by the time
average

⟨SδV (r, t)⟩ =
1
T

 t+T/2

t−T/2
dt ′ EδV (r, t ′)× HδV (r, t ′)

≈
1
2
Re{EδV (r)× [HδV (r)]∗}, T ≫ To, (32)

where the asterisk denotes a complex-conjugate value and

To =
2π
ω

(33)

is the period of time-harmonic oscillations.

3.2. Ensemble averaging

The above methodology is intended to yield optical observables homogenized over physically small volume elements
at each moment in time. In the case of a high-frequency time-harmonic electromagnetic field, one could think of a different
averaging approach intended to yield time-averaged optical observables at each point in space. Specifically, the microscopic
electric and magnetic fields as well as the microscopic charge and current densities are factorized according to

e(r, t) = Re[e(r, t) exp(−iωt)], (34)

b(r, t) = Re[b(r, t) exp(−iωt)], (35)
η(r, t) = Re[η(r, t) exp(−iωt)], (36)

j(r, t) = Re[j(r, t) exp(−iωt)] (37)
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[131,133]. The dependence of the complex amplitudese(r, t), b(r, t), η(r, t), andj(r, t) on time is implicit in that it is
caused by relatively slow random movements of the microscopic charges occurring independently of the rapid oscillatory
motions described by the time-harmonic factor exp(−iωt). Thismeans that at anymoment in time, the complex amplitudes
satisfy the frequency-domain microscopic Maxwell–Lorentz equations

∇ ·e(r, t) = η(r, t)
ε0

, (38)

∇ ×e(r, t)− iωb(r, t) = 0, (39)

∇ ·b(r, t) = 0, (40)

∇ ×b(r, t)+ iωε0µ0e(r, t) = µ0j(r, t) (41)

provided that∂e(r, t)∂t

≪ ω |e(r, t)| , (42)∂b(r, t)∂t

≪ ω
b(r, t) . (43)

Note that whether the inequalities (42) and (43) are satisfied can be expected to depend on several factors, including the
angular frequency, the material in question, and the material temperature.

Averaging the fields (34) and (35) over time is meaningless since the rapidly oscillating factor exp(−iωt) causes both
averages to vanish:

1
T

 t+T/2

t−T/2
dt ′ exp(−iωt ′) =

T≫To
0. (44)

However, the vector product of the complex electric field and the complex conjugate of the magnetic field varies with time
much more slowly since the factors exp(−iωt) and [exp(−iωt)]∗ cancel each other. Therefore, averaging e(r, t) × b(r, t)
over a period of time T much longer than To butmuch shorter than the typical temporal scale T ′ of variability of the complex
amplitudese(r, t) andb(r, t) is meaningful and yields a quasi-instantaneous Poynting vector slowly varying in time:

⟨⟨s(r, t)⟩⟩ =
1
µ0

1
T

 t+T/2

t−T/2
dt ′e(r, t ′)× b(r, t ′)

≈
1

2µ0
Re{e(r, t)× [b(r, t)]∗}, To ≪ T ≪ T ′, (45)

where the symbol ⟨⟨· · ·⟩⟩ hereinafter denotes averaging over a sufficiently long time interval, the actual length of the time
interval being clear from the context. The time-independent macroscopic Poynting vector is now defined as the average
over a time interval T much longer than T ′:

⟨⟨S(r, t)⟩⟩ =
1

2µ0

1
T
Re

 t+T/2

t−T/2
dt ′e(r, t ′)× [b(r, t ′)]∗, T ≫ T ′. (46)

The computation of ⟨⟨S(r, t)⟩⟩ is usually simplified by assuming ergodicity of the ensemble of elementary charges (see,
e.g., Section 10.4 of Ref. [34]5) and replacing the temporal average in Eq. (46) by the statistical average over the ensembleψ
of configurations of all the microscopic charges:

⟨⟨S(r, t)⟩⟩ =
1

2µ0
Re


dψe(r, ψ)× [b(r, ψ)]∗p(ψ), (47)

where p(ψ) is a suitable time-independent probability density function. Similar expressions can be written for macroscopic
versions of other quadratic and bilinear forms in the microscopic electromagnetic field.

In general, the computation of the ensemble average (47) is still quite involved. A major simplification is based on the as
yet unproven assumption according to which

⟨⟨S(r, t)⟩⟩ =
1

2µ0
Re{Eψ (r)× [Bψ (r)]∗} (48)

5 Instructive discussions of the ergodic hypothesis as a basic underlying principle of classical and quantum statistical mechanics and kinetic theory can
be found in [145–149].
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(and similarly for other second moments), where all materials are assumed to be non-magnetic and the corresponding
macroscopic complex field vectors are given by the individual time averages replaced by ensemble averages:

Eψ (r) = 1
T

 t+T/2

t−T/2
dt ′e(r, t ′) = 

dψe(r, ψ)p(ψ), T ≫ T ′, (49)

Bψ (r) = 1
T

 t+T/2

t−T/2
dt ′b(r, t ′) = 

dψb(r, ψ)p(ψ), T ≫ T ′. (50)

It can then be shown [131] that the macroscopic field vectors satisfy the standard frequency-domain MMEs

∇ ·Dψ (r) =ρψ (r), (51)

∇ ×Eψ (r)− iωBψ (r) = 0, (52)

∇ ·Bψ (r) = 0, (53)

∇ ×Hψ (r)+ iωDψ (r) =Jψ (r) (54)

supplemented by the constitutive relationsDψ (r) =εψ (r, ω)Eψ (r), (55)

Hψ (r) = 1
µ0

Bψ (r), (56)

Jψ (r) = σψ (r, ω)Eψ (r), (57)

where, again, the frequency-dependent macroscopic electric permittivity εψ (r, ω) and conductivity σψ (r, ω) are, in
general, complex valued.

We have seen in the preceding subsection that equations having the same mathematical structure as Eqs. (51)–(57) can
also be obtained using the volume-averaging approach. As a consequence, it is often believed that a formal re-multiplication
of the vectorsEψ (r) and Bψ (r) given by Eqs. (49) and (50) by the time-harmonic factor exp(−iωt) yields the ensemble-
averaged time-dependent electromagnetic field. This belief is questionable since ensemble averaging is not a primordial
physical concept and can only be used as a substitute for time averaging (see, e.g., [146] and pages 1–6 of [150]). Averaging
the right-hand sides of Eqs. (34) and (35) over time yields a zero result provided that To ≪ T ′. Therefore, the ensemble-
averaged time-dependent electromagnetic fieldmust also be zero. The reader should recall that the vectorsEψ (r) andBψ (r)
are obtained by:

• artificially omitting the time-harmonic factor exp(−iωt) in Eqs. (34) and (35);
• taking the time average of the remaining factors; and
• replacing this time average by the ensemble average basedon the assumptionof ergodicity according to Eqs. (49) and (50).

It is thus obvious that the subsequent re-multiplication ofEψ (r) andBψ (r) by exp(−iωt) yields quantities of questionable
veracity rather than actual time or ensemble averages.

3.3. Further discussion

The ensemble averaging approach described in Section 3.2 bypasses the introduction of time-dependent macroscopic
vector fields altogether, whereas the volume averaging approach outlined in Section 3.1 does yieldmacroscopic field vectors
explicitly dependent on time as well as on coordinates. As a consequence, certain solutions of the time-domain MMEs
(7)–(10) do describe vector waves unfolding in space and time, which may seem to provide substance to the widespread
belief that EδV (r, t) and HδV (r, t) represent an actual physical field in a ‘‘homogenized macroscopic medium’’ rather than
a purely mathematical entity. It is imperative to recognize however that (i) any type of averaging is a purely human
intervention resulting in an artificial rather than an actual physical field; (ii) the computation of themacroscopic field vectors
EδV (r, t) and HδV (r, t) (orEψ (r) andBψ (r)) is almost never an end in itself; and (iii) irrespective of the averaging approach
chosen, the ultimate purpose of macroscopic electromagnetics is the computation of time- and/or volume-averaged optical
observables and the average electromagnetic energy budget. The MMEs are useful and meaningful only to the extent
to which they help achieve this objective by eliminating the need to solve explicitly the microscopic Maxwell–Lorentz
equations. Despite substantial recent progress in the microphysical justification of the MMEs, this problem still awaits a
definitive solution.

Although the formal mathematical structure of Eqs. (23)–(29) and (51)–(57) is the same, their solutions can, in principle,
be different. Indeed, the specific procedures for the computation of the corresponding macroscopic electric permittivities
and conductivities are not necessarily the same, and it is far from being obvious thatεδV (r, ω) ≡εψ (r, ω) andσ δV (r, ω) ≡σψ (r, ω). In what follows, we will usually omit the superscripts δV and ψ for the sake of brevity, but it should be kept in
mind that the actual values ofε(r, ω) andσ(r, ω)may depend on the averaging approach chosen.
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The relativemerits of either homogenizing optical observables over physically small volume elements or averaging them
over a time interval T ≫ T ′ remain somewhat unclear. The two averaging strategies are likely to yield similar results if
they are applied to the calculation of the time-averaged radiation budget of a macroscopic volume with dimensions greatly
exceeding the wavelength, provided thatεδV (r, ω) ≡ εψ (r, ω) and σ δV (r, ω) ≡ σψ (r, ω). However, the modeling of the
interaction of the electromagnetic fieldwith a photodetectormay depend onwhether one uses themacroscopic field vectors
homogenized over physically small volume elements at a givenmoment in time or those averaged over time at a given point
in space. This issue obviously needs to be further clarified.

On the more fundamental level, the MMEs must be derived in the framework of the QED by quantizing the microscopic
electromagnetic field. There has been notable progress in this direction [151–154], but definitive studies are still needed.

4. Monochromatic and quasi-monochromatic scattering by a fixed macroscopic object

Consistent with the preceding discussion, the foundation of the theory of electromagnetic scattering by a DRM can be
built of the following four major building blocks:
• the theory of monochromatic scattering by a fixed finite object;
• the theory of quasi-monochromatic scattering by a fixed finite object;
• the theory of monochromatic scattering by a randomly changing object; and
• the theory of quasi-monochromatic scattering by a randomly changing object.

The main purpose of this section is to give an explicit formulation of the electromagnetic scattering problem for a fixed
object in maximally general terms and discuss its immediate implications. We start with monochromatic scattering and
then, in Section 4.12, generalize the formalism to encompass the case of quasi-monochromatic radiation. Monochromatic
and quasi-monochromatic scattering by a time-variable object such as a DRM will be considered in the following section.

Let us define the characteristic length l according to
d≪ l≪ λ, (58)

where d is the typical distance between a molecule and its closest neighbors and λ is the wavelength. A major premise of
the previous discussion is that frequency-domain macroscopic electromagnetics can be used to
• compute the value of any second moment of the microscopic electromagnetic field homogenized over physically small

volume elements with dimensions of the order of l and averaged over a time interval T ≫ To (hereinafter averaging
strategy 1; Section 3.1), or
• compute the value of any secondmoment of the microscopic electromagnetic field averaged over a time interval T ≫ T ′

at any fixed point in space (hereinafter averaging strategy 2; Section 3.2).

This is done by first solving the frequency-domain MMEs

∇ ·D(r) =ρ(r), (59)

∇ ×E(r)− iωB(r) = 0, (60)

∇ ·B(r) = 0, (61)

∇ ×H(r)+ iωD(r) =J(r) (62)
supplemented by the constitutive relationsD(r) =ε(r, ω)E(r), (63)

H(r) = 1
µ0

B(r), (64)

J(r) = σ(r, ω)E(r) (65)
and then substituting the resulting macroscopic field vectorsE(r) andB(r) in the appropriately modified formula for the
requisite second moment of the microscopic field. Typically the modification amounts to applying the operation ‘‘(1/2)Re’’.
For example, the microscopic Poynting vector is defined by Eq. (14), while its time-independent average macroscopic
counterpart is given by

S̄(r) =
1
2
Re{E(r)× [H(r)]∗}, (66)

where S̄(r) stands for either ⟨SδV (r, t)⟩ or ⟨⟨S(r, t)⟩⟩. According to [155], the frequency-domain macroscopic formalism can
be expected toworkwell as long as the smallest homogeneous element of the scattering object exceeds∼50 Å. And even for
smaller elements, it may produce meaningful results if combined with empirical corrections forε(r, ω) andσ(r, ω) [156].

The three basic ingredients of some phenomenological approaches to electromagnetic scattering by a DRM have been:
(i) the visual perception of the DRM as being assembled of separate ‘‘building blocks’’ in the form of particles;
(ii) the presumed knowledge of how to compute specific optical observables for each individual building block in the

absence of all the other blocks; and
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Fig. 6. Standard electromagnetic scattering problem. The fixed finite scattering object consists of N distinct and potentially inhomogeneous components.
The shaded areas collectively represent the interior region VINT , while the unshaded exterior region VEXT is unbounded in all directions.

(iii) the belief that the optical observables for the assembly of the building blocks can somehow be expressed in terms of
the optical observables computed for the separate building blocks.

The latter belief has usually been justified by verbal ‘‘simple physical considerations’’ and accepted as needing no
rigorousmathematical proof. However, this approach is generally incorrect since unlike the human eye, the electromagnetic
field perceives the DRM in its entirety rather than one particle at a time. Therefore, any first-principles approach to
electromagnetic scattering by a DRM must originate in the explicit formulation of the MMEs and appropriate boundary
conditions for the entire DRM rather than in the set of separate formulations for the individual particles.

4.1. The standard scattering problem

Consider a fixed finite scattering object embedded in an infinite medium; the latter is assumed to be homogeneous,
linear, isotropic, nonmagnetic, and nonabsorbing. In general, the object is a cluster consisting of a finite number N ≥ 1 of
separated or touching distinct components. It occupies a finite interior region VINT given by

VINT =

N
i=1

Vi, (67)

where Vi is the interior volume of the ith component (Fig. 6). The object is surrounded by the infinite exterior region VEXT
defined such that VINT ∪ VEXT = ℜ

3, where ℜ3 denotes the entire three-dimensional space. It is further assumed that the
interior volume VINT is filled with isotropic, linear, nonmagnetic, and possibly inhomogeneous material. Point O serves as
both the common origin of all position vectors and the origin of the laboratory coordinate system.

Unlike the general microscopic Maxwell–Lorentz equations (1)–(4), the four frequency-domain MMEs (59)–(62) are not
independent since Eqs. (59) and (61) follow from Eqs. (60) and (62) [34]. This allows one to consider only the Maxwell curl
equations, re-written as

∇ ×E(r) = iωµ0H(r)
∇ ×H(r) = −iωε1E(r)


r ∈ VEXT, (68)

∇ ×E(r) = iωµ0H(r)
∇ ×H(r) = −iωε2(r, ω)E(r)


r ∈ VINT, (69)

where ε1 is the real-valued electric permittivity of the infinite host medium and

ε2(r, ω) =ε2(r, ω)+ i
σ2(r, ω)
ω

(70)

is the (potentially coordinate-dependent) so-called complex permittivity of the scattering object. The corresponding
boundary conditions read:

n̂× [E1(r)−E2(r)] = 0
n̂× [H1(r)−H2(r)] = 0


r ∈ SINT, (71)

where the subscripts 1 and 2 correspond to the exterior and interior sides of the boundary SINT of the object, respectively, n̂
is the local outward normal to SINT, and SINT is the union of the closed surfaces of the N components of the object:

SINT =
N
i=1

Si. (72)
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Let us now assume that the complex amplitudesE(r) andH(r) everywhere inℜ3 can be written as a superposition of the
complex amplitudes of a plane-wave ‘‘incident field’’ (superscript ‘‘inc’’) propagating in the direction of the unit vector n̂inc

and those of a ‘‘scattered field’’ (superscript ‘‘sca’’):E(r) =Einc(r)+Esca(r), (73)H(r) = Hinc(r)+Hsca(r), (74)

whereEinc(r) =Einc
0 exp(ik1n̂inc

·r), (75)

Hinc(r) = Hinc
0 exp(ik1n̂inc

·r) =

ε1

µ0
n̂inc
×Einc

0 exp(ik1n̂inc
·r), (76)

and

k1 = ω
√
ε1µ0 (77)

is the wave number in the exterior region VEXT. Furthermore, we require the scattered field amplitudes to satisfy the
following asymptotic condition at infinity:

lim
r→∞
{
√
µ0 r×Hsca(r)+ r

√
ε1Esca(r)} = 0, (78)

where r = |r| is the distance from O to the observation point (Fig. 6). The limit (78) is traditionally called the Silver–Müller
radiation condition at infinity [157,158] and holds uniformly over all outgoing directions r̂ = r/r.

The combination of theMaxwell curl equations (68) and (69), the boundary conditions (71), the decomposition (73)–(76),
and the asymptotic condition (78) represents the so-called standard electromagnetic scattering problem for plane-wave
illumination.

The mathematical decomposition (73)–(76) of the ‘‘total’’ macroscopic frequency-domain field vectors makes it clear
that the scattered field is defined as the difference between the total fields corresponding to the situations when the object
is and is not present. This is consistent with the point of view that the incident field is not transformed into or replaced by
the scattered field. In other words, the physical cause of frequency-domain scattering by the object is not the incident field,
but rather the very presence of an object with optical properties different from that of the exterior medium [159,160].

Note that to the best of our knowledge, the boundary conditions (71) have not been derived explicitly from the
microscopic Maxwell–Lorentz equations. Ad hoc ways of introducing these conditions in the framework of macroscopic
electromagnetics are discussed in Section 2.8 of [161].

Since the first relations in Eqs. (68) and (69) yield themagnetic field vector provided that the electric field vector is known
everywhere, the solution of the standard scattering problem is often sought in terms of only the electric field vector.

4.2. Existence and uniqueness of solution of the standard problem

The statement of the standard scattering problemwould be of little practical use if this problem had no solution and/or if
the solutionwasnot unique. Fortunately, both the existence and theuniqueness of solutionhave recently beendemonstrated
for particles with smooth surfaces (see [162,163] as well as Section 9.1 of [115]). Certain results for particles with edges do
exist, but this case is fundamentally more difficult since the formulation of the boundary condition becomes ambiguous
unless appropriately modified (see Chapter 9.2 of [115] and the discussion in Section 4.3).

4.3. Volume integral equation

Although the standard scattering problem is formulated for the incident field in the form of a plane electromagnetic
wave, the range of its actual applicability is much wider. Indeed, the linearity of both the MMEs, the boundary conditions,
and the radiation condition at infinity implies that solving the standard problem yields the solution of a more general
scattering problem as long as the corresponding incident electromagnetic field can be expanded in plane electromagnetic
waves. This profound fact becomes especially evident if we consider a mathematically equivalent formulation [162,163] of
electromagnetic scattering in terms of the so-called volume integral equation (VIE) [34,164] (see also [165]):

E(r) = Einc(r)+ k21


VINT

d3r′
←→
G (r, r′) ·E(r′)[m2(r′)− 1]

= Einc(r)+ k21


←→
I +

1
k21
∇ ⊗ ∇


·


VINT

d3r′E(r′)exp(ik1|r− r′|)
4π |r− r′|

[m2(r′)− 1], r ∈ ℜ3, (79)

where

←→
G (r, r′) =


←→
I +

1
k21
∇ ⊗ ∇


exp(ik1|r− r′|)

4π |r− r′|
(80)
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is the free-space dyadic Green’s function,

m(r′) =


ε2(r′, ω)
ε1

(81)

is the (complex) refractive index of the object’s interior relative to that of the host exterior medium,
←→
I is the identity

dyadic, and⊗ is the dyadic product sign.
The second equality of Eq. (79) is a mathematically rigorous expression which has been used in [162,163,166] to deduce

several useful corollaries. By contrast, the first equality is a shorter expression, but contains a strong singularity (strictly
speaking, a non-integrable one) when r ∈ VINT. Then the integration must be carried in the following specific principal-
value sense to ensure that it is equivalent to the rigorous expression [167,168]:

VINT
d3r′
←→
G (r, r′)F(r′) = lim

V0→0


VINT\V0

d3r′
←→
G (r, r′)F(r′)−

i4π
3

F(r), (82)

where V0 is a spherical exclusion volume around r. In what follows, we use the compact version of Eq. (79) and similar ones,
but always assume that it implies the abbreviation (82).

The VIE incorporates the boundary and radiation conditions and expresses the total field everywhere in space in terms
of the total internal field. It can even be considered to bemore inclusive since it is well behaved (has a unique solution) even
for particles with sharp edges [166]. Therefore, in the following we do not impose any limitations on the object’s boundary
and assume, in a somewhat ad hoc fashion, that in the presence of sharp edges the scattering problem is formulated through
its VIE representation.

Owing to its specific mathematical form, the VIE serves as the very embodiment of the concept of frequency-domain
electromagnetic scattering [159,160]. Indeed, it shows that if the scattering object is absent (m(r′) ≡ 1), then the total field
is identically equal to the incident field. The presence of the object (m(r′) ≠ 1) changes the total field, thereby allowing the
definition of the scattered field as the difference between the total fields in the presence and in the absence of the object.
Furthermore, the VIE implies that the incident field is notmodified by the presence of the object and, thus, is not transformed
into the scattered field.

The linearity of the VIE suggests that it should be convenient in many cases to express, purely mathematically, the
scattered electric field in terms of the incident field:

Esca(r) =

VINT

d3r′
←→
G (r, r′) ·


VINT

d3r′′
←→
T (r′, r′′) ·Einc(r′′), r ∈ ℜ3, (83)

where
←→
T is the so-called dyadic transition operator of the scattering object. Eqs. (79) and (83) imply the following integral

equation for
←→
T traditionally called the Lippmann–Schwinger equation (cf. [10,169,170]):

←→
T (r, r′) = k21[m

2(r)− 1]δ(r− r′)
←→
I + k21[m

2(r)− 1]

VINT

d3r′′
←→
G (r, r′′) ·

←→
T (r′′, r′), r, r′ ∈ VINT, (84)

where δ(r) is the three-dimensional delta function. Note that
←→
T is independent of the electromagnetic field and is defined

only by the spatial distribution of the relative refractive index throughout VINT. As such, it can be viewed as a complete
‘‘optical identifier’’ of the scattering object.

4.4. Scattering in the far zone of the entire object

The spatial distribution ofE(r) and H(r) inside the scattering object as well as in its immediate vicinity can be quite
complex. However, there is a drastic simplification as the distance from the object increases since, irrespective of the
specific nature of the object, the scattered field ultimately becomes a spherical outgoing electromagnetic wave. Indeed,
a key property of the dyadic Green’s function is the asymptotic behavior

←→
G (r, r′) →

r→∞
(
←→
I − r̂⊗ r̂)

exp(ik1r)
4πr

exp(−ik1r̂ ·r′), (85)

where, as before, r̂ = r/r . As a consequence, placing the origin of the laboratory coordinate system O at the geometrical
center of the scattering object, as shown in Fig. 7, and substituting Eqs. (75) and (85) in Eq. (83) yields [34]

Esca(r) →
r→∞

exp(ik1r)
r

Esca
1 (n̂

sca) =
exp(ik1r)

r
←→
A (n̂sca, n̂inc) ·Einc

0 , n̂sca
·Esca

1 (n̂
sca) = 0. (86)

Here, n̂sca
= r̂ is a unit vector in the scattering direction and

←→
A (n̂sca, n̂inc) is the scattering dyadic having the dimension of

length and possessing the properties

n̂sca
·
←→
A (n̂sca, n̂inc) =

←→
A (n̂sca, n̂inc) · n̂inc

= 0. (87)
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Fig. 7. Scattering in the far zone of the object.

The explicit expression for the scattering dyadic in terms of the dyadic transition operator is as follows:

←→
A (n̂sca, n̂inc) =

1
4π
(
←→
I − n̂sca

⊗ n̂sca) ·


VINT

d3r′exp(−ik1n̂sca
·r′)

×


VINT

d3r′′
←→
T (r′, r′′)exp(ik1n̂inc

·r′′) ·(
←→
I − n̂inc

⊗ n̂inc). (88)

Eq. (86) implies that the electric and magnetic field vectors of the scattered electromagnetic field vibrate in the plane
perpendicular to the propagation direction and decay inversely with distance from the object.

The formal mathematical conditions of applicability of Eq. (86) are as follows:

k1(r − a)≫ 1, (89)
r ≫ a, (90)

r ≫
k1a2

2
, (91)

where a is the radius of the smallest circumscribing sphere of the entire scattering object centered atO. The physicalmeaning
of these inequalities is discussed in [34,171].

The main attraction of the far-zone approximation is that the entire object is implicitly treated as a point source of
scattered radiation, while the scattered field is reduced to a simple outgoing spherical wave. Furthermore, Eq. (87) implies
that out of the nine components of the scattering dyadic in spherical coordinates centered at the origin, only four are
independent. It is thus convenient to introduce a 2 × 2 amplitude scattering matrix S having the dimension of length and
expressing the θ- andϕ-components of the scattered sphericalwave in the θ- andϕ-components of the incident planewave:Esca

θ (rn̂
sca)Esca

ϕ (rn̂
sca)


=

exp(ik1r)
r

S(n̂sca, n̂inc)

E inc
0θE inc
0ϕ


. (92)

Here, θ ∈ [0, π ] is the polar (zenith) angle measured from the positive z-axis and ϕ ∈ [0, 2π) is the azimuth angle
measured from the positive x-axis in the clockwise direction when looking in the direction of the positive z-axis.

A fundamental property of the scattering dyadic and the amplitude scattering matrix is the following symmetry with
respect to reversing and interchanging the incidence and scattering directions [172]:

←→
A (−n̂inc,−n̂sca) = [

←→
A (n̂sca, n̂inc)]T, (93a)

S(−n̂inc,−n̂sca) =


S11(n̂sca, n̂inc) −S21(n̂sca, n̂inc)

−S12(n̂sca, n̂inc) S22(n̂sca, n̂inc)


, (93b)

where T stands for ‘‘transposed’’. Eqs. (93a) and (93b) are traditionally called reciprocity relations.

4.5. Well-collimated radiometers

By solving the MMEs either analytically or numerically, one can model a wide range of optical observables, including
those that can be measured with actual optical instruments. Some of these instruments are expressly intended for
near-field applications [173], while some can measure both near- and far-field observables. As explained in [100,174],
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Fig. 8. Optical scheme of a well-collimated radiometer.

the overwhelming majority of laboratory, in situ, and remote-sensing instruments measuring specific manifestations of
electromagnetic energy transport in particulate media belong to the category of well-collimated radiometers (WCRs).
Depending on the measurement setting, these instruments can work in the near as well as in the far zone of the particulate
scattering object, but in either case it is assumed that the total electromagnetic field at the observation point is a
superposition of plane or near-plane wavefronts.

The principal functional elements of a WCR are the objective and relay lenses, the pinhole diaphragm, and the
photoelectric detector, as shown schematically in Fig. 8a. The physical nature of the measurement afforded by theWCR can
be illustrated by considering the response of the instrument to the field formed by superposing two plane electromagnetic
waves propagating in the directions of the unit vectors q̂1 and q̂2, respectively. The effect of the objective lens on the
total field is a superposition of its effects on each plane-wave component. According to the paraxial approximation (see
Section 5.1 of [175]), in the near zone of the objective lens either plane wavefront is transformed into a converging spherical
wavefront (Fig. 8b) with its focal point located in the plane of the diaphragm. The first spherical wavefront passes freely
through the pinhole, is converted back into a plane wavefront by the relay lens, and impinges on the sensitive surface of the
photodetector, thereby defining the signal generated by theWCR. The second spherical wavefront becomes extinguished by
the diaphragm and never reaches the photodetector. Thus the combination {objective lens, diaphragm} serves to filter out
only plane (or near-plane) wavefronts propagating in directions very close to the optical axis of the WCR and falling within
its small acceptance solid angle

1Ω =
πd2

4f 2
, (94)

where d is the diameter of the pinhole and f is the focal length of the objective lens.
Typically a photodetector reacts only to the intensity of the beam impinging on its sensitive surface. However, by inserting

special optical elements (such as polarizers and retarders) between the relay lens and the detector in Fig. 8a, it is possible
to modify the resulting beam impinging on the detector in such a way that its new intensity contains information about
the polarization state of the original superposition of the plane or near-plane wavefronts filtered out by the {objective lens,
diaphragm} combination. The result is a photopolarimetric WCR.

Despite having quite different appearances, the one natural and six manmade devices in Fig. 9 have the same basic
physical function: they filter out electromagnetic wavefronts rather than electromagnetic energy currents. In a radio
telescope (Fig. 9b) or a reflecting optical telescope (Fig. 9c), the functional role of the objective lens is played by the radio
antenna or the primary mirror, respectively. In the final analysis, however, all these devices are WCRs, possibly with an
added panoramic (or imaging) capability.6 The basic functionality of a WCR makes it quite useful in cases when the total
electromagnetic field at the observation point can naturally be represented as a superposition of plane or locally near-
plane wavefronts, the electromagnetic field in the far zone of a finite object being a prime example. Since the measurement
enabled by aWCR iswell defined in terms of basic concepts of light–matter interactions, it should be amenable to theoretical
modeling. This explains why the combination of a WCR and an appropriate theoretical analysis tool often serves as an
efficient means of optical characterization.

4.6. Far-zone optical observables

The formalism embodied by Eqs. (75) and (92) helps illustrate how to define specific far-field optical observables
measurable with WCRs. The main results of the following analysis will be straightforward consequences of the total field
in the far zone being a superposition of two transverse wavefronts, i.e., the incident plane-wave field and the scattered
spherical-wave field.

6 In this case each pixel of a charge-coupled device or each photoreceptor cell of the retina has a dual role of the diaphragm and the detector of
electromagnetic energy flow [34].
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Fig. 9. Examples of well-collimated radiometers. (a) 26-in refractor of the Pulkovo Observatory. (b) NASA’s 34 m Goldstone radio telescope. (c) NASA’s
Hubble Space Telescope. (d) Human eye. (e) Digital photographic camera. (f) Light scattering setup built at the University of Amsterdam (after [176]). (g)
Gershun tube (after [177]).

As we have already mentioned, interposing one or more optical elements between the relay lens and the photodetector
of a WCR can enable it to measure the power corresponding to particular polarization components of the superposition of
plane or near-plane wavefront passed by the {objective lens, diaphragm} angular filter. Similarly, interposing one or more
such optical elements before the scattering object, we can generate the incident field with a specific state of polarization.
Repeating themeasurement for a number of different combinations and/or orientations of these optical elements enables us
to determine the specific mathematical relationship between a complete set of polarization characteristics of the incident
field and that of the field impinging on the objective lens of a WCR. This relationship is traditionally formulated in terms of
4-element columns formed by the Stokes parameters and 4× 4 so-called phase and extinction matrices.

According to the preceding discussion, a WCR that is not facing the incident wave and is not centered at the scattering
object will not generate any signal. Therefore, let us first consider the situation when the instrument has its optical axis
centered at the object in the scattering direction away from the incidence direction, i.e., r̂ ≠ n̂inc (WCR 1 in Fig. 10). It
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Fig. 10. The response of a polarization-sensitive well-collimated radiometer depends on the line of sight.

is clear that in this case the instrument filters out only the quasi-plane part of the outgoing spherical wave cut out by its
objective lens, as shown schematically by the dashed curve. Therefore, the average polarization response of WCR 1 per unit
time can be expressed in terms of the so-called Stokes column vector of the scattered wave as follows:

Signal 1 = SolIsca(rn̂sca), (95)

where the overbar has the same meaning as in Eq. (66), r is the distance from the scattering object to WCR 1, n̂sca
= r̂1,

and Sol is the surface area of the objective lens. Recalling the definition of the real-valued Stokes parameters of a transverse
electromagnetic wave [20,34] and Eq. (92), we have

Isca(rn̂sca) =


Isca(rn̂sca)

Q sca(rn̂sca)

U sca(rn̂sca)

V sca(rn̂sca)



=
1
2r2


ε1

µ0


Esca
1θ (n̂

sca)[Esca
1θ (n̂

sca)]∗ +Esca
1ϕ (n̂

sca)[Esca
1ϕ (n̂

sca)]∗Esca
1θ (n̂

sca)[Esca
1θ (n̂

sca)]∗ −Esca
1ϕ (n̂

sca)[Esca
1ϕ (n̂

sca)]∗

−Esca
1θ (n̂

sca)[Esca
1ϕ (n̂

sca)]∗ −Esca
1ϕ (n̂

sca)[Esca
1θ (n̂

sca)]∗

i{Esca
1ϕ (n̂

sca)[Esca
1θ (n̂

sca)]∗ −Esca
1θ (n̂

sca)[Esca
1ϕ (n̂

sca)]∗}

 . (96)

Analogously, the polarization state of the plane incidentwave (75) can be characterized in terms of the Stokes column vector

Iinc =


I inc

Q inc

U inc

V inc

 = 1
2


ε1

µ0


E inc
0θ (

E inc
0θ )
∗
+E inc

0ϕ (
E inc
0ϕ )
∗E inc

0θ (
E inc
0θ )
∗
−E inc

0ϕ (
E inc
0ϕ )
∗

−E inc
0θ (

E inc
0ϕ )
∗
−E inc

0ϕ (
E inc
0θ )
∗

i[E inc
0ϕ (

E inc
0θ )
∗
−E inc

0θ (
E inc
0ϕ )
∗
]

 . (97)

The corresponding transformation law reads:

Isca(rn̂sca) =
1
r2

Z(n̂sca, n̂inc)Iinc, (98)
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where Z(n̂sca, n̂inc) is the 4×4 Stokes phase matrix with real-valued elements given by the following quadratic and bilinear
combinations of the elements of the amplitude scattering matrix S(n̂sca, n̂inc) [20,25,34]:

Z11 =
1
2
(|S11|2 + |S12|2 + |S21|2 + |S22|2), (99)

Z12 =
1
2
(|S11|2 − |S12|2 + |S21|2 − |S22|2), (100)

Z13 = −Re(S11S∗12 + S22S∗21), (101)

Z14 = −Im(S11S∗12 − S22S∗21), (102)

Z21 =
1
2
(|S11|2 + |S12|2 − |S21|2 − |S22|2), (103)

Z22 =
1
2
(|S11|2 − |S12|2 − |S21|2 + |S22|2), (104)

Z23 = Re(S11S∗12 − S22S∗21), (105)

Z24 = −Im(S11S∗12 + S22S∗21), (106)

Z31 = −Re(S11S∗21 + S22S∗12), (107)

Z32 = −Re(S11S∗21 − S22S∗12), (108)

Z33 = Re(S11S∗22 + S12S∗21), (109)

Z34 = Im(S11S∗22 + S21S∗12), (110)

Z41 = −Im(S21S∗11 + S22S∗12), (111)

Z42 = −Im(S21S∗11 − S22S∗12), (112)

Z43 = Im(S22S∗11 − S12S∗21), (113)

Z44 = Re(S22S∗11 − S12S∗21). (114)

The Stokes phase matrix has the dimension of area.
Let us now consider a polarimetric WCR with its axis centered at the scattering object in the exact forward-scattering

direction r̂ = n̂inc, i.e., WCR 2 in Fig. 10. Now the {objective lens, diaphragm} angular filter of the instrument accepts both
the incident plane wave and the part of the outgoing spherical wave propagating in the forward-scattering direction and
cut out by the objective lens. As a consequence, we can define the Stokes column vector of the total field for propagation
directions r̂′ very close to n̂inc:

I(r ′r̂′) =
1
2


ε1

µ0


Eθ (r ′r̂′)[Eθ (r ′r̂′)]∗ +Eϕ(r ′r̂′)[Eϕ(r ′r̂′)]∗Eθ (r ′r̂′)[Eθ (r ′r̂′)]∗ −Eϕ(r ′r̂′)[Eϕ(r ′r̂′)]∗
−Eθ (r ′r̂′)[Eϕ(r ′r̂′)]∗ −Eϕ(r ′r̂′)[Eθ (r ′r̂′)]∗
i{Eϕ(r ′r̂′)[Eθ (r ′r̂′)]∗ −Eθ (r ′r̂′)[Eϕ(r ′r̂′)]∗}

 , r̂′ ∈ 1Ω2, (115)

where1Ω2 is the acceptance solid angle of WCR 2 and the total electric field is given byE(r ′r̂′) =Einc(r ′r̂′)+Esca(r ′r̂′). (116)

Integrating the elements of I(r ′r̂′) over the objective lens of WCR 2 yields the following expression for the average recorded
polarized signal per unit time [20,25,34]:

Signal 2 = SolIinc − K(n̂inc)Iinc +
Sol
r2

Z(n̂inc, n̂inc)Iinc, (117)

where Z(n̂inc, n̂inc) is the forward-scattering Stokes phase matrix and K(n̂inc) is the real 4× 4 Stokes extinction matrix. The
elements of the latter are linear combinations of the elements of the forward-scattering amplitude matrix S(n̂inc, n̂inc):

Kjj =
2π
k1

Im(S11 + S22), j = 1, . . . , 4, (118)

K12 = K21 =
2π
k1

Im(S11 − S22), (119)

K13 = K31 = −
2π
k1

Im(S12 + S21), (120)
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K14 = K41 =
2π
k1

Re(S21 − S12), (121)

K23 = −K32 =
2π
k1

Im(S21 − S12), (122)

K24 = −K42 = −
2π
k1

Re(S12 + S21), (123)

K34 = −K43 =
2π
k1

Re(S22 − S11), (124)

where ‘‘Im’’ stands for ‘‘imaginary part of’’. Like the phase matrix, the extinction matrix has the dimension of area.
Eq. (117) is the most general form of the so-called optical theorem. It demonstrates that the presence of the scattering

object not only changes the total power of the electromagnetic radiation recorded by the WCR facing the incident wave
(WCR 2 in Fig. 10), but also can change its state of polarization. The latter phenomenon is called dichroism and is caused by
different attenuation rates for different polarization components of the incident wave in the case of an object lacking perfect
spherical symmetry. Moving WCR 2 sufficiently far from the scattering object can render the contribution of the third term
on the right-hand side of Eq. (117) negligibly small,

Signal 2 =
r→∞

SolIinc − K(n̂inc)Iinc, (125)

and thereby make the extinction matrix a directly measurable quantity.
Among the most general properties of the phase and extinction matrices [18,20,178] are the inequalities

0 ≤ Z11, |Zij| ≤ Z11 (i, j = 1, . . . , 4); (126)

the reciprocity relations

Z(−n̂inc,−n̂sca) = 13[Z(n̂sca, n̂inc)]T13 (127)

and

K(−n̂inc) = 13[K(n̂inc)]T13;

the backscattering theorem

Z11(−n̂, n̂)− Z22(−n̂, n̂)+ Z33(−n̂, n̂)− Z44(−n̂, n̂) = 0; (128)

and the symmetry relation

K(−n̂inc) =


K11(n̂inc) K12(n̂inc) −K13(n̂inc) K14(n̂inc)

K21(n̂inc) K22(n̂inc) K23(n̂inc) −K24(n̂inc)

−K31(n̂inc) K32(n̂inc) K33(n̂inc) K34(n̂inc)

K41(n̂inc) −K42(n̂inc) K43(n̂inc) K44(n̂inc)

 , (129)

where

13 = 1T
3 = 1−13 =

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 . (130)

The properties (127)–(130) followdirectly from the reciprocity relation (93) combinedwith Eqs. (99)–(114) and (118)–(124).

4.7. Energy budget

In the preceding subsection we explained how to quantify the electromagnetic response of a far-field WCR. In this
subsection we discuss the theoretical solution of the energy-budget problem for an arbitrary volume V enclosing the
entire scattering object (Fig. 11a). Since the host medium is assumed to be nonabsorbing, the net average rate at which
the electromagnetic energy crosses the closed boundary S of the volume is always nonnegative and is equal to the power
absorbed by the object:

W
abs
= −


S
d2r S̄(r) · n̂, (131)

where, as before,

S̄(r) =
1
2
Re{E(r)× [H(r)]∗} (132)
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Fig. 11. Energy budget of a finite volume enclosing (a) the entire scattering object or (b) a part of the object.

is the average macroscopic Poynting vector and n̂ is the unit vector in the direction of the local outward normal to S.
According to Eqs. (73) and (74),W

abs
can be written as a combination of three terms:

W
abs
= W

inc
−W

sca
+W

ext
, (133)

where

W
inc
= −

1
2
Re


S
d2r {Einc(r)× [Hinc(r)]∗} · n̂, (134)

W
sca
=

1
2
Re


S
d2r {Esca(r)× [Hsca(r)]∗} · n̂, (135)

W
ext
= −

1
2
Re


S
d2r {Einc(r)× [Hsca(r)]∗ +Esca(r)× [Hinc(r)]∗} · n̂. (136)

It can easily be seen that W
inc

vanishes identically because {Einc(r) × [Hinc(r)]∗}/2 is a constant vector independent of r,
which is a trivial consequence of the surrounding medium being lossless. Therefore, the absorption rate is equal to the
difference between the energy extinction rate and the energy scattering rate:

W
abs
= W

ext
−W

sca
. (137)

Again, one can exploit the assumption that the infinite host medium surrounding the object is nonabsorbing to show that
the values ofW

ext
andW

sca
would not change if V were chosen to be a spherical volume with its boundary S residing in the

far zone of the entire object. Then it is straightforward to derive that

W
ext
= K11(n̂inc)I inc + K12(n̂inc)Q inc

+ K13(n̂inc)U inc
+ K14(n̂inc)V inc, (138)

W
sca
=


4π

dr̂ [Z11(r̂, n̂inc)I inc + Z12(r̂, n̂inc)Q inc
+ Z13(r̂, n̂inc)U inc

+ Z14(r̂, n̂inc)V inc
] (139)

(see Sec. 13.4 of [34]).
It is important to recognize that although the extinction and phase matrices are inherently far-field quantities,

Eqs. (137)–(139) are valid for any volume enclosing the entire scattering object even if its boundary lies in the object’s near
field. Of course, a trivial modification of Eqs. (137)–(139) would not work for a volume enclosing only part of the scattering
object, as illustrated in Fig. 11b, since in this case one would need to know the specific near-field spatial distribution of the
Poynting vector over S. Eqs. (137)–(139) would also not apply if the host medium were absorbing [179].

4.8. Foldy equations

The general scattering formalism described in Sections 4.1–4.3 applies equally to an object in the form of a single
body and to a fixed multi-particle group. However, when the object is a group of touching and/or separated distinct
components then it can sometimes be advantageous to modify the formalism by expressing the total scattered field as a
vector superposition of the partial fields contributed by the individual components. Specifically, let us consider the scattering
by a fixed configuration of N ≥ 2 distinct finite particles collectively occupying the interior region VINT according to Eq. (67)
(see Fig. 6). It has been shown in [180,181] (see also Section 11.3 of [170]) that the solution of the VIE everywhere in space
can be expressed as follows:

E(r) =Einc(r)+
N
i=1


Vi
d3r′
←→
G (r, r′) ·


Vi
d3r′′
←→
T i(r′, r′′) ·Ei(r′′), r ∈ ℜ3, (140)

where the electric field vectorEi(r) ‘‘exciting’’ particle i is given by

Ei(r) =Einc(r)+
N

j(≠i)=1

Eexc
ij (r), (141)
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theEexc
ij (r) are ‘‘particle–particle exciting field vectors’’ given by

Eexc
ij (r) =


Vj
d3r′
←→
G (r, r′) ·


Vj
d3r′′
←→
T j(r′, r′′) ·Ej(r′′), r ∈ Vi, (142)

and
←→
T i is the ith-particle dyadic transition operator with respect to the common laboratory coordinate system. The

←→
T i

satisfies the integral equation

←→
T i(r, r′) = Ui(r)δ(r− r′)

←→
I + Ui(r)


Vi
d3r′′
←→
G (r, r′′) ·

←→
T i(r′′, r′), r, r′ ∈ Vi, (143)

where the Ui(r) is the ith-particle potential function given by

Ui(r) =

0, r ∉ Vi,

k21[m
2
i (r)− 1], r ∈ Vi

(144)

andmi(r) is the refractive index of particle i relative to that of the hostmedium. All position vectors originate at the common
origin O of the laboratory coordinate system. Eqs. (140)–(143) form the system of integral so-called Foldy equations (FEs).
They automatically incorporate all boundary conditions at individual-particle surfaces as well as the radiation condition at
infinity and rigorously describe the scattered field everywhere in space. Comparison of Eqs. (84) and (143) reveals that, quite
conveniently,

←→
T i is the dyadic transition operator of the ith particle in the absence of all the other particles. As such, it can

be considered an individual optical identifier of the ith component of the group.

4.9. Frequency-domain ‘‘multiple’’ scattering

Ever since Heaviside’s Electromagnetic Theory [182], the concept of ‘‘multiple’’ scattering has been quite popular in
discussions of electromagnetic scattering by multi-particle groups (see [183,184] and references therein). To demonstrate
the actual nature of this concept in the context of frequency-domain electromagnetics [92], let us introduce the ith potential
dyadic centered at the origin of the laboratory reference frame according to

←→
U i(r, r′) = Ui(r)δ(r− r′)

←→
I (145)

and introduce the following operator notation:

B̂E =


d3r′
←→
B (r, r′) ·E(r′). (146)

Iterating Eqs. (141) and (142), we have

Ei = E inc
+

N
j(≠i)=1

ĜT̂jE inc
+

N
j(≠i)=1

N
l(≠j)=1

ĜT̂jĜT̂lE inc
+

N
j(≠i)=1

N
l(≠j)=1

N
m(≠l)=1

ĜT̂jĜT̂lĜT̂mE inc
+ · · · , (147)

whereas substituting Eq. (147) in Eq. (140) yields the following Neumann expansion of the total field:

E = E inc
+

N
i=1

ĜT̂iE inc
+

N
i=1

N
j(≠i)=1

ĜT̂iĜT̂jE inc
+

N
i=1

N
j(≠i)=1

N
l(≠j)=1

ĜT̂iĜT̂jĜT̂lE inc
+ · · · . (148)

It is clear that the Neumann series is fundamentally based on the previously mentioned fact that
←→
T i for each i is an

individual property of the ith particle computed as if this particle were alone rather than a member of the group. As a
consequence, it has been rather common to characterize Eq. (148) as the ‘‘order-of-scattering expansion’’ for the N-particle
group. It should be remembered however that the FEs have a solution even when the corresponding Neumann series (148)
does not converge. Numerical examples of possible divergence can be found in [185,186].

4.10. Far-field Foldy equations

In principle, the FEs can be solved numerically in order to compute the field scattered by a fixed finite configuration of
arbitrarily positioned particles. However, the solution becomes impracticable quite rapidly with increasing N . One way to
simplify the problem and make it tractable is to consider a very sparse configuration by assuming that:

• the N particles are widely separated so that each of them resides in the far zones of all the other particles; and
• the observation point is located in the far zone of any particle (but not necessarily in the far zone of the entire group).
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Fig. 12. Vector notation used in the far-field Foldy equations.

Specifically, if the incident electric field vector is given by Eq. (75) then the FEs imply that the total electric field vector is
still given by the superposition (73), where the scattered electric field vector is now given by [34,181]

Esca(r) =
N
i=1

g(ri)


←→
A i(r̂i, n̂inc) ·Einc(Ri)+

N
j(≠i)=1

←→
A i(r̂i, R̂ij) ·Eij


. (149)

Here,
←→
A i(n̂′, n̂) is the far-zone scattering dyadic of particle i centered at the particle’s own origin Oi (Section 4.4);

g(r) =
exp(ik1r)

r
; (150)

and the vectorsEij satisfy the following system of equations:

Eij = g(Rij)
←→
A j(R̂ij, n̂inc) ·Einc(Rj)+ g(Rij)

N
l(≠j)=1

←→
A j(R̂ij, R̂jl) ·Ejl, i, j = 1, . . . ,N, j ≠ i. (151)

The vector notation used in Eqs. (149) and (151) is explained in Fig. 12; a hat denotes a unit vector in the respective direction.
Eqs. (149)–(151) are called the far-field FEs. It is evident indeed that the linear algebraic system (151) is much simpler than
the initial system of integral equations (141)–(142).

Eqs. (73) and (149) show that the total field at any observation point located sufficiently far from any particle in the sparse
multi-particle configuration is a superposition of the incident plane wave and N partial spherical wavelets centered at the
N particles. Importantly, the observation point r does not have to be in the far zone of the entire N-particle group: it can be
anywhere in space (e.g., between particles i and j in Fig. 12) as long as it is in the far zone of any particle entering the group.
The total scattered field (149) is not, in general, a transverse electromagnetic wave. It becomes a transverse wave only in the
far zone of the entire N-particle configuration defined by the criteria (89)–(91), where a is the radius of the smallest sphere
encompassing all N particles.

4.11. Dyadic correlation function and Poynting–Stokes tensor

We have already mentioned in Section 2 that it can be possible in some cases to derive an analytical expression for an
optical observable that is explicitly devoid of the electromagnetic field. Sometimes this expression is a closed-form equation
solving which can serve as a highly efficient means of calculating the optical observable directly, without the prior detailed
computation of the electromagnetic field itself.

The general methodology enabling one to bypass an explicit use of the electromagnetic field is well exemplified by the
far-field formulas (95), (98) and (117), in which case the observable in question is the 4-element Stokes column vector.
However, this observable can be defined only for a transverse (i.e., plane or spherical) electromagnetic wave, whereas the
total electromagnetic field in the near zone of any object (e.g., at any observation point inside a cloud of particles) is never
a transverse wave. Furthermore, the Stokes column vector contains no explicit information on the direction of the Poynting
vector and cannot be used in situations when this direction is not known a priori.

The Poynting vector is another optical observable extensively discussed in the preceding sections. Its obvious analytical
limitation is that different pairs of electric and magnetic field vectors can yield the same Poynting vector. This implies that
the Poynting vector cannot be used to describe the phenomenon of electromagnetic scattering by, for example, expressing
the Poynting vector of the scattered field in that of the incident field. In other words, the Poynting vector does not carry
sufficient information about the participating electric and magnetic fields and, in particular, carries no information about
the polarization state of a transverse electromagnetic field.
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It is therefore highly desirable to introduce an alternative quantity that:

• can be defined for any electromagnetic field;
• has the dimension of electromagnetic energy flux; and
• enables a complete and self-contained description of electromagnetic scattering in the context of practical optical

analysis.

It has been shown in [34,187] that a rather general quantity satisfying all these requirements is the so-called dyadic
correlation function involving electric field vectors at two different points in space:

←→
C (r′, r) = E(r′)⊗ [E(r)]∗. (152)

This quantity along with the Maxwell curl equations (68) and (69) can be used to compute other observables, including
those involving both the electric and the magnetic field vector. An important example is the so-called Poynting–Stokes
tensor defined as the dyadic product of the magnetic and complex-conjugated electric field vectors taken at the same point
in space:

←→
P (r) =

1
2
H(r)⊗E∗(r). (153)

Indeed, it is easily verified that

←→
P (r) =

1
2iωµ0

[∇r′ ×
←→
C (r′, r)]


r′=r

, (154)

where the subscript r′means that the∇ operator acts only on E(r′). Unlike the Stokes parameters, this quantity is applicable
to any electromagnetic field (e.g., the near field of a scattering object) and not just to a transverse electromagnetic wave.
Furthermore, unlike the Poynting vector, the Poynting–Stokes tensor preserves all the information about the participating
electric andmagnetic fields that gets lost upon taking the vector product of these fields.Wewill see in the following sections
that owing to their generality, the dyadic correlation function and the Poynting–Stokes tensor enable the derivation of
compact closed-form analytical formulas and equations directly describing electromagnetic scattering in terms of optical
observables.

It is straightforward to see thatwith respect to the Poynting–Stokes tensor, the Poynting vector and the Stokes parameters
are derivative quantities. Indeed, we have in general

S̄(r) = Re{[P∗zy(r)− P∗yz(r)] x̂+ [P
∗

xz(r)− P∗zx(r)] ŷ+ [P
∗

yx(r)− P∗xy(r)] ẑ}, (155)

where x̂, ŷ, and ẑ are the unit vectors of a right-handed Cartesian coordinate system. In the case of a transverse
electromagnetic wave, the Stokes column vector is given by

I(r) =


P∗ϕθ (r)− P∗θϕ(r)
P∗ϕθ (r)+ P∗θϕ(r)
P∗θθ (r)− P∗ϕϕ(r)
i[P∗θθ (r)+ P∗ϕϕ(r)]

 , (156)

where θ and ϕ are the zenith and azimuth angles defining the local direction n̂ of wave propagation such that n̂ = θ̂ × ϕ̂.
According to Eqs. (73), (75) and (83), the total field can be expressed as

E(r) =←→ℑ E(r, n̂inc) ·Einc
0 , r ∈ ℜ3, (157)

where
←→
ℑ E(r, n̂inc) is a transformation dyadic independent ofEinc

0 and given by

←→
ℑ E(r, n̂inc) = exp(ik1n̂inc

·r)
←→
I +


VINT

d3r′
←→
G (r, r′) ·


VINT

d3r′′
←→
T (r′, r′′) exp(ik1n̂inc

·r′′). (158)

It follows from Eqs. (68), (69), (74) and (76) that a relationship similar to Eq. (157) must exist for the magnetic field as well:

H(r) =←→ℑ H(r, n̂inc) ·Hinc
0 , r ∈ ℜ3, (159)

where the transformation dyadic ℑ̂H(r, n̂inc) is independent ofHinc
0 and is given by

←→
ℑ H(r, n̂inc) =

i
k1
∇ ×
←→
ℑ E(r, n̂inc)× n̂inc. (160)

Then we have for the Poynting–Stokes tensor of the total field [34]:
←→
P (r) =

←→
ℑ H(r, n̂inc) ·

←→
P inc

· [
←→
ℑ E(r, n̂inc)]T∗, r ∈ ℜ3, (161)
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where

←→
P inc
=

1
2
Hinc

0 ⊗ [
Einc

0 ]
∗ (162)

is the Poynting–Stokes tensor calculated separately for the plane-wave incident field.
We will see below that Eq. (161) is a general template for many closed-form relationships between observable

characteristics of the incident and total fields. Importantly, this formula demonstrates that the elements of the tensor
←→
P (r)

generally depend on all the elements of the tensor
←→
P inc. In other words, as we have already mentioned, the complex

Poynting vector of the total field cannot be uniquely expressed in that of the incident field. This implies that the widespread
characterization of electromagnetic scattering as causing the transformation of the intensity of the incident light into that
of the scattered light is fundamentally wrong.

Eq. (161) implies the existence of a linear (but not necessarily tensorial) operator expressing the Poynting–Stokes tensor
of the total field in that of the incident plane-wave field [34]. We will denote this operator by ℑ̂ and write symbolically:

←→
P (r) = ℑ̂(r, n̂inc)

←→
P inc. (163)

The readermay find it instructive to rewrite Eq. (163) in thematrix formwith respect to the Cartesian laboratory coordinate
system and thereby express the elements of the 9 × 9 matrix representing the operator ℑ̂ in terms of the elements of the
3× 3 matrices representing the dyadics

←→
ℑ E and

←→
ℑ H . Analogously, we can write

←→
P sca(r) = ℑ̂sca(r, n̂inc)

←→
P inc, (164)

where

←→
P sca
=

1
2
Hsca(r)⊗ [Esca(r)]∗ (165)

is the Poynting–Stokes tensor calculated separately for the scattered field.
Eqs. (163) and (164) represent a remarkably compact yet generalway of describing electromagnetic scattering in terms of

optical observables rather thanmacroscopic field vectors. As such, theywill be central to the following discussion, especially
when it comes to the scattering of quasi-monochromatic fields by temporally variable objects. The reader can verify that
Eqs. (98) and (117) are but specific coordinate-dependent manifestations of these formulas.

Formulas analogous to Eqs. (163) and (164) can be derived for optical observables other than the Poynting–Stokes tensor.
Each such formula serves as a linear transformerwith an optical observable of the incident electromagnetic field as the input
and an optical observable of the total or scattered electromagnetic field as the output. Such linear transformers are essential
in practice because of the two-layer structure of electromagnetics discussed in Section 2.

4.12. Quasi-monochromatic scattering by a fixed object

The formalism summarized above provides an efficient means of computing time-averaged macroscopic optical
observables without solving explicitly the microscopic Maxwell–Lorentz equations. It is based, in particular, on the
assumption that the complex amplitudes Einc

0 and Hinc
0 =

√
ε1/µ0 n̂inc

× Einc
0 entering the solution of the standard

scattering problem are independent of time. Let us now imagine a situation wherein these amplitudes remain constant
over periods of time Tf such that

Tf ≫ To (averaging strategy 1) (166)

and

Tf ≫ T ′ (averaging strategy 2), (167)

but fluctuate over longer time scales. In other words,

Einc(r, t) =Einc
0 (t) exp(ik1n̂

inc
·r), (168)

Hinc(r, t) = Hinc
0 (t) exp(ik1n̂

inc
·r) =


ε1

µ0
n̂inc
×Einc

0 (t) exp(ik1n̂
inc

·r), (169)

where significant random changes of the complex amplitudeEinc
0 (t) occur over periods of time longer than Tf. The solution

of the standard scattering problem for a temporal succession ofEinc
0 (t)-values then yields a temporal succession of the total

field vector values that can be thought of as defining time-dependent macroscopic field vectors fluctuating randomly on
time scales longer than Tf: {E(r),H(r)} → {E(r, t),H(r, t)}.
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According to the above discussion, the quasi-instantaneous values ofE(r, t) andH(r, t) are postulated to define optical
observables averaged over time intervals of the order of Tf. For example,

S̄(r, t) =
1
2
Re{E(r, t)× [H(r, t)]∗} (170)

and
←→
P (r, t) =

1
2
H(r, t)⊗E∗(r, t). (171)

The corresponding averages over much longer time intervals are then calculated according to

⟨⟨S̄(r, t)⟩⟩ =
1
T

 t+T/2

t−T/2
dt ′ S̄(r, t ′), T ≫ Tf, (172)

⟨⟨
←→
P (r, t)⟩⟩ =

1
T

 t+T/2

t−T/2
dt ′
←→
P (r, t ′), T ≫ Tf. (173)

These averages are time independent provided that S̄(r, t) and
←→
P (r, t) are stationary random processes (see, e.g., [188]).

The random macroscopic field vectors E(r, t) and H(r, t) are traditionally said to represent a quasi-monochromatic
macroscopic electromagnetic field. In particular, Eqs. (168) and (169) are said to describe a quasi-monochromatic plane
electromagnetic wave (or a quasi-monochromatic parallel beam of light).

Despite the inequalities (166) and (167), typical fluctuations of quasi-instantaneous optical observables still occur too
rapidly to be traced bymany optical instruments. It is therefore postulated that the intrinsic functionality of such instruments
is to record the integral of an optical observable over an extended period of time without resolving the quasi-instantaneous
values of this observable explicitly.7 Thus the practical usefulness of the notion of a quasi-monochromatic electromagnetic
field turns out to be two-fold. First, it helps combine the simplicity of the frequency-domain scattering formalism with a
more realistic representation of the majority of artificial and natural sources of the electromagnetic field. Second, it allows
one to account for inherent limitations of typical optical devices.

The generalization of Eqs. (161), (163) and (164) to the case of quasi-monochromatic scattering by a fixed object is quite
straightforward:

⟨⟨
←→
P (r, t)⟩⟩ =

←→
ℑ H(r, n̂inc) ·⟨⟨

←→
P inc(t)⟩⟩ · [

←→
ℑ E(r, n̂inc)]T∗, r ∈ ℜ3, (174)

⟨⟨
←→
P (r, t)⟩⟩ = ℑ̂(r, n̂inc)⟨⟨

←→
P inc(t)⟩⟩, (175)

⟨⟨
←→
P sca(r, t)⟩⟩ = ℑ̂sca(r, n̂inc)⟨⟨

←→
P inc(t)⟩⟩. (176)

The quasi-monochromatic versions of themain formulas of Sections 4.6 and 4.7 are again coordinate-specificmanifestations
of Eqs. (175) and (176):

⟨⟨Signal 1(t)⟩⟩ = Sol⟨⟨Isca(rn̂sca, t)⟩⟩ =
Sol
r2

Z(n̂sca, n̂inc)⟨⟨Iinc(t)⟩⟩, (177)

⟨⟨Signal 2(t)⟩⟩ = Sol⟨⟨Iinc(t)⟩⟩ − K(n̂inc)⟨⟨Iinc(t)⟩⟩ +
Sol
r2

Z(n̂inc, n̂inc)⟨⟨Iinc(t)⟩⟩, (178)

⟨⟨W
abs
(t)⟩⟩ = ⟨⟨W

ext
(t)⟩⟩ − ⟨⟨W

sca
(t)⟩⟩, (179)

⟨⟨W
ext
(t)⟩⟩ = K11(n̂inc)⟨⟨I inc(t)⟩⟩ + K12(n̂inc)⟨⟨Q inc(t)⟩⟩ + K13(n̂inc)⟨⟨U inc(t)⟩⟩ + K14(n̂inc)⟨⟨V inc(t)⟩⟩, (180)

⟨⟨W
sca
(t)⟩⟩ =


4π

dr̂ [Z11(r̂, n̂inc)⟨⟨I inc(t)⟩⟩ + Z12(r̂, n̂inc)⟨⟨Q inc(t)⟩⟩

+ Z13(r̂, n̂inc)⟨⟨U inc(t)⟩⟩ + Z14(r̂, n̂inc)⟨⟨V inc(t)⟩⟩], (181)
where

⟨⟨Iinc(t)⟩⟩ =
1
2


ε1

µ0


⟨⟨E inc

0θ (t)[E inc
0θ (t)]

∗
+E inc

0ϕ (t)[E inc
0ϕ (t)]

∗
⟩⟩

⟨⟨E inc
0θ (t)[E inc

0θ (t)]
∗
−E inc

0ϕ (t)[E inc
0ϕ (t)]

∗
⟩⟩

⟨⟨−E inc
0θ (t)[E inc

0ϕ (t)]
∗
−E inc

0ϕ (t)[E inc
0θ (t)]

∗
⟩⟩

i⟨⟨E inc
0ϕ (t)[E inc

0θ (t)]
∗
−E inc

0θ (t)[E inc
0ϕ (t)]

∗
⟩⟩

 . (182)

All time averages in Eqs. (174)–(182) are independent of time.
All results of this subsection can easily be generalized to the case of a polychromatic incident field with quasi-

monochromatic components [34].

7 The ultimate justification of this postulate must be based, in particular, on the explicit QED treatment of light–matter interactions [110,189].
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5. Electromagnetic scattering by a randomly changing macroscopic object

5.1. Dynamic and static scattering

So far we have been discussing electromagnetic scattering by a fixed macroscopic object. In the case of a randomly
changingmacroscopic object such as aDRM, temporal changes in particle positions and/or physical states result in significant
variations in the solution of the standard scattering problem even if the incident field is monochromatic. The typical time
interval over which macroscopic quadratic and bilinear forms in the field vary significantly will be denoted by Tv. We will
assume hereinafter that Tv ≫ To, Tv ≫ T ′, and Tv ≫ Tf.

In some cases, the temporal resolution of optical measurements is finer than Tv, i.e., is sufficient to trace the random
variations in macroscopic optical observables. Such measurements and their theoretical simulations constitute the subject
of dynamic light scattering [190,191]. In other cases such random variations occur too rapidly to be captured by an actual
optical device accumulating the signal over an extended period of time. This type of measurements and their theoretical
modeling belong to the discipline of static light scattering [34]. If T is the integration time of an opticalmeasurement defining
its temporal resolution, then

To
T ′


≪ Tf ≪ T ≪ Tv (183)

for dynamic scattering and
To
T ′


≪ Tf ≪ Tv ≪ T (184)

for static scattering. In either case the practical quantification of electromagnetic scattering by a stochastic macroscopic
object requires, strictly speaking, repeated solutions of the standard scattering problem for temporally evolving
instantaneous states of the object.

In what follows, we will mostly discuss static scattering of monochromatic and quasi-monochromatic electromagnetic
fields.

5.2. Monochromatic static scattering by a randomly changing macroscopic object

To represent an actual static measurement, quadratic and bilinear forms in the field must be averaged over a sufficiently
long period of time T ≫ Tv. In the case of monochromatic scattering, Eqs. (170) and (171) become

⟨⟨S̄(r, t)⟩⟩ =
1
2
Re⟨⟨E(r, t)× [H(r, t)]∗⟩⟩, r ∈ VEXT, (185)

⟨⟨
←→
P (r, t)⟩⟩ =

1
2
⟨⟨H(r, t)⊗ [E(r, t)]∗⟩⟩, r ∈ VEXT, (186)

where the macroscopic field vectorsE(r, t) and H(r, t) depend on time owing to the temporal changes of the scattering
object, while ⟨⟨S̄(r, t)⟩⟩ and ⟨⟨

←→
P (r, t)⟩⟩ are time independent provided that S̄(r, t) and

←→
P (r, t) are stationary random

processes. Now the temporal average on the right-hand side of Eq. (185) or (186) cannot, in general, be expressed as a
product of the individual averages,

⟨⟨S̄(r, t)⟩⟩ ≠
1
2
Re[⟨⟨E(r, t)⟩⟩ × ⟨⟨H(r, t)⟩⟩∗], (187)

⟨⟨
←→
P (r, t)⟩⟩ ≠

1
2
⟨⟨H(r, t)⟩⟩ ⊗ ⟨⟨E(r, t)⟩⟩∗, (188)

andmust be calculated explicitly. As usual, this computation is drastically simplified by assuming ergodicity of the scattering
object and the resulting ergodicity of the random processes S̄(r, t) and

←→
P (r, t):

⟨⟨S̄(r, t)⟩⟩ = ⟨S̄(r,Ψ )⟩Ψ =


dΨ S̄(r,Ψ )P(Ψ )

=
1
2
Re


dΨE(r,Ψ )× [H(r,Ψ )]∗P(Ψ ), (189)

⟨⟨
←→
P (r, t)⟩⟩ = ⟨

←→
P (r,Ψ )⟩Ψ =


dΨ
←→
P (r,Ψ )P(Ψ )

=
1
2


dΨ H(r,Ψ )⊗ [E(r,Ψ )]∗P(Ψ ), (190)
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where Ψ defines the state of the macroscopic object (rather than that of the constituent molecules) and P(Ψ ) is a suitable
time-independent probability density function.

Eqs. (161), (163) and (164) now become

⟨⟨
←→
P (r, t)⟩⟩ = ⟨⟨

←→
ℑ H(r, n̂inc

; t) ·
←→
P inc

· [
←→
ℑ E(r, n̂inc

; t)]T∗⟩⟩

= ⟨
←→
ℑ H(r, n̂inc

;Ψ ) ·
←→
P inc

· [
←→
ℑ E(r, n̂inc

;Ψ )]T∗⟩Ψ , r ∈ ℜ3, (191)

⟨⟨
←→
P (r, t)⟩⟩ = ⟨⟨ℑ̂(r, n̂inc

; t)⟩⟩
←→
P inc
= ⟨ℑ̂(r, n̂inc

;Ψ )⟩Ψ
←→
P inc, (192)

⟨⟨
←→
P sca(r, t)⟩⟩ = ⟨⟨ℑ̂sca(r, n̂inc

; t)⟩⟩
←→
P inc
= ⟨ℑ̂

sca(r, n̂inc
;Ψ )⟩Ψ

←→
P inc, (193)

while the main formulas of Sections 4.6 and 4.7 take the form

⟨⟨Signal 1(t)⟩⟩ =
Sol
r2
⟨Z(n̂sca, n̂inc

;Ψ )⟩Ψ Iinc, (194)

⟨⟨Signal 2(t)⟩⟩ = SolIinc − ⟨K(n̂inc
;Ψ )⟩Ψ Iinc +

Sol
r2
⟨Z(n̂inc, n̂inc

;Ψ )⟩Ψ Iinc, (195)

⟨⟨W
abs
(t)⟩⟩ = ⟨⟨W

ext
(t)⟩⟩ − ⟨⟨W

sca
(t)⟩⟩, (196)

⟨⟨W
ext
(t)⟩⟩ = ⟨K11(n̂inc

;Ψ )⟩Ψ I inc + ⟨K12(n̂inc
;Ψ )⟩ΨQ inc

+ ⟨K13(n̂inc
;Ψ )⟩ΨU inc

+ ⟨K14(n̂inc
;Ψ )⟩Ψ V inc, (197)

⟨⟨W
sca
(t)⟩⟩ =


4π

dr̂ [⟨Z11(r̂, n̂inc
;Ψ )⟩Ψ I inc + ⟨Z12(r̂, n̂inc

;Ψ )⟩ΨQ inc

+⟨Z13(r̂, n̂inc
;Ψ )⟩ΨU inc

+ ⟨Z14(r̂, n̂inc
;Ψ )⟩Ψ V inc

]. (198)

Again, all time averages in Eqs. (191)–(198) are independent of time.

5.3. Quasi-monochromatic static scattering by a randomly changing macroscopic object

Let us now consider the situation wherein the solution of the standard scattering problem fluctuates in time owing to
random temporal variations of both the incident field and the macroscopic object. Eqs. (163) and (164) now become

⟨⟨
←→
P (r, t)⟩⟩ = ⟨⟨ℑ̂(r, n̂inc

; t)
←→
P inc(t)⟩⟩, (199)

⟨⟨
←→
P sca(r, t)⟩⟩ = ⟨⟨ℑ̂sca(r, n̂inc

; t)
←→
P inc(t)⟩⟩, (200)

where the averages are taken over a period of time much longer than both Tf and Tv. It is reasonable to assume
that morphological changes of the scattering object are completely independent of the temporal fluctuations of the
externally generated incident field. More specifically, we assume that ℑ̂(r, n̂inc

; t) and
←→
P inc(t) as well as ℑ̂sca(r, n̂inc

; t)
and
←→
P inc(t) are pairs of independent stationary random processes, which implies that both ⟨⟨

←→
P (r, t)⟩⟩ and ⟨⟨

←→
P sca(r, t)⟩⟩

are independent of time and are given by

⟨⟨
←→
P (r, t)⟩⟩ = ⟨⟨ℑ̂(r, n̂inc

; t)⟩⟩⟨⟨
←→
P inc(t)⟩⟩, (201)

⟨⟨
←→
P sca(r, t)⟩⟩ = ⟨⟨ℑ̂sca(r, n̂inc

; t)⟩⟩⟨⟨
←→
P inc(t)⟩⟩. (202)

Finally, assuming ergodicity of the scattering object, we obtain

⟨⟨
←→
P (r, t)⟩⟩ = ⟨ℑ̂(r, n̂inc

;Ψ )⟩Ψ ⟨⟨
←→
P inc(t)⟩⟩, (203)

⟨⟨
←→
P sca(r, t)⟩⟩ = ⟨ℑ̂sca(r, n̂inc

;Ψ )⟩Ψ ⟨⟨
←→
P inc(t)⟩⟩. (204)

In other words, the time averaging of the Poynting–Stokes tensor of the incident quasi-monochromatic beam and the
ensemble averaging of the transformation operators ℑ̂ and ℑ̂sca are completely separated. The corresponding generalization
of the main formulas of Sections 4.6 and 4.7 reads

⟨⟨Signal 1(t)⟩⟩ =
Sol
r2
⟨Z(n̂sca, n̂inc

;Ψ )⟩Ψ ⟨⟨Iinc(t)⟩⟩, (205)

⟨⟨Signal 2(t)⟩⟩ = Sol⟨⟨Iinc(t)⟩⟩ − ⟨K(n̂inc
;Ψ )⟩Ψ ⟨⟨Iinc(t)⟩⟩ +

Sol
r2
⟨Z(n̂inc, n̂inc

;Ψ )⟩Ψ ⟨⟨Iinc(t)⟩⟩, (206)

⟨⟨W
abs
(t)⟩⟩ = ⟨⟨W

ext
(t)⟩⟩ − ⟨⟨W

sca
(t)⟩⟩, (207)

⟨⟨W
ext
(t)⟩⟩ = ⟨K11(n̂inc

;Ψ )⟩Ψ ⟨⟨I inc(t)⟩⟩ + ⟨K12(n̂inc
;Ψ )⟩Ψ ⟨⟨Q inc(t)⟩⟩

+ ⟨K13(n̂inc
;Ψ )⟩Ψ ⟨⟨U inc(t)⟩⟩ + ⟨K14(n̂inc

;Ψ )⟩Ψ ⟨⟨V inc(t)⟩⟩, (208)
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⟨⟨W
sca
(t)⟩⟩ =


4π

dr̂ [⟨Z11(r̂, n̂inc
;Ψ )⟩Ψ ⟨⟨I inc(t)⟩⟩ + ⟨Z12(r̂, n̂inc

;Ψ )⟩Ψ ⟨⟨Q inc(t)⟩⟩

+ ⟨Z13(r̂, n̂inc
;Ψ )⟩Ψ ⟨⟨U inc(t)⟩⟩ + ⟨Z14(r̂, n̂inc

;Ψ )⟩Ψ ⟨⟨V inc(t)⟩⟩]. (209)

It is straightforward to generalize all results of this subsection to the case of a polychromatic incident field with quasi-
monochromatic components [34].

Let us now assume that the transformation dyadics
←→
ℑ E and

←→
ℑ H as well as the electric and magnetic field amplitudes

of the quasi-monochromatic plane-wave incident field can be represented as sums of average and fluctuating (subscript ‘‘f’’)
components:

←→
ℑ E(r, n̂inc

; t) = ⟨⟨
←→
ℑ E(r, n̂inc

; t)⟩⟩ +
←→
ℑ

f
E(r, n̂

inc
; t) = ⟨

←→
ℑ E(r, n̂inc

;Ψ )⟩Ψ +
←→
ℑ

f
E(r, n̂

inc
; t), (210)

←→
ℑ H(r, n̂inc

; t) = ⟨⟨
←→
ℑ H(r, n̂inc

; t)⟩⟩ +
←→
ℑ

f
H(r, n̂

inc
; t) = ⟨

←→
ℑ H(r, n̂inc

;Ψ )⟩Ψ +
←→
ℑ

f
H(r, n̂

inc
; t), (211)Einc

0 (t) = ⟨⟨Einc
0 (t)⟩⟩ +Einc

0f (t) =Einc
0c +

Einc
0f (t), (212)Hinc

0 (t) = ⟨⟨Hinc
0 (t)⟩⟩ +Hinc

0f (t) = Hinc
0c +

Hinc
0f (t), (213)

where r ∈ ℜ3, the subscript ‘‘c’’ stands for ‘‘coherent’’, and, by definition,

⟨⟨
←→
ℑ

f
E(r, n̂

inc
; t)⟩⟩ =

←→
0 , (214)

⟨⟨
←→
ℑ

f
H(r, n̂

inc
; t)⟩⟩ =

←→
0 , (215)

⟨⟨Einc
0f (t)⟩⟩ = 0, (216)

⟨⟨Hinc
0f (t)⟩⟩ = 0, (217)

where
←→
0 is a zero dyad. Then averaging Eq. (161) over a time interval much longer than both Tf and Tv while assuming

statistical independence of the random incident field and the random scattering object yields

⟨⟨
←→
P (r, t)⟩⟩ = ⟨⟨

←→
ℑ H(r, n̂inc

; t) ·
←→
P inc(t) · [

←→
ℑ E(r, n̂inc

; t)]T∗⟩⟩ (218a)

=
1
2
⟨
←→
ℑ H(r, n̂inc

;Ψ )⟩Ψ ·{Hinc
0c ⊗ [

Einc
0c ]
∗
} ·⟨[
←→
ℑ E(r, n̂inc

;Ψ )]T∗⟩Ψ

+
1
2
⟨
←→
ℑ H(r, n̂inc

;Ψ )⟩Ψ ·⟨⟨Hinc
0f (t)⊗ [Einc

0f (t)]
∗
⟩⟩ ·⟨[
←→
ℑ E(r, n̂inc

;Ψ )]T∗⟩Ψ

+
1
2
⟨
←→
ℑ

f
H(r, n̂

inc
;Ψ ) ·{Hinc

0c ⊗ [
Einc

0c ]
∗
} · [
←→
ℑ

f
E(r, n̂

inc
;Ψ )]T∗⟩Ψ

+
1
2
⟨
←→
ℑ

f
H(r, n̂

inc
;Ψ ) ·⟨⟨Hinc

0f (t)⊗ [Einc
0f (t)]

∗
⟩⟩ · [
←→
ℑ

f
E(r, n̂

inc
;Ψ )]T∗⟩Ψ . (218b)

This formula can alternatively be written as

⟨⟨
←→
P (r, t)⟩⟩ = ⟨

←→
ℑ H(r, n̂inc

;Ψ )⟩Ψ ·⟨⟨
←→
P inc(t)⟩⟩ ·⟨[

←→
ℑ E(r, n̂inc

;Ψ )]T∗⟩Ψ

+⟨
←→
ℑ

f
H(r, n̂

inc
;Ψ ) ·⟨⟨

←→
P inc(t)⟩⟩ · [

←→
ℑ

f
E(r, n̂

inc
;Ψ )]T∗⟩Ψ (219a)

= ⟨
←→
ℑ H(r, n̂inc

;Ψ ) ·⟨⟨
←→
P inc(t)⟩⟩ · [

←→
ℑ E(r, n̂inc

;Ψ )]T∗⟩Ψ . (219b)

We see again that averaging the Poynting–Stokes tensor of the incident quasi-monochromatic field over time is completely
decoupled from the ensemble averaging. This implies that to solve the quasi-monochromatic scattering problem, one can
solve the monochromatic scattering problem and then make the formal substitution

←→
P inc
→ ⟨⟨
←→
P inc(t)⟩⟩.

6. Effective-object methodology

Direct computer solutions of the MMEs for morphologically complex objects can be quite time-consuming and in many
cases impracticable. As a consequence, there has been a widespread use of phenomenological so-called effective-medium
rules intended to drastically simplify the computation (see [72–78,192–199] and references therein). Implicitly, the main
idea of an effective-object approximation (EOA) (more commonly known as an effective-medium approximation, or EMA) is
to replace a morphologically complex object, either fixed or randomly varying in time, by a much simpler ‘‘effective’’ object
possessing essentially the same scattering properties. For example, one could think of replacing the Type-1 and -2 DRMs
shown in Fig. 13a, b by homogeneous scattering objects with the same overall shape defined by the surface S, as shown in
Fig. 13c, d.
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Fig. 13. Effective-medium methodology.

In terms of the transformation operators ℑ̂ and ℑ̂sca, one can think of the following hierarchy of EOAs:

• A deterministic EOA amounts to replacing a fixedmorphologically complex scattering object by a fixed simple ‘‘effective’’
object such that

ℑ̂(r, n̂inc) ≈ ℑ̂eff(r, n̂inc), (220)

ℑ̂
sca(r, n̂inc) ≈ ℑ̂scaeff (r, n̂

inc). (221)

• A semi-stochastic EOA amounts to replacing a stochastic morphologically complex scattering object by a fixed simple
‘‘effective’’ object such that

⟨ℑ̂(r, n̂inc
;Ψ )⟩Ψ ≈ ℑ̂eff(r, n̂inc), (222)

⟨ℑ̂
sca(r, n̂inc

;Ψ )⟩Ψ ≈ ℑ̂
sca
eff (r, n̂

inc). (223)

• A stochastic EOA amounts to replacing a stochastic morphologically complex scattering object by a stochastic simple
‘‘effective’’ object such that

⟨ℑ̂(r, n̂inc
;Ψ )⟩Ψ ≈ ⟨ℑ̂eff(r, n̂inc

;Ψeff)⟩Ψeff , (224)

⟨ℑ̂
sca(r, n̂inc

;Ψ )⟩Ψ ≈ ⟨ℑ̂
sca
eff (r, n̂

inc
;Ψeff)⟩Ψeff . (225)

Note that we intentionally defined the three EOAs in terms of the linear operators ℑ̂ and ℑ̂sca acting on an optical
observable rather than on the macroscopic field vectors (of course these definitions can be generalized to include types
of optical observables other than the Poynting–Stokes tensor). Traditionally, however, EMAs have been introduced with the
purpose of replicating the average macroscopic field vectors rather than specific optical observables [72–78,192–199]. In
other words, a semi-stochastic EOA would normally be introduced as a recipe for replacing a stochastic morphologically
complex scattering object by a fixed simple ‘‘effective’’ object such that

⟨
←→
ℑ E(r, n̂inc

;Ψ )⟩Ψ ≈
←→
ℑ

eff
E (r, n̂

inc), (226)

⟨
←→
ℑ H(r, n̂inc

;Ψ )⟩Ψ ≈
←→
ℑ

eff
H (r, n̂

inc) (227)

in Eq. (218b). This is equivalent to defining the EMA as that replicating the ‘‘coherent field’’ created by the object. This
explains why an EMA recipe would typically be formulated in terms of replacing an actual heterogeneous object by that
made of a homogeneous material with an ‘‘effective refractive index’’.

Unfortunately, the traditional way of formulating an EMA is somewhat limited since it helps determine only two out of
four terms on the right-hand side of Eq. (218b). The three EOAs defined by Eqs. (220)–(225) are more general and useful.
Furthermore, they yield automatically the traditional field-based EMAs in cases when the last two terms on the right-hand
side of Eq. (218b) can be neglected. In addition, they do not rely on the contrived notion of the coherent field.
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To the best of our knowledge, EOAs remain unproven hypotheses since none of them has been derived directly from
the time-domain or frequency-domain MMEs under well-defined and reproducible conditions. In the words of Chýlek et al.
written in 2000 [77], EMAs

are not approximations in a strict mathematical sense. It is not generally possible to estimate the accuracy of a given
approximation by considering the magnitude of neglected terms with respect to those that are kept. EMAs are often
based on an ad hoc assumption that leads to a simplified, solvablemodel of a real, complicated, and usually unsolvable
situation. As a result, one is able to derive a simple or only moderately complicated prescription (e.g., the mixing rule)
of how to calculate the average optical properties of a heterogeneous composite material from the known properties
and amounts of its individual components. Because there are no specific algebraic terms neglected and because the
exact solution of the problem is usually unknown, the accuracy of such derived effective material constants (effective
dielectric constants or effective refractive indices of material) and the precise conditions for their permissible use are
not easy to assess.

Fortunately, the current availability of efficient computer solvers of the MMEs and powerful computer clusters makes
it possible to validate EOAs numerically, at least in special cases. Recent progress in this direction will be discussed in
Sections 8.2 and 9.

7. Direct computer solvers of the macroscopic Maxwell equations

According to the preceding discussion, the main objective of the discipline of electromagnetic scattering by particulate
objects is the computation of optical observables that can be used to quantify the energy budget of a macroscopic
volume or the results of measurements with actual optical instruments. Alternatively, this objective can be formulated
as the computation of quantities such as the transformation dyadics

←→
ℑ E(r, n̂inc) and

←→
ℑ H(r, n̂inc) entering Eq. (161); the

transformation operators ℑ̂(r, n̂inc) and ℑ̂sca(r, n̂inc) entering Eqs. (163) and (164); the ensemble-averaged transformation
operators ⟨ℑ̂(r, n̂inc

;Ψ )⟩Ψ and ⟨ℑ̂sca(r, n̂inc
;Ψ )⟩Ψ entering Eqs. (192), (193), (203) and (204); and their various coordinate-

specific representations. Far-field examples of the latter are the (ensemble-averaged) extinction and phase matrices.
Whenever possible, all these quantities should be calculated by using a direct, numerically exact computer solver of

the MMEs8 in combination with a suitable ensemble-averaging procedure. The majority of direct solvers of the MMEs
belong to one of two broad categories. Differential-equation techniques yield the scattered field by solving the differential
MMEs or the vector wave equation in the frequency or in the time domain. Classical examples of the frequency-domain
differential-equation techniques are the Lorenz–Mie theory for a homogeneous or radially inhomogeneous spherical particle
[1,22,200–204] and the separation of variables technique for a homogeneous or layered spheroid [205–211]. General
differential-equation techniques applicable to an object with essentially any morphology are the frequency-domain finite-
differencemethod [212,213], the finite-difference time-domainmethod (FDTDM) [214–218], and the pseudo-spectral time-
domain method (PSTDM) [219,220]. In both FDTDM and PSTDM, it is necessary to truncate the computational domain by
introducing an artificial outer boundary and then ensure that spurious reflections from this boundary are suppressed. This is
effectively accomplished by using the perfectly matched layer proposed in [221,222] and its refinements. Integral equation
methods are based on the volume or surface integral counterparts of the MMEs, the prime examples being the frequency-
domain volume integral equation method and the closely related discrete-dipole approximation (DDA) [168,223–228].
There are also hybrid techniques or methods that can be derived using different approaches. Furthermore, there are general
formulations, such as the frequency-domain T -matrix method (TMM) [20,24,28,35,229–235], based on expanding relevant
electric field vectors in special mathematical functions possessing desirable analytical properties and then using various ad
hoc techniques to compute the transition matrices relating the resulting columns of the expansion coefficients.

The FDTDM and the DDA are examples of general direct solvers of the MMEs that are rather insensitive to the object’s
morphology and thus can be applied to a multi-particle group as well as to a compact single-body object using the same
basic computer program. Some approaches, such as the TMM, can be made muchmore efficient by explicitly accounting for
the specific object’s morphology, for example, its aggregate structure. Each direct numerical solver of the MMEs has its own
advantages and drawbacks in terms of computer memory and execution time requirements, convergence rate, accuracy,
and range of applicability. For example, the more traditional versions of the TMM can be less flexible than the FDTDM and
the DDA in terms of the scattering object’s morphology, but appear to be the fastest and most accurate techniques within
the range of their convergence. Further information on direct computer solvers of the MMEs can be found in the reviews
[236,237].

By definition, running a direct computer solver of the MMEs yields the monochromatic scattering properties of a fixed
object. However, the angular scattering patterns typical of a fixed object with a size comparable to or greater than the
wavelength are typically burdened by numerous sharp maxima andminima (called speckles) that must be smoothed out to
yield representative static-scattering results [34,92,238,239]. The necessity of repeating computations for a large number

8 By definition, a direct computer solver of theMMEs is called numerically exact if it can generate numerical results with a guaranteed number of correct
decimals. The number of correct decimals may vary depending on the available computer resources and practical accuracy requirements. However, all
reported decimals can, in principle, be validated bymodifying computer program settings in order to accommodate amore stringent accuracy requirement.
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Fig. 14. (a) Model compound scatterer. (b) Scattering geometry.

Table 1
Cartesian coordinates of 10 spherical inclusions.

n xn yn zn

1 −0.215062 6.479603 0.616824
2 −3.756010 −2.754431 5.549602
3 0.650697 0.515307 −0.017826
4 −2.364920 0.805033 −4.337800
5 5.008396 −4.096047 1.241592
6 −4.504373 −4.444519 −0.820851
7 7.303638 0.831435 −0.230329
8 4.725006 5.314130 1.544096
9 −0.219794 −7.116933 −0.691158

10 3.957806 1.528642 −4.454259

of realizations of a random object for the purpose of ensemble averaging still represents a great practical challenge. For
example, the computation of electromagnetic scattering by a DRM can require averaging over an excessive number of
fixed multi-particle configurations. In this respect the advantage of the superposition TMM (STMM) [20,230,240] is the
extremely efficient quasi-analytical procedurewhich allows one to create a fixed quasi-randomN-particle configuration and
then average relevant optical observables over all possible orientations of this configuration with respect to the laboratory
coordinate system [241–244]. This procedure captures in effect an infinite continuous set of random realizations of the
N-particle group, eliminates completely the notorious speckle ‘‘noise’’, and yields exceedingly accurate results.

The first studies of electromagnetic scattering by random three-dimensional multi-particle groups based on direct
computer solutions of the MMEs [245–248] exploited the frequency-domain multi-sphere method [249–253] which can be
considered a particular case of the STMM. More recently, other numerical solvers of the MMEs have been used, such as the
PSTDM and its variations [254–258], the DDA [259–274], the FDTDM [275–277], and the hybrid finite element–boundary
integral–characteristic basis function method [278–281]. However, the STMM appears to have been the most frequently
used technique [268,282–328]. Studies of two-dimensional DRMs composed of parallel infinite cylinders have been based
on the multi-cylinder solution of the MMEs [329–331], the PSTDM [332,333] and the FDTDM [334].

Given the extreme complexity of direct computer calculations of electromagnetic scattering by a DRM, it is imperative
to characterize the accuracy of the various numerical techniques and certify that internal (subjective) convergence of a
technique (if achieved) ensures objectively converged results. This can be done by comparing benchmark data generated
for the same scattering object with software implementations of completely independent methods.

As an example, let us compare far-field results obtained with five totally independent computer programs based on
the STMM [244], DDA [228], invariant-imbedding TMM (II-TMM) [234,335], FDTDM [336], and PSTDM [337] for the same
compound scatterer in the form of a spherical particle hosting 10 identical non-overlapping spherical inclusions (Fig. 14a).
The size parameters of the host and the inclusions are k1R = 10 and k1r = 2.5, respectively, where R is the radius of the host
and r is that of the inclusions. The corresponding refractive indices relative to that of the infinite surrounding medium are
1.33 and 1.55+ i0.003. The coordinates of the 10 inclusions (in units of size parameter) are listed in Table 1. It is assumed
that the compound particle is illuminated by a quasi-monochromatic plane electromagnetic wave incident in the direction
of the positive z-axis, as shown in Fig. 14b. For demonstration purposes, we define the 4×4 dimensionless scatteringmatrixF(Θ) according to

F(Θ) = 4π
Csca
⟨Z(θ sca = Θ, ϕsca

; θ inc = 0, ϕinc
= ϕsca

;Ψ )⟩Ψ , (228)

where θ ∈ [0, π ] is the zenith (polar) angle, ϕ ∈ [0, 2π) is the azimuth angle, and Θ is the angle between the incidence
and scattering directions (i.e., the scattering angle); the ensemble average is taken over the uniform orientation distribution
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Table 2
Integral optical characteristics.

Technique Qext Qsca Qabs ϖ ⟨cosΘ⟩

STMMa 1.9104 1.8839 0.02652 0.98612 0.62184
II-TMM 1.9105 1.8839 0.02657 0.98609 0.62186
DDA (extrapolated) 1.9129 1.8865 0.02634 0.98623 0.62199
FDTDM (λ/50) 1.9034 1.8769 0.02650 0.98608 –
PSTDM (λ/50) 1.9129 1.8864 0.02652 0.98614 –
a The STMM results are expected to be accurate to plus/minus one unit in the last digits shown.

of the compound scatterer; and the normalization constant Csca is given by

Csca =


4π

dn̂sca
⟨Z11(θ sca, ϕsca

; θ inc = 0, ϕinc
= 0;Ψ )⟩Ψ . (229)

Note thatF is independent ofϕsca owing to the randomorientation distribution of the scattering object, while Csca represents
the ensemble-averaged scattering cross section ⟨⟨W

sca
(t)⟩⟩/⟨⟨I inc(t)⟩⟩ for the case of unpolarized incident plane-wave field

(cf. Eq. (209)). It is easily seen that the (1, 1) element of the scattering matrixF(Θ) (often called the phase function) is
normalized according to

1
2

 π

0
dΘF11(Θ) sinΘ = 1. (230)

The results of our computations are tabulated in Table 2 and visualized in Figs. 15–18. Table 2 gives the corresponding
extinction,

Qext =
Cext

πR2
, (231)

and scattering,

Qsca =
Csca

πR2
, (232)

efficiency factors, where

Cext = ⟨K11(n̂inc
;Ψ )⟩Ψ (233)

is the n̂inc-independent extinction cross section ⟨⟨W
ext
(t)⟩⟩/⟨⟨I inc(t)⟩⟩ for unpolarized incident light (cf. Eq. (208)). Also

tabulated are the absorption efficiency factor

Qabs = Qext − Qsca, (234)

the single-scattering albedo

ϖ =
Qsca

Qext
, (235)

and the asymmetry parameter

⟨cosΘ⟩ =
1
2

 π

0
dΘF11(Θ) sinΘ cosΘ. (236)

Unlike the case with the DDA, FDTDM, and PSTDM, the averaging over orientations by the STMM and II-TMM computer
programs is performed analytically so that the accuracy of computations is unaffected by simulating the uniform orientation
distribution of the compound object by a limited set of discrete orientations. This analytical procedure also made the STMM
and II-STM computations for the randomly oriented composite object much faster.

The DDA simulations were performed with the code ADDA 1.2 on the computer cluster of the supercomputing center
of the Novosibirsk State University. We used the default parameters of the code while controlling the discretization level
by the number nx of so-called ‘‘dipoles’’ along the particle diameter. Five values ranging from 64 to 128 were considered,
corresponding to dipole sizes from λ/20 to λ/40, where λ = 2π/k1 is the wavelength in the infinite surrounding medium.
The orientation averaging was performed with a built-in adaptive procedure which adjusts the number of simulated
orientations of the compound object to keep the relative uncertainty in Cext caused by averaging within 10−4 [228]. As a
consequence, the final numerical uncertainty is controlled mostly by nx. To further improve the accuracy, we applied the
extrapolation to the zero dipole size, as described in [338]. This procedure also provides an internal error estimate which,
for the majority of computed values, was adequate, i.e., was within the actual differences from the STMM results. Fig. 15
shows both the ‘‘raw’’ DDA results for nx = 64 and 128 and the ‘‘extrapolated’’ ones. One can see that the quantitative
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Fig. 15. Elements of the dimensionless scattering matrix computed using the STMM and DDA for the randomly oriented composite object shown in
Fig. 14a. The nx = 64 and nx = 128 DDA results are shown only in theF22/F11 panel.

agreement between the latter and the internally converged STMM results is quite good (the corresponding phase functionsF11(Θ) typically differ by less than 1%).
Figs. 16–18 demonstrate a similarly impressive agreement between the STMM results and those obtained with the II-

TMM, FDTDM, and PSTDM computer programs. Note that unlike the STMM, the II-TMM is based on an alternative approach
to calculate the object’s T matrix which is more general, but can make it somewhat more cumbersome to obtain the same
benchmark precision. The FDTDM and PSTDM results have been calculatedwith λ/40 and λ/50 spatial grid sizes and exhibit
expected convergence towards the STMM curves.

This quantitative comparison of completely independent direct computer solvers of the MMEs obviously certifies that
these five techniques can be used in reliable far-field calculations of electromagnetic scattering by DRMs.

Note that when running the STMM computer program, we increasingly tightened all numerical accuracy parameters
until the final results converged internally to a very high accuracy. While this ‘‘subjective’’ convergence of the STMM results
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Fig. 16. As in Fig. 15, but for STMM vs. II-TMM results.

Fig. 17. As in Fig. 15, but for STMM vs. FDTDM results.

does not guarantee the same ‘‘objective’’ convergence, it is still expected to be a good indicator of the actual accuracy of
the final numbers. Given the virtual absence of such benchmark numerical data in the published literature, we tabulate the
converged STMM scattering-matrix results in Appendix A.

8. Direct computer modeling of electromagnetic scattering by Type-1 discrete randommedia

In this section we will discuss the results of representative calculations of electromagnetic scattering by Type-1 DRMs
based on direct computer solutions of the MMEs. In most cases we will use the model of a DRM in the form of a cluster of N
identical small spherical particles randomly and uniformly distributed throughout an imaginary spherical volume V with a
radius R, as shown in Fig. 19a (after [339]).

8.1. Far-field speckles and their suppression

Let us first consider far-field scattering of a quasi-monochromatic plane-wave field by two different fixed clusters of
N = 80 identical spherical particles distributed throughout an imaginary spherical volume with a size parameter of
k1R = 40. The size parameter of the constituent spherical particles is k1r = 4 and their relative refractive index ism = 1.32.
The coordinates of the particles forming either clusterwere chosenusing a randomnumber generator, but otherwise they are
fixed. The laboratory spherical coordinate system used to describe far-field scattering by either cluster is shown in Fig. 14b
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Fig. 18. As in Fig. 15, but for STMM vs. PSTDM results.

Fig. 19. (a) An imaginary spherical volume populated by randomly positioned spherical particles. (b) Angular coordinates used in Fig. 20.

where, as before, the unit vectors n̂inc and n̂sca specify the directions of incidence and scattering. The zenith and azimuth
angles of the incidence direction are assumed to be θ inc = 0° and ϕinc

= 0°, respectively. The incident plane-wave field
is assumed to be circularly polarized in the counter-clockwise sense when looking in the direction of propagation, which
implies that ⟨⟨V inc(t)⟩⟩ = ⟨⟨I inc(t)⟩⟩ and ⟨⟨Q inc(t)⟩⟩ = ⟨⟨U inc(t)⟩⟩ = 0; the double angular brackets denote averaging over a
time interval T ≫ Tf.

The two panels of Fig. 20a show the corresponding time-independent far-field angular distributions of the intensity
⟨⟨Isca(rn̂sca, t)⟩⟩ scattered in the backward hemisphere. These intensity distributions were calculated using the STMM
computer program described in [243] and reveal typical random speckle patterns. Fig. 20b shows the result obtained by
averaging the scattered intensity over the uniform orientation distribution of themulti-particle configuration used to create
the top panel of Fig. 20a. This orientation averaging replaces averaging over a time interval T ≫ Tv and is intended
to simulate averaging over uniformly random positions of all 80 particles by taking advantage of the efficient analytical
procedure afforded by the STMM, as discussed in Section 7. Predictably, the average intensity pattern is rotationally
symmetric with respect to the incidence direction and is fairly featureless, the strong and narrow backscattering peak being
the only notable exception.

To interpret the results of these computations, we will invoke the mathematical concept of ordered multi-particle
sequences representing the various terms on the right-hand side of Eq. (148). Fig. 21a shows schematically two such
sequences depicted using the blue and yellow colors. Tomake the discussion evenmore physically appealing, wewill assign
a cumulative phase to each multi-particle sequence by assuming that each particle of the sequence resides in the far zone
of the preceding particle. For example, particle 4 of the blue sequence in Fig. 21a is in the far zone of particle 3, particle 3 is
in the far zone of particle 2, etc. In other words, we will use the far-field version of the Neumann expansion (148):

E(r, t) = Einc(r, t)+Esca(r, t)

= Einc(r, t)+
N
i=1

g(ri)
←→
A i(r̂i, n̂inc) ·Einc(Ri, t)
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Fig. 20. (a) Angular distributions of the scattered intensity for two fixed spherical particulate volumes. (b) As in panel (a), but averaged over random
particle positions. The gray scale is individually adjusted in order to maximally reveal the fine structure of each scattering pattern. Fig. 19b shows the
angular coordinates used for all three panels.

Fig. 21. (a) Interference origin of speckle. (b) Forward-scattering interference. (c) Interference origin of weak localization. (d) Interference origin of the
diffuse background. (e) A pair of particle sequences contributing to the time-averaged diffuse background. (f) A pair of particle sequences contributing to
time-averaged weak localization. (g) Interference origin of the polarization opposition effect.
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+

N
i=1

N
j(≠i)=1

g(ri)g(Rij)
←→
A i(r̂i, R̂ij) ·

←→
A j(R̂ij, n̂inc) ·Einc(Rj, t)

+

N
i=1

N
j(≠i)=1

N
l(≠j)=1

g(ri)g(Rij)g(Rjl)
←→
A i(r̂i, R̂ij) ·

←→
A j(R̂ij, R̂jl) ·

←→
A l(R̂jl, n̂inc) ·Einc(Rl, t)

+ · · · , (237)

where we imply the notation of Fig. 12 and indicate explicitly the temporal dependence of the macroscopic electric field
vector of the incident quasi-monochromatic plane-wave field. It is then easily seen that the expression for the partial electric
field contributed by the blue four-particle sequence in Fig. 21a at the observation point includes the complex exponential
factor exp[ik1(r4+R43+R32+R21+ n̂inc ·R1)]. Thus the corresponding cumulative phase of the blue four-particle sequence
is

δblue = k1(r4 + R43 + R32 + R21 + n̂inc
·R1). (238)

The cumulative phases of othermulti-particle sequences are determined analogously. For example, that of the yellow three-
particle sequence is given by

δyellow = k1(r3′ + R3′2′ + R2′1′ + n̂inc
·R1′). (239)

It is important to recognize that the very concept of the cumulative phase becomes questionable if at least one particle of a
sequence is located in the near zone of the preceding particle, which obviously happens in densely packedDRMs (e.g., Figs. 4i
and 5). We will see however that qualitative interpretations of STMM results based on the notion of the cumulative phase
can be qualitatively instructive even in the case of random particulate volumes with substantial packing densities.

The origin of the far-field speckles in the two panels of Fig. 20a can now be understood by recognizing that in the far
zone of the entire cluster the partial field due to any multi-particle sequence is an outgoing transverse spherical wavelet
centered at the origin of the last particle of the sequence. Since the distance to the far-zone observation point is much
greater than the radius R of the imaginary particulate volume V , all such partial wavelets at the observation point propagate
in essentially the same direction given by the unit vector n̂sca (Fig. 21a). The four-element column ⟨⟨Isca(rn̂sca, t)⟩⟩ in
Eq. (177) at the observation point can be directly expressed in terms of the elements of the scattering coherency dyadic
←→ρ sca(rn̂sca) = ⟨⟨Esca(rn̂sca, t)⊗ [Esca(rn̂sca, t)]∗⟩⟩ according to

⟨⟨Isca(rn̂sca, t)⟩⟩ =
1
2


ε1

µ0


θ̂
sca

·
←→ρ sca(rn̂sca) · θ̂

sca
+ ϕ̂

sca
·
←→ρ sca(rn̂sca) · ϕ̂

sca

θ̂
sca

·
←→ρ sca(rn̂sca) · θ̂

sca
+ ϕ̂

sca
·
←→ρ sca(rn̂sca) · ϕ̂

sca

−θ̂
sca

·
←→ρ sca(rn̂sca) · ϕ̂

sca
− ϕ̂

sca
·
←→ρ sca(rn̂sca) · θ̂

sca

i (ϕ̂sca
·
←→ρ sca(rn̂sca) · θ̂

sca
− θ̂

sca
·
←→ρ sca(rn̂sca) · ϕ̂

sca
)

 , (240)

where θ̂
sca

and ϕ̂
sca are the polar-angle and azimuth-angle unit vectors of the scattering direction such that n̂sca

= r̂ =
θ̂
sca
× ϕ̂

sca. According to Eq. (237), the dyadic productEsca(rn̂sca, t)⊗[Esca(rn̂sca, t)]∗ at anymoment in time is the sum of an
infinite number of terms, each describing the result of interference of two spherical wavelets centered at the end particles
of two particle sequences.

Fig. 21a exemplifies one such pair. If the interference of the corresponding pair of spherical wavelets at the observation
point is constructive (destructive) then it serves to increase (decrease) the total intensity scattered in the direction n̂sca. The
result of the interference depends largely on the phase difference1 = δblue − δyellow given by

1 = k1(r4 + R43 + R32 + R21 + n̂inc
·R1 − r3′ − R3′2′ − R2′1′ − n̂inc

·R1′). (241)

The total scattered intensity in the far zone of the particulate volume is the sum of the interference results contributed by all
possible pairs of particle sequences. The minimal angular width of such interference maxima andminima is proportional to
1/k1R, while their number grows rapidly with N . These two factors explain the typical spotty appearance of the scattering
patterns in Fig. 20a.

It is sometimes asserted that a speckle pattern can be caused only by monochromatic incident light, for example by that
generated by a continuous laser. In actuality, however, all one needs in order to observe speckles is a fixed scattering object
illuminated by a quasi-monochromatic plane-wave field.

The two panels of Fig. 20a exemplify the variability of the quasi-instantaneous speckle patterns that can be expected
of a temporally changing DRM. After the quasi-instantaneous speckle patterns have been computed or measured for a
representative set of evolving states of a DRM, one can choose to

• analyze the statistical information content of differences between the individual speckle patterns; or
• apply an averaging procedure, thereby isolating the static component of the speckle patterns.

We have already mentioned that these two approaches are known as dynamic and static light scattering.
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8.2. Static scattering by Type-1 discrete random media

In what follows, we simulate ensemble-averaged light-scattering characteristics of an imaginary spherical volume
randomly and uniformly filled with identical particles by creating only one random N-particle configuration and then
averaging over all possible orientations of this configuration with respect to the laboratory coordinate system. The fidelity
of this approach will be analyzed later in this subsection.

We have already seen in Fig. 20 that averaging over the equiprobable orientation distribution of an 80-particle
configuration effectively eliminates the speckle pattern and yields the combination of a smooth background and a notable
backscattering peak. It turns out that the existence of both features can be explained qualitatively by using the notion of the
cumulative phase of a multi-particle sequence introduced above. Specifically, each far-field speckle element can be thought
of as being the result of constructive or destructive interference of two wavelets contributed by specific multi-particle
sequences, such as those shown in Fig. 21a. The phase difference (241) evaluated at the far-zone observation point changes
randomly as the particles move, so that the average result of the interference is zero. However, we will demonstrate below
that certain classes of wavelet pairs interfere constructively irrespective of particle positions and thereby are responsible
for the residual scattering pattern.

Let us make a simplifying assumption that ϕsca
= ϕinc and define the scattering direction in terms of the scattering angle

Θ = θ sca. Then scattering in the far zone can be conveniently described in terms of the dimensionless 4×4 scatteringmatrix
(228). Numerous STMM computations have demonstrated that the elements populating the upper right and lower left 2×2
blocks of this matrix are negligibly small compared to the other elements, which is an expected result of averaging over the
equiprobable orientation distribution of amulti-particle group coupledwith sufficient uniformity of the initial particle posi-
tions throughout the scattering volume (cf. Table A.1). Specifically, the scattering matrix has the following typical structure:

F(Θ) ≈

F11(Θ) F21(Θ) 0 0F21(Θ) F22(Θ) 0 0
0 0 F33(Θ) F34(Θ)
0 0 −F34(Θ) F44(Θ)

 , (242)

where the scatteringmatrix elements denoted by a zero are at least an order ofmagnitude smaller than the smallest nonzero
element (in the absolute-value sense). Note that the relationsF12(Θ) = F21(Θ) andF43(Θ) = −F34(Θ) are caused by the
uniform orientation distribution of amulti-particle cluster. In all examples discussed below, the size parameter of the imag-
inary spherical volume filled with particles is fixed at k1R = 50, while the size parameter and relative refractive index of
the particles are fixed at k1r = 4 andm = 1.32.

The plot of the phase function F11(Θ) in Fig. 22 reveals several fundamental consequences of increasing the number
of particles N in the volume. First of all, there is a strong and narrow forward-scattering enhancement owing to the
systematically constructive interference of the wavelets singly scattered by the constituent particles in the exact forward
direction. This feature is detailed in the top left-hand panel of Fig. 23 and, according to Fig. 21b, can be called forward-
scattering localization of electromagnetic waves [287]. Indeed, the left-hand panel of Fig. 21b shows that the exact forward-
scattering direction is unique in that the phases of the wavelets forward-scattered by all the individual particles in the
DRM are precisely the same, irrespective of the specific instantaneous particle coordinates [1]. It is straightforward to
show that if there were no multi-particle sequences, the constructive interference of these single-particle wavelets would
cause an increase of the forward-scattering phase function F11(0) by a factor of N . The top left-hand panel of Fig. 23
shows that this increase does occur for N = 2, 5, and 20, but eventually the F11(0) value saturates. This behavior can
be explained qualitatively by referring to a multi-particle interaction effect whereby particle 3 in the right-hand panel of
Fig. 21b ‘‘shadows’’ particle 2 by attenuating the incident field exciting particle 2.

The second remarkable consequence of increasing N is that the phase function at backscattering angles starts to develop
a narrow peakwith amaximum atΘ = 180° (see the top right-hand panel of Fig. 23). The qualitative explanation of this so-
called weak localization of electromagnetic waves9 (otherwise known as the coherent backscattering effect) is illustrated in
Fig. 21c. The blue and yellow outgoing wavelets are contributed by the same chain of n particles but sequenced in opposite
order. The opposite sequencing is largely inconsequential owing to the reciprocity relation for the scattering dyadic (93a).
Therefore, the two conjugate wavelets interfere at the observation point constructively or destructively mostly depending
on the resulting phase difference between the blue and yellow sequences given by

1 = k1(R1 − Rn) ·(n̂inc
+ n̂sca). (243)

If the observation direction n̂sca is far from the exact backscattering direction −n̂inc then the average effect of this
interference is zero owing to randomly varying positions of particles 1 and n. However, at exactly the backscattering
direction the differential phase1 vanishes identically for any n-particle chain, thereby causing the interference to be always
constructive and create a backscattering intensity peak.

9 Note that the frequently used term ‘‘weak localization of photons’’ is thoroughly inappropriate since it refers to an interference phenomenon that is
purely classical and has nothing to do with QED photons.
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Fig. 22. Elements of the dimensionless scattering matrix computed for an imaginary k1R = 50 spherical volume of discrete random medium uniformly
populated by N = 1, 2, . . . , 600 particles with k1r = 4 and m = 1.32.

The third obvious consequence of increasing the number of particles in the DRM is the progressively smooth and
featureless profile of the phase function at scattering angles 30° ≤ Θ ≤ 170°. This effect manifests itself as the ‘‘diffuse’’
intensity background in Fig. 20b and is mostly caused by another class of wavelet pairs illustrated in Fig. 21d. In this case the
wavelet caused by the yellow sequence of n particles is the same as that caused by the blue sequence and thus ‘‘interferes
with itself’’. Since the self-interference is always constructive irrespective of the specific chain of particles owing to the
identity 1 ≡ 0, the positive contribution of this class of wavelet pairs survives the ensemble averaging for any incidence
and scattering directions. The qualitative explanation of the progressive smoothness of the phase-function curves with
increasing N in Fig. 22 is that the side-scattered intensity is averaged over the contributions from the rapidly increasing
number of multi-particle chains.

The bottom left-hand panel of Fig. 22 shows that themost prominent effect of increasing N on the ratio−F21(Θ)/F11(Θ)
is to smooth out the low-frequency oscillations in the single-sphere curve and, on average, to make this ratio more neutral.
This implies that the main contribution to the second Stokes parameter of the scattered light, ⟨⟨Q sca(rn̂inc, t)⟩⟩, comes from
single-particle chains, whereas the contributions from many-particle chains are largely randomized.



44 M.I. Mishchenko et al. / Physics Reports 632 (2016) 1–75

Fig. 23. Elements of the dimensionless scatteringmatrix and polarization ratios computed for an imaginary k1R = 50 spherical volume of discrete random
medium uniformly populated by N = 1, 2, . . . , 600 particles with k1r = 4 andm = 1.32.

A fundamental property of the ratio F22(Θ)/F11(Θ) is that it is identically equal to unity for scattering by a single
sphere [1,34]. Therefore, the rapidly increasing deviation of this ratio from unity for N ≥ 5 in Fig. 22 can also be attributed
to multi-particle chains. Similarly,F33(Θ) ≡ F44(Θ) andF33(180°)/F11(180°) ≡ −1 for scattering by a single spherical
particle, but the cumulative contribution from multi-particle chains in particulate volumes with N ≥ 5 cause rapidly
growing violations of these identities.

If the incident plane-wave field is polarized linearly in the xz-plane then the angular distribution of the corresponding
cross-polarized scattered intensity is defined by 1

2 [
F11(Θ)−F22(Θ)]. This quantity is plotted in Fig. 23 alongwith the quantity

1
2 [

F11(Θ) +F44(Θ)] defining the same-helicity scattered intensity for the case of the incident plane-wave field polarized
circularly in the counterclockwise directionwhen looking in the direction of the unit vector n̂inc. Both quantities provide the
most definitive demonstration of the onset of weak localizationwith increasingN . Indeed, the corresponding single-particle
curves show no backscattering enhancement whatsoever, so the backscattering peaks that develop with increasing N (and
thus with growing contributions from multi-particle chains) can be attributed unequivocally to weak localization.
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Fig. 23 also depicts the angular profiles of the linear and circular polarization ratios defined as

µL(Θ) =
F11(Θ)−F22(Θ)F11(Θ)+ 2F21(Θ)+F22(Θ) (244)

and

µC (Θ) =
F11(Θ)+F44(Θ)F11(Θ)−F44(Θ) , (245)

respectively. The first quantity pertains to the case of a linearly polarized plane-wave incident field and is the ratio of the
cross-polarized and co-polarized scattered intensities. The second quantity is relevant to the case of a circularly polarized
plane-wave incident field and is the ratio of the same-helicity and opposite-helicity scattered intensities [34]. Fig. 23
demonstrates that the contribution from multi-particle chains serves to increase significantly the background deviations
of both polarization ratios from zero, while weak localization causes pronounced backscattering peaks in the µL and µC
angular profiles.

Let us now examinewhether it was indeed appropriate to calculate each ensemble-averaged scattering pattern in Figs. 22
and 23 by averaging over orientations of only one quasi-random N-particle configuration. We essentially assumed that the
results thus obtained would be statistically representative of the average over all possible realizations of the N-particle
group, at least for largeN . The correctness of this assumption is confirmed by Fig. 24 computed for two different realizations
of a random 200-particle group populating a k1R = 50 imaginary spherical volume. The refractive index of the identical
k1r = 4 particles is again 1.32. The reader can see that although the two sets of initial coordinates of the 200 particles were
quite different, averaging over all orientations of each configuration yielded virtually indistinguishable results.

A more subtle and less ubiquitous manifestation of coherent backscattering can be exhibited by a DRM populated by
quasi-Rayleigh particleswith sizes significantly smaller than thewavelength [296]. Fig. 25 depicts the ratio−F21(Θ)/F11(Θ)
for a spherical particulate volume with k1R = 31 populated by N = 1, . . . , 1875 identical spherical particles with k1r = 2
andm = 1.31 [243]. It can be seen that unlike the−F21(Θ)/F11(Θ) trend in Fig. 22, the increase of N first to 75 and then to
750 causes the onset and swift growth of a new feature not exhibited by theN = 1 curve. This narrow asymmetricminimum
at backscattering angles was called the polarization opposition effect [340].

Like other manifestations of coherent backscattering, the polarization opposition effect is caused by pairs of multi-
particle sequences exemplified by Fig. 21c. A qualitative interpretation of this specific feature is shown in Fig. 21g using
simple two-particle sequences [341]. Particles 1–4 lie in a plane normal to the incidence direction and are assumed to have
sizes significantly smaller than the wavelength. Particles 1 and 2 lie in the scattering plane (defined again as the plane
through the illumination and observation directions), while the line through particles 3 and 4 is normal to this plane. If
the incident quasi-monochromatic plane-wave field is unpolarized then both magenta sequences contribute scattered light
polarized negatively with respect to the scattering plane (i.e., having positive values of the Stokes parameter Q ), whereas
both blue sequences contribute positively polarized scattered light (i.e., having negative values of the Stokes parameter Q ).
The phase difference between the conjugate magenta sequences is identically equal to zero, while that between the blue
sequences is zero when the angle α = 180° − Θ (traditionally called the phase angle) is zero, but oscillates rapidly with
increasing α. Therefore, on average, weak localization will enhance the negatively polarized scattering contributions over a
wider range of phase angles than the positively polarized contributions. The result is the polarization opposition effect in the
form of a negative polarizationminimum at a small α comparable to the angular width of the coherent phase-function peak.

Despite its subtlety,10 the polarization opposition effect was observed in the laboratory much earlier than the more
ubiquitous backscattering intensity peak. Fig. 26 shows polarization measurements by Lyot [342] for a particulate surface
obtained by burning a tape of magnesium under a glass plate until the deposit on the plate was completely opaque. Lyot
described the observed phase curve of polarization as ‘‘puzzling’’ and tentatively attributed it to the very small size of
magnesia grains. Lyot’s results were recently reproduced and supplemented by photometric measurements [343] (see
Fig. 27). The latter revealed an equally narrow backscattering intensity peak, thereby confirming that the backscattering
intensity and polarization features have weak localization as their common cause. The polarization opposition effect
with its typically asymmetric angular profile was not formally identified as a manifestation of weak localization until
1993 [340]. However, its physical origin is precisely the same as that of the so-called azimuthal asymmetry of the coherent
backscattering cone observed in the late 1980s [298,344,345].

It appears that Oetking [346] was the first to observe weak localization in the form of a narrow intensity peak centered at
the exact backscattering direction. However, neither Lyot nor Oetking offered a correct theoretical explanation of their lab-
oratory results. The first theoretical prediction of weak localization was made byWatson [347] with a reference to a private
communication fromR. Ruffine. The first deliberate laboratory demonstrations of coherent backscattering accompanied by a
correct theoretical interpretation should be credited to Kuga and Ishimaru [348], Tsang and Ishimaru [349], Van Albada and
Lagendijk [350], andWolf andMaret [351]. Further references can be found in [25,38,352–354]. Remarkable manifestations
of weak localization in planetary astrophysics are discussed in [31,296,306,317,339,340,355–358].

10 For example, we have already pointed out that the bottom left-hand panel of Fig. 22 shows no signs of a sharp polarization minimum at backscattering
angles emerging with increasing N .
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Fig. 24. Elements of the dimensionless scattering matrix for two realizations of an imaginary spherical volume of discrete random medium with
k1R = 50, N = 200, k1r = 4, andm = 1.32.

Qualitatively, the effect of increasing the number of particles N in a DRM can be expected to be twofold. On one hand, it
serves to increase the number of multi-particle sequences and thereby enhances such corollaries of the far-field Neumann
expansion (237) as the smoothness of the scattered intensity at side-scattering directions and the various weak localization
features at backscattering directions. On the other hand, it eventually yields packing density values so high that they
cause features in the scattering patterns not implied by the far-field Neumann expansion. Therefore, the above qualitative
interpretation of numerically exact STMM results can become partly or completely inadequate [304,305,318]. Fig. 25 shows
that this is indeed the case: the solid curve reveals a high-frequency ripple reminiscent of a homogeneous spherical particle
with a size parameter comparable to that of the entire particulate volume. The corresponding packing density of 50% is so
high that the expansion (237) along with the assumptions of randomness and statistical uniformity of particle positions
become inapplicable.

Despite this conclusion, the direct solutions of the MMEs displayed in Figs. 22 and 23 do demonstrate that the classical
corollaries of the low-density limit can survive – at least in a semi-quantitative sense – volume packing densities reaching
30%. Such values are typical of particle suspensions and many particulate surfaces.
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Fig. 25. Polarization opposition effects.

Fig. 26. Polarization measurements for a particulate surface composed of small magnesia particles.

Extensive STMM results reported in [287,296,298,304] have shown that the coherent backscattering peaks such as those
in Fig. 23 are rounded atΘ = 180° owing to the finite size of the respective DRMs. The angular widths of the backscattering
peaks and of the polarization opposition minimum are inversely proportional to k1R and are independent of N until the
effects of packing density start to dominate. For the same k1R, the angular widths of the backscattering peaks (but not their
amplitudes!) are weakly dependent on the particle size parameter and refractive index. Mixtures of spherical particles with
different size parameters or different refractive indices also reveal all typical manifestations of weak localization, thereby
further corroborating the universal interference nature of this phenomenon [307].

In [301], the conventional orientation-averaging procedure developed in the framework of the STMMwas generalized to
include the case of illumination by a finite Gaussian beam. Extensive computations demonstrated that all scattering patterns
observed in the far zone of a random multisphere object and their evolution with decreasing width of the incident beam
can still be interpreted in terms of forward-scattering interference, coherent backscattering, and diffuse background. It was
shown in particular that the increasing violation of electromagnetic reciprocity with decreasing beam width suppresses
and eventually eradicates all observablemanifestations of weak localization and strongly suppresses the forward-scattering
interference, while doing virtually nothing to the angular profiles of intensity and polarization at intermediate scattering
angles.

To conclude this subsection, let us discuss the applicability of the effective-objectmethodology introduced in Section 6 to
Type-1 DRMs. Specifically, we consider the result of substituting an imaginary spherical volume filled with a large number
of identical particles (‘‘inclusions’’) by a homogeneous spherical object of the same radius, as shown in Fig. 28. Obviously,
this substitution belongs to the category of semi-stochastic EOAs. In Fig. 29, the thick gray curves depict the orientation-
averaged far-field STMM results for an imaginary k1R = 10 spherical volume populated by N = 15 000 identical spherical
inclusions, each having a size parameter of k1r = 0.2 and a refractive index of m = 1.2. For comparison, the thin black
curves show the Lorenz–Mie results for the effective-medium counterpart of this imaginary spherical volume in the form
of a homogeneous spherical particle with k1R = 10 and meff = 1.023115. Note that this effective refractive-index value
follows from the Maxwell-Garnett effective-medium rule (EMR) [77] for the resulting 12% volume fraction.
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Fig. 27. Measurements of intensity and polarization of light backscattered by a particulate surface composed of small magnesia particles.

Fig. 28. An equidimensional homogeneous spherical particle replaces the imaginary spherical volume filled with a large number of identical inclusions.

It is patently obvious from Fig. 29 that despite the extremely small size parameter of the inclusions and their very
large number, the Maxwell-Garnett EMR fails to reproduce the far-field dimensionless scattering matrix of the Type-1
particulate volume at side- and backscattering angles. In fact, the results of extensive Lorenz–Mie computations for effective
refractive indices other than 1.023115 (not shown) revealed even worse agreement with the STMM curves. The likely
qualitative explanation of this failure is the ‘‘bumpiness’’ effect wherein the discrete inclusions do not reproduce sufficiently
well the perfectly smooth spherical surface of the effective Maxwell-Garnett scatterer responsible for the large-amplitude
maxima andminima in the Lorenz–Mie curves. Not surprisingly, theMaxwell-Garnett EMR reproduces the STMMextinction
cross section and asymmetry parameter much more accurately, the corresponding ratios being CSTMM

ext /CMG
ext = 1.0375 and

⟨cosΘ⟩STMM/⟨cosΘ⟩MG
= 0.9976.

9. Direct computer modeling of static scattering by Type-2 discrete randommedia

In this section, we discuss the results of representative far-field STMM calculations for Type-2 DRMs to analyze howwell
they can be replicated by the effective-object methodology (see also [258,284,321–324,327,328]). For the purposes of our
analysis, a heterogeneous object is modeled as an actual spherical body randomly filled with N identical small spherical
inclusions, as shown in Fig. 30a. Following the approach outlined in the preceding section, the statistical randomness and
uniformity of the object’s interior is simulated in two steps. First, we use a random-number generator to create a fixed yet
quasi-random and quasi-uniform configuration of the N inclusions, while making sure that the volumes of the inclusions do
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Fig. 29. Orientation-averaged elements of the dimensionless scattering matrix for an imaginary spherical volume of discrete random medium with
k1R = 10, N = 15 000, k1r = 0.2, and m = 1.2. The thin black curves show the result of using the Maxwell-Garnett approximation.

not cross the object’s boundary anddonot overlap. Second,we average all far-zone optical observables over the equiprobable
orientation distribution of the resulting heterogeneous object using the STMM code described in [244].

The STMM results shown in Fig. 31 are obtained by assuming that the size parameter of the spherical host is fixed
at k1R = 12, while that of the inclusions takes on values k1r = 0.3 and 1. The respective numbers of the inclusions
are N = 12 800 and 346, both implying the same ρ = 20% volume fraction. The refractive indices of the host and the
inclusions are fixed atmhost = 1.33 andmincl = 1.55, respectively. For comparison, we also show the results of Lorenz–Mie
computations for a homogeneous spherical object with the size parameter k1R = 12 and the refractive indexmLM = 1.372.
This refractive index provides the best fit of the Lorenz–Mie scattering matrix to that calculated for the heterogeneous
object with N = 12 800 inclusions and, in fact, is very close to the value mMG = 1.3728 predicted by the Maxwell-Garnett
EMR for the given host and inclusion refractive indices and the inclusion volume fraction. Again, this EMR is predicated on
the replacement of the heterogeneous target by an equidimensional homogeneous object with the same outer boundary,
as exemplified by Fig. 30a, b, and belongs to the category of semi-stochastic EOAs. Since the Maxwell-Garnett effective
refractive index is independent of k1r , the thick gray curves in Fig. 31 represent the EMR substitution for both heterogeneous
objects.
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Fig. 30. (a, b) Heterogeneous spherical target and its effective-medium counterpart. (c–e) Manifestations of the Tyndall effect.
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Fig. 31. Elements of the dimensionless scattering matrix for randomly heterogeneous and homogeneous spherical objects with a fixed size parameter
k1R = 12 (see text).

It is obvious that if the boundary of the host body is perfectly spherical then theMaxwell-Garnett EMRmust reproduce the
well-known Lorenz–Mie identityF22(Θ)/F11(Θ) ≡ 1. Therefore, a deviation of the ratioF22(Θ)/F11(Θ) for a heterogeneous
spherical object from100% is themost direct and unequivocal indicator of the numerical inaccuracy of the effective-medium
methodology. Fig. 31 shows that the inclusion size parameter k1r = 0.3 yieldsF22(Θ)/F11(Θ) values hardly distinguishable
from 100%, whereas the inclusion size parameter k1r = 1 causes an obvious failure of the EMR.

Comparison of Figs. 29 and 31 reveals that the performance of the Maxwell-Garnett EMR is markedly better in the case
of the Type-2 DRM, probably owing to the absence of the bumpiness effect. In fact, the nearly perfect agreement between
the STMM curves for k1r = 0.3 and the Lorenz–Mie curves in Fig. 31 provides a convincing numerical validation of the
effective-object hypothesis underlying the Maxwell-Garnett rule for Type-2 DRMs and should motivate efforts to derive
this rule analytically from the MMEs. Still the STMM results for k1r = 1 in Fig. 31 show that the range of applicability of the
EMR in terms of the maximal permissible inclusion size parameter can be quite limited. This result should also be explained
by the analytical derivation.

In general, the optical cross sections and the asymmetry parameter are known to be less sensitive functions of the
object’s morphology than the elements of the scattering matrix. One can therefore expect a somewhat better accuracy
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Fig. 32. Elements of the dimensionless scattering matrix for randomly heterogeneous and homogeneous spherical objects with a fixed size parameter
k1R = 10 (see text).

of the Maxwell-Garnett prediction of the integral radiometric characteristics than that of the angular scattering-matrix
profiles even for relatively large inclusions. This is indeed the case, the corresponding ratios being very close to unity
for both inclusion size parameters: CSTMM

ext /CMG
ext = 1.0066 and ⟨cosΘ⟩STMM/⟨cosΘ⟩MG

= 0.9975 for k1r = 0.3 and
CSTMM
ext /CMG

ext = 1.0209 and ⟨cosΘ⟩STMM/⟨cosΘ⟩MG
= 0.9779 for k1r = 1.

To further substantiate the effective-medium hypothesis, in Fig. 32 we show the results of T -matrix computations for
a spherical host with k1R = 10 and mhost = 1.33 randomly populated by two kinds of k1r = 0.3 inclusions having
refractive indices mincl,1 = 1.45 and mincl,2 = 1.6. The number of each kind of inclusions is 4000. It is seen that the
T -matrix results can be reproduced nearly perfectly by the Lorenz–Mie results for a homogeneous spherical object with
k1R = 10 andmLM = 1.37. Interestingly, almost the same refractive index (mEMR = 1.3696) follows from the n-component
effective-mixing rule [77]. The agreement between the respective extinction cross sections and asymmetry parameters is
also excellent: CSTMM

ext /CLM
ext = 0.9895 and ⟨cosΘ⟩STMM/⟨cosΘ⟩LM = 0.9943.

Finally, in Figs. 33 and 34 we display the T -matrix results for two cases when the refractive index of the host exceeds
that of the inclusions. Specifically, mhost = 1.4 in Fig. 33 and mhost = 1.6 in Fig. 34, while the inclusions are spherical voids
with mincl = 1. The other parameters of both heterogeneous spherical objects are as follows: k1R = 10, k1r = 0.3, and
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Fig. 33. Elements of the dimensionless scattering matrix for randomly heterogeneous and homogeneous spherical objects with a fixed size parameter
k1R = 10 (see text).

N = 8000. It is seen that in these two cases, the deviations of the STMM curves for the scatteringmatrix elements other than
the phase function from their best-fit Lorenz–Mie counterparts (corresponding to mLM = 1.32 in Fig. 33 and mLM = 1.472
in Fig. 34) are more noticeable than before, while theF22(Θ)/F11(Θ) STMM curve in Fig. 34 signals significant problems
with the very EMA methodology. Furthermore, the corresponding Maxwell-Garnett refractive indices (mMG = 1.3123
and 1.4694, respectively) differ substantially from their best-fit Lorenz–Mie values. Yet Table 3 shows that the Maxwell-
Garnett refractive indices yieldmore accurate predictions of the extinction cross section and asymmetry parameter than the
Lorenz–Mie refractive indices inferred by best-fitting the STMM scattering-matrix results in Figs. 33 and 34. Again, the still-
to-be-developed analytical theory of the macroscopic effective-medium regime will need to explain all these numerically
exact findings.

10. First-order-scattering approximation

Although using a numerically exact computer solver of the MMEs is the preferred way of quantifying electromagnetic
scattering by a DRM, the applicability of this direct approach is still limited in terms of the number of constituent particles
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Fig. 34. Elements of the dimensionless scattering matrix for randomly heterogeneous and homogeneous spherical objects with a fixed size parameter
k1R = 10 (see text).

Table 3
Extinction cross-section and asymmetry parameter ratios.

mhost
CSTMM
ext
CLM
ext

CSTMM
ext
CMG
ext

⟨cosΘ⟩STMM

⟨cosΘ⟩LM
⟨cosΘ⟩STMM

⟨cosΘ⟩MG

1.4 1.0755 1.0235 1.0348 1.0121
1.6 0.9061 0.9903 0.9035 0.9926

and the overall size of the particulate volume relative to the wavelength. However, there are two well-defined and often-
encountered kinds of Type-1 DRMwhich allow for an explicit use of the far-field Foldy equations discussed in Section 4.10.
As a result, one can derive analytically rather simple expressions or equations for key optical observables which provide
for much more efficient computations by bypassing the calculation of the electromagnetic field itself. The particles forming
either kind of DRM are sparsely and randomly distributed, but their number N must be sufficiently small for the first kind or
tend to infinity for the second kind. In either case the far-field conditions (89)–(91) do not apply to the whole DRM, which
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Fig. 35. The Type-1 DRM is composed of a small number of particles sparsely populating an imaginary volume V and is observed from a sufficiently large
distance r .

makes it necessary to first compute the ensemble-averaged Poynting–Stokes tensor and then use it to quantify the energy
budget of the DRM and the reading of a near-field WCR [34].

Let us first consider the first kind of Type-1 DRM by assuming that:

• N is sufficiently small and the average interparticle distance is sufficiently large that in the framework of the Foldy
equations each particle can be considered as being ‘‘excited’’ only by the incident field;
• the N-particle DRM is observed from a distance r much greater than any linear dimension L of the imaginary volume V

circumscribing the DRM:

r ≫ L; (246)

• the observation point is allowed to be in the near zone of the entire DRM but is assumed to be distant enough to reside
in the far zone of any of the N particles constituting the DRM;
• all N particles are moving randomly and independently of each other throughout the imaginary volume V ;
• the physical states of the N particles change randomly and independently of each other as well as independently of

the particle positions, where, as before, the physical state of a particle includes all its physical characteristics except
coordinates.

These requirements are often satisfied in laboratory and in situ measurements of light scattering by tenuous collections of
small particles such as those discussed in [176,359–366].

According to the above assumptions, the second term on the right-hand side of Eq. (141) can be neglected in comparison
with the first term. Let us choose the origin O of the laboratory coordinate system close to the geometrical center of the
N-particle DRM and assume that the observation point resides close enough to be in the near zone of the entire object yet
sufficiently far to be in the far zone of any of the N constituent particles (Fig. 35). Eqs. (75), (85), (86) and (140) then imply
that

Esca(r) =
N
i=1

exp(ik1n̂inc
·Ri)

exp(ik1ri)
ri

←→
A i(r̂i, n̂inc) ·Einc

0 . (247)

Let us now assume that the N-particle DRM is ergodic so that we can use Eq. (219b). Also, all particle positions Ri, as well
as all particle physical states ξi (and thus the corresponding particle-centered scattering dyadics

←→
A i(r̂i, n̂inc)) as functions

of time are considered to be independent random processes. This implies that averaging over all the individual-particle
physical states and over all the individual-particle coordinates can be performed independently:

⟨. . .⟩Ψ = ⟨⟨. . .⟩R⟩ξ . (248)

To average over the individual particle coordinates, we assume that the corresponding coordinate probability density
functions are given by

pR(Ri) =


1/V if Ri ∈ V ,
0 if Ri ∉ V for any i = 1, . . . ,N. (249)
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Fig. 36. Near-field measurements of electromagnetic scattering by a small sparse DRM.

This means that the individual positions of all the N particles throughout the entire volume V are mutually independent
and statistically equiprobable. This is consistent with the assumption that the average particle packing density is sufficiently
small. Finally, we assume that the angular dependence of the individual particle-centered scattering dyadics is weak enough
that at the large distance r from the DRM,

←→
A i(r̂i, ŝ) ≈

←→
A i(r̂, ŝ) for any i, (250)

where r̂ is the unit vector originating at O and pointing in the direction of the observation point r (Fig. 35).
Let us first quantify the energy budget of the entire N-particle DRM. This entails surrounding the volume V by an

imaginary sphere S with a radius r much greater than the volume’s typical linear dimension L, as sketched in Fig. 35, and
evaluating the integral

⟨⟨W
abs
(t)⟩⟩ = −Re


S
d2r⟨⟨S̄(r, t)⟩⟩ · r̂. (251)

The explicit derivation detailed in [34] requires two more assumptions. First, the size parameter of the volume V must be
much greater than unity:

k1L≫ 1. (252)

Second, the sum of the individual extinction cross sections of the N particles forming the DRM must be much smaller than
the geometrical cross section of the volume V . The final result, formulated here for the general case of quasi-monochromatic
scattering, is as follows:

⟨⟨W
abs
(t)⟩⟩ = ⟨⟨W

ext
(t)⟩⟩ − ⟨⟨W

sca
(t)⟩⟩, (253)

where

⟨⟨W
ext
(t)⟩⟩ =

N
i=1

[⟨K11(n̂inc
; ξi)⟩ξi⟨⟨I

inc(t)⟩⟩ + ⟨K12(n̂inc
; ξi)⟩ξi⟨⟨Q

inc(t)⟩⟩

+ ⟨K13(n̂inc
; ξi)⟩ξi⟨⟨U

inc(t)⟩⟩ + ⟨K14(n̂inc
; ξi)⟩ξi⟨⟨V

inc(t)⟩⟩], (254)

⟨⟨W
sca
(t)⟩⟩ =


4π

dr̂
N
i=1

[⟨Z11(r̂, n̂inc
; ξi)⟩ξi⟨⟨I

inc(t)⟩⟩ + ⟨Z12(r̂, n̂inc
; ξi)⟩ξi⟨⟨Q

inc(t)⟩⟩

+ ⟨Z13(r̂, n̂inc
; ξi)⟩ξi⟨⟨U

inc(t)⟩⟩ + ⟨Z14(r̂, n̂inc
; ξi)⟩ξi⟨⟨V

inc(t)⟩⟩]. (255)

In the above formulas, K(n̂inc
; ξi) and Z(r̂, n̂inc

; ξi) are the particle-centered extinction and phase matrices of particle i,
respectively.

Let us now consider the electromagnetic response of the two distant polarimetric WCRs shown in Fig. 36, each having
its optical axis centered at the volume element V . Both instruments are located in the near zone of the DRM yet sufficiently
far from it so that each partial wavelet contributing to the right-hand side of Eq. (247) becomes locally flat by the time it
reaches a WCR. Furthermore, although the acceptance solid angle 1Ω of either WCR is very small, its distance r from the
center of the DRM is large enough that the solid angle subtended by V , as viewed from the WCR, is smaller than 1Ω . As a
result, either WCR captures all N partial wavelets irrespective of particles’ locations within V , while WCR 2 also captures
the incident plane wave.

According to Section 4.5, WCR 1 integrates over its objective lens the time-averaged Stokes column vector of the
superposition of the N quasi-plane wavelets propagating in essentially the same direction r̂1. SinceWCR 1 does not capture
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the incident plane wavefront, it can be shown [34] that the quasi-monochromatic response of WCR 1 averaged over a
sufficiently long period of time is given by

⟨⟨Signal 1(t)⟩⟩ =
Sol
r2

N
i=1

⟨Z(r̂1, n̂inc
; ξi)⟩ξi⟨⟨I

inc(t)⟩⟩. (256)

The {objective lens, diaphragm} filter of WCR 2 passes the incident plane wave in addition to the N partial quasi-plane
wavelets. As a consequence, the integration of the resulting Stokes column vector over the entrance pupil of WCR 2
yields [34]:

⟨⟨Signal 2(t)⟩⟩ = Sol⟨⟨Iinc(t)⟩⟩ −
N
i=1

⟨K(n̂inc
; ξi)⟩ξi⟨⟨I

inc(t)⟩⟩ +
Sol
r2

N
i=1

⟨Z(n̂inc, n̂inc
; ξi)⟩ξi⟨⟨I

inc(t)⟩⟩. (257)

Eqs. (253)–(257) represent the so-called first-order-scattering approximation for the Type-1 DRM in the form of a small
ergodic group of sparsely distributed particles. Comparison of these formulas with their far-field counterparts (205)–(209)
shows that the reading of a near-zone yet sufficiently distant WCR can be quantified by summing up the corresponding
single-particle far-field readings.

A fundamental consequence of the additivity of the extinction and phase matrices in Eqs. (254)–(257) is that the actual
N-particle DRM is optically indistinguishable from that consisting of N statistically identical particles, each having the same
average extinction and phase matrices given by

⟨K(n̂inc
; ξ)⟩ξ =

1
N

N
i=1

⟨K(n̂inc
; ξi)⟩ξi ,

⟨Z(r̂, n̂inc
; ξ)⟩ξ =

1
N

N
i=1

⟨Z(r̂, n̂inc
; ξi)⟩ξi .

(258)

The matrices ⟨K(n̂inc
; ξ)⟩ξ and ⟨Z(r̂, n̂inc

; ξ)⟩ξ can be thought of as being averaged over a synthetic distribution of physical
states of one particle pξ (ξ) derived from the N individual-particle distributions pξi(ξi). Then Eqs. (254)–(257) take the
following simplified form:

⟨⟨W
ext
(t)⟩⟩ = N[⟨K11(n̂inc

; ξ)⟩ξ ⟨⟨I inc(t)⟩⟩ + ⟨K12(n̂inc
; ξ)⟩ξ ⟨⟨Q inc(t)⟩⟩ + ⟨K13(n̂inc

; ξ)⟩ξ ⟨⟨U inc(t)⟩⟩
+ ⟨K14(n̂inc

; ξ)⟩ξ ⟨⟨V inc(t)⟩⟩], (259)

⟨⟨W
sca
(t)⟩⟩ = N


4π

dr̂ [⟨Z11(r̂, n̂inc
; ξ)⟩ξ ⟨⟨I inc(t)⟩⟩ + ⟨Z12(r̂, n̂inc

; ξ)⟩ξ ⟨⟨Q inc(t)⟩⟩

+ ⟨Z13(r̂, n̂inc
; ξ)⟩ξ ⟨⟨U inc(t)⟩⟩ + ⟨Z14(r̂, n̂inc

; ξ)⟩ξ ⟨⟨V inc(t)⟩⟩], (260)

⟨⟨Signal 1(t)⟩⟩ =
Sol
r2

N⟨Z(r̂1, n̂inc
; ξ)⟩ξ ⟨⟨Iinc(t)⟩⟩, (261)

⟨⟨Signal 2(t)⟩⟩ = Sol⟨⟨Iinc(t)⟩⟩ − N⟨K(n̂inc
; ξ)⟩ξ ⟨⟨Iinc(t)⟩⟩ +

Sol
r2

N⟨Z(n̂inc, n̂inc
; ξ)⟩ξ ⟨⟨Iinc(t)⟩⟩. (262)

The principal advantage of the first-order-scattering approximation is that it obviates the need to explicitly solve the
MMEs for a statistically representative set of sparse N-particle configurations and replaces this complicated task by the
much simpler task of finding the far-field solution of the MMEs for one isolated particle followed by averaging this solution
over a representative distribution of particle physical states. Furthermore, there is no need to satisfy the most challenging
requirement of the far-field approximation, viz., the inequality (91), by applying it to the entire volume V .

The analytical derivation of the first-order-scattering approximation does not involve an explicit requirement that the
N constituent particles be in the far-zones of each other. Instead, the most important explicit requirement leading to
Eqs. (259)–(262) is that the second term on the right-hand side of Eq. (141) be much smaller than the first term. However,
this requirement does imply that the average separation between the particles must be appropriately large and their
total number N must be sufficiently small. These qualitative criteria were analyzed using numerically exact STMM results
in [288]. Further insight can be gained from recalling that Eq. (138) is valid in the near zone as well as in the far zone of
a DRM. Therefore, far-field STMM computations based on this formula should be a good test of the accuracy of Eq. (259).

Table 4 shows the values of the ratio ⟨⟨W
ext
(t)⟩⟩

FOSA
/⟨⟨W

ext
(t)⟩⟩

STMM
for an imaginary spherical volumewith a size parameter

k1R = 50 randomly filled with N identical spherical particles having a size parameter of k1r = 4 and a refractive index of
m = 1.32. The incident field is assumed to be quasi-monochromatic and unpolarized. Also shown are the corresponding
values of the packing density ρ = N(r/R)3. It is obvious that only packing densities of one percent or less can ensure high
numerical accuracy of the first-order-scattering approximation.

The main difference between the far-zone formula (98) and the near-zone formula (261) is that the latter completely
ignores the forward-scattering interference explained in Fig. 21b and discussed in Section 8.2. Yet at side- and back-
scattering angles both formulas should give similar results provided that themain requirements of the first-order-scattering
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Table 4
Comparison of STMM and first-order-scattering approximation results.

N ρ
⟨⟨Wext

(t)⟩⟩
FOSA

⟨⟨Wext
(t)⟩⟩

STMM

1 0.0005 1
2 0.0010 1.0001
5 0.0026 1.0059

20 0.0102 1.0336
50 0.0256 1.4451

100 0.0512 1.6952
200 0.1024 2.4506
400 0.2048 4.7936
600 0.3072 7.0776

approximation are met. In particular, the ratios of the elements of the phase matrix must become N-independent. Fig. 22
shows that this is the case only when N is smaller than 20. According to Table 4, this again implies that the packing density
must be less than one percent.

11. Radiative transfer and coherent backscattering

11.1. Radiative transfer theory

Another analytical approach directly derivable from theMMEs iswhat is traditionally called the radiative transfer theory.
In this case it is assumed that:

• the N particles forming the Type-1 DRM (Fig. 3a) are separated widely enough that each of them is located in the far
zones of all the other particles;
• the observation point is located in the far zone of any particle in the group (but, in general, in the near zone of the entire

group);
• N is very large: N →∞.

The first assumption implies the applicability of the algebraic far-field FEs (149) and (151). According to the second
assumption, the total field at any observation point located sufficiently far from any particle in the sparse DRM is the
superposition of the incident plane wave and N partial spherical wavelets contributed by the N particles. The observation
point does not have to be in the far zone of the entire group and can be anywhere in space, including inside the DRM, as long
as it resides in the far zones of all the N particles constituting the DRM (see Section 4.10).

The third assumption implies that we can replace the full far-field Neumann expansion (237) by the much simpler so-
called Twersky expansion. Indeed, the terms with j = i and l = j in the triple summation on the right-hand side of Eq. (237)
are excluded, but the terms with l = i are retained. Therefore, we can decompose this summation as follows:

N
i=1

N
j=1
j≠i

N
l=1
l≠j

· · · =

N
i=1

N
j=1
j≠i

N
l=1
l≠i
l≠j

· · · +

N
i=1

N
j=1
j≠i

N
l=1

δjl × · · · , (263)

where δjl is the Kronecker delta. Higher-order summations in Eq. (237) can be decomposed similarly. The first group of
terms on the right-hand side of Eq. (263) is contributed by ‘‘self-avoiding’’ sequences of particles, whereas the second
group includes contributions from sequences that involve a particle more than once. The approximation introduced by
Twersky [367] helps simplify Eq. (237) by retaining only the terms contributed by all self-avoidingmulti-particle sequences.
In the limit N → ∞ the Twersky approximation accounts for the overwhelming majority of multi-particle sequences and
thus can be expected to yield asymptotically accurate results.

Since we are dealing with a near-field problem, the solution must be based on the calculation of the time-averaged
Poynting–Stokes tensor or, more generally, the time-averaged dyadic correlation function (152). Using the Twersky
approximation of the Neumann expansion (237), the Twersky approximation for the dyadic correlation function can be
formulated diagrammatically according to Fig. 37. The different terms entering the expanded expression inside the angular
brackets on the right-hand side of this equation can be classified using the notation introduced in Fig. 38a. In this particular
case, the upper and lower multi-particle sequences involve different particles. However, the two multi-particle sequences
can involve one or more common particles, as indicated in Fig. 38c–f by the dashed connectors. Moreover, if the number of
common particles in a diagram is two or more then they can enter the upper and lower sequences in the same order, as in
Fig. 38d, or in the reverse order, as in Fig. 38e. The diagrams without crossing connectors are called ladder diagrams. Two
such diagrams are exemplified by Fig. 21d, e. Fig. 38f gives an example of a mixed diagram wherein two common particles
appear in the same order while two other common particles appear in the reverse order. By the very nature of the Twersky
approximation, no particle can appear in either the upper or the lower sequence more than once.
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Fig. 37. The Twersky approximation for the dyadic correlation function. Each arrowdenotes the local incident field; eachdot denotes the left-multiplication
by the corresponding scattering dyadic; and each horizontal line denotes multiplication by the corresponding g-function (150).

Fig. 38. Classification of various terms entering the expanded Twersky approximation for the dyadic correlation function.

According to the preceding discussion, the assumption of full ergodicity of the DRM allows us to replace the calculation of
the time average ⟨⟨

←→
C (r′, r; t)⟩⟩ by the calculation of the ensemble average ⟨

←→
C (r′, r;Ψ )⟩Ψ = ⟨

←→
C (r′, r;R, ξ)⟩R,ξ , where

R denotes the complete set of particle coordinates and ξ denotes the complete set of particle physical states. This problem
is still very complex in general, but becomes more manageable if we further assume that:
• The position and physical state of each particle are statistically independent of each other and of those of all the other

particles.
• The physical states of all the particles have the same statistical characteristics.
• The spatial distribution of the particles throughout the medium is completely random and statistically uniform.
• All diagrams with crossing connectors in the diagrammatic expansion of the dyadic correlation function can be ignored.

This is the gist of the ladder approximation [368].

The subsequent analytical derivation is detailed in [34] (see also [25,187]) and is not dwelled upon in this Report since it
contains no new concepts and is a straightforwardmathematical exercise. An important intermediate step is the emergence
of the following matrix integro-differential equation:

q̂ ·∇I(r, q̂) = −n0⟨K(q̂; ξ)⟩ξI(r, q̂)+ n0


4π

dq̂′⟨Z(q̂, q̂′; ξ)⟩ξI(r, q̂′) (264)

traditionally called the radiative transfer equation (RTE). Here, n0 = N/V is the average number of particles per unit volume;
⟨K(q̂; ξ)⟩ξ is the single-particle extinction matrix averaged over the physical states of all the N particles; ⟨Z(q̂, q̂′; ξ)⟩ξ is
the single-particle phase matrix, also averaged over the physical states of all the N particles constituting the DRM; and

I(r, q̂) =

I(r, q̂)Q (r, q̂)U(r, q̂)V (r, q̂)

 (265)

is the real-valued so-called specific intensity column vector. The RTE is supplemented by the boundary conditionI(r, q̂←) |r∈S = δ(n̂inc
− q̂←)⟨⟨Iinc(t)⟩⟩, (266)

where S is the boundary of the Type-1 DRM (Fig. 3a), q̂← is any unit vector directed into the volume V , and δ(ŝ) is the
solid-angle delta function. Note that Eqs. (264)–(266) are valid in the general case of the quasi-monochromatic plane-wave
incident field (168)–(169).



60 M.I. Mishchenko et al. / Physics Reports 632 (2016) 1–75

Fig. 39. A WCR placed inside the DRM. The size of the WCR is exaggerated relative to that of the DRM for demonstration purposes. The uniform shading
is intended to emphasize that the constituent particles move randomly throughout the volume V during the measurement.

It is convenient to decompose the total specific intensity column vector into so-called coherent (subscript ‘‘c’’) and diffuse
(subscript ‘‘d’’) components:I(r, q̂) = δ(n̂inc

− q̂)Ic(r)+Id(r, q̂). (267)

It is easily seen that these quantities are solutions of the following boundary-value problems:

n̂inc
·∇Ic(r) = −n0⟨K(n̂inc

; ξ)⟩ξ Ic(r), (268)

Ic(r)
r∈Sill = ⟨⟨Iinc(t)⟩⟩, (269)

q̂ ·∇Id(r, q̂) = −n0⟨K(q̂; ξ)⟩ξId(r, q̂)+ n0


4π

dq̂′⟨Z(q̂, q̂′; ξ)⟩ξId(r, q̂′)+ n0⟨Z(q̂, n̂inc
; ξ)⟩ξ Ic(r), (270)

Id(r, q̂←) |r∈S = 0, (271)

where Sill the illuminated part of the boundary S and 0 is a zero four-component column. The obvious solution of Eq. (268)
is the straightforward matrix generalization of the famous Bouguer exponential attenuation law [93,94,100]:

Ic(r) = exp[−n0s⟨K(n̂inc
; ξ)⟩ξ ]⟨⟨Iinc(t)⟩⟩, (272)

where s is the distance between the observation point r and Sill along the straight line parallel to n̂inc.
The solution of the RTE can be directly used to compute relevant near-field optical observables. For example, the energy-

budget problem is solved by using the following formula for the time-averaged local Poynting vector:

⟨⟨S̄(r, t)⟩⟩ =

4π

dq̂q̂I(r, q̂), (273)

whereI(r, q̂), traditionally called the specific intensity, is the first element of the specific intensity column vector (265). The
reading of a polarization-sensitive WCR centered around the ‘‘propagation direction’’ q̂ per unit time is given by

⟨⟨Signal (r, q̂; t)⟩⟩ = Sol


1Ωq̂

dq̂′I(r, q̂′) ≈ 
SolIc(r)+ Sol1ΩId(r, n̂inc) if q̂ = n̂inc,

Sol1ΩId(r, q̂) if q̂ ≠ n̂inc,
(274)

where it is assumed that theWCR is placed inside the DRM (Fig. 39) and, as before,1Ω is theWCR’s acceptance solid angle.
The implications of the derivation of Eqs. (264)–(274) directly from the MMEs are quite profound and are discussed

in [34], while the genesis of these formulas is traced in [100]. There are several efficient computer solvers of the RTE
[25,57,59,60,64,66,369–372] which make it much easier to deal with the RTE than with the MMEs. The fact that the reading
of the WCR can be modeled theoretically by solving the RTE often makes the {WCR, RTE} combination a useful optical-
characterization tool. Moreover, comparison of Eqs. (273) and (274) shows that a WCR can be used to measure the local
time-averaged Poynting vector by integrating its signal over the entire range q̂ ∈ 4π and thereby solve the energy-budget
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Fig. 40. Electromagnetic scattering by a sparse Type-1 DRM. The size of the DRM is exaggerated relative to its distance from observation point 3 for
demonstration purposes.

problem experimentally. Needless to say, to enable such optical-characterization and energy-budget applications based
on the radiative transfer theory, the DRM must possess the specific macro- and microphysical properties discussed in the
beginning of this subsection.

11.2. The Tyndall effect

It is easily seen that in the absence of the integral term on the right-hand side of Eq. (264), the solutionI(r, q̂) of the RTE
subject to the boundary condition (266) would reduce to

I(r, q̂) = δ(n̂inc
− q̂)Ic(r). (275)

This is equivalent to using the coherent-field approximation, i.e., to keeping only the first term on the right-hand side of
Eq. (218b). As a consequence, the reading of the WCR in Fig. 39 would be nonzero only if the inward optical axis of the
instrument was perfectly aligned with the incidence direction (cf. Eq. (274)). The fact that a WCR immersed in or looking
at a turbid medium and having its axis not aligned with the incidence direction can generate a nonzero signal is explained
by the presence of the integral term in the RTE causing a non-zero diffuse specific intensity column vectorId(r, q̂) and the
resulting inadequacy of the coherent-field approximation. This optical phenomenon was first identified by John Tyndall
[373,374] and is often called the Tyndall effect. Its physical origin can be traced all the way back to the inequalities (187)
and (188).

Typical manifestations of the Tyndall effect primarily caused by the last term on the right-hand side of Eq. (270) are
shown in Fig. 30c–e. In Fig. 30c the laser beam is ‘‘invisible’’ when it passes through the glass containing pure water but
becomes ‘‘visible’’ (i.e., causes a nonzero reaction of the photographic camera)when it passes through a colloidal suspension.
Similarly, the ‘‘solar rays’’ become ‘‘visible’’ upon scattering by haze or fog particles in Fig. 30d, e.

11.3. Weak localization

We have seen that a major approximation in deriving Eqs. (264)–(274) was keeping only the ladder component of the
dyadic correlation function. An improvement could be the computation of the so-called ‘‘cyclical’’ component caused by
pairs of multi-particle sequences exemplified by Fig. 21c, f. Indeed, let us again consider the scattering by a Type-1 DRM as
shown schematically in Fig. 40. The DRM is illuminated by a quasi-monochromatic plane-wave field. It is straightforward
to show that upon statistical averaging, the contribution to the total Poynting–Stokes tensor of all the diagrams of the type
illustrated in Fig. 41 must vanish at near-field observation points located either inside (observation point 1) or outside
(observation point 2) the object. However, as discussed in Section 8.2, there is an exception corresponding to the situation
when the observation point is in the far zone of the entire DRM and is located within its ‘‘back-shadow’’ (observation point
3 in Fig. 40). Then the class of diagrams illustrated by Figs. 21c, f and 41c–e makes a nonzero contribution that causes the
coherent backscattering effect. These diagrams are called maximally crossed or cyclical [375] because they can be drawn in
such a way that all connectors cross at one point.

The inclusion of the cyclical diagrams makes the computation of the total Poynting–Stokes tensor much more
involved [25] and limits the range of problems that can be solved analytically [305,318]. A fully analytical solution has
so far been derived only for a semi-infinite layer composed of nonabsorbing Rayleigh scatterers [376]. In general, no closed-
form analytical equation similar to the RTE has been derived for the computation of the coherent component of the total
Poynting–Stokes tensor. As a consequence, this component is often computed using the direct Monte Carlo summation of
the cyclical diagrams [339,377].
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Fig. 41. Diagrams with crossing connectors.

11.4. Validation of the analytical theory of radiative transfer and weak localization

By virtue of being a direct corollary of the MMEs, the radiative transfer–weak localization (RT–WL) theory contains no
adjustable parameters inherent in semi-empirical and phenomenological approaches. As such, it can unambiguously be
compared with computer solutions of the MMEs and results of controlled laboratory experiments. This is very important,
since some of the assumptions made earlier in this section are semi-qualitative and thus need to be clarified quantitatively.
Indeed, the RT–WL theory is fundamentally based on the asymptotic requirements ρ ≪ 1 and N ≫ 1, where, as before, ρ
is the particle packing density. The first inequality ensures that particle positions inside the volume are random, mutually
independent, and statistically uniform. Furthermore, in the case of particles with sizes comparable to and greater than the
wavelength, it ensures that each particle is located in the far zones of all the other particles constituting the DRM. The second
inequality allows one to ignore non-self-avoiding diagrams in the far-field Neumann expansion (237). The combination
of these inequalities implies that the overall size parameter of the DRM must be much greater than unity. While these
inequalities are essential in the derivation of the RT–WL theory from the MMEs, the derivation in and of itself does not
yield specific numerical estimates of the largest allowable packing density and the smallest allowable number of particles.
Such estimates can only be derived from quantitative comparisons of the approximate RT–WL results with numerical data
obtained by either directly solving the MMEs or performing a detailed optical experiment on a fully characterized DRM.

An important consequence of the analytical derivation summarized in Section 11.1 is that although Eq. (274) has been
obtained while assuming that the observation point r is located in the near zone of the DRM, the entire volume starts
to behave like a single far-field scatterer as r → ∞ [34]. This makes it possible to validate the RT theory (alone and in
combination with the WL theory) using far-field STMM computations and the Monte Carlo computer simulator described
in [339,377]. Some results of this validation [308] (see also [295,310,311]) are shown in Fig. 42. The computations were
carried out for two models of a spherical Type-1 DRMwith a size parameter of k1R = 40. All constituent spherical particles
are identical and have the refractive index m = 1.31 and the size parameter k1r = 2. The number of particles and the
corresponding packing density are N = 250, ρ = 3.125% in the left-hand column and N = 500, ρ = 6.25% in the right-
hand column, where, as before, ρ = Nr3/R3. Fig. 42 displays separately the RT-only and the combined RT–WL results.

The comparison in Fig. 42 leads to the following instructive conclusions:

• Although the DRMs studied contain modest numbers of particles, the packing density deviates from zero significantly,
and the size parameter of the DRMs is moderate, the quantitative agreement between the exact STMM and approximate
RT–WL results is quite evident. Overall, this comparison confirms the mesoscopic rooting of the RT–WL theory in the
MMEs traced in Sections 8.2 and 11.1.
• A scattering-angle range where the STMM and RT results disagree fundamentally is that corresponding to forward-

scattering directions. This result can be explained by different ways of treating the effect of forward-scattering
interference. Indeed, in the framework of the expressly near-field RT theory, this effect is incorporated mathematically
in the computation of the exponential attenuation rate inside the particulate volume [25,34], whereas, in the framework
of far-field STMM computations it causes the strong and narrow interference peak discussed in Section 8.2.11
• Outside a relatively narrow range of backscattering angles, the RT-only and the full RT–WL results are very close. This is

consistent with the physical interpretation of weak localization as a backscattering interference phenomenon.
• The RT-only results do not reproduce the backscattering peaks in the phase functionF11(Θ) and in the linear and circular

polarization ratios defined by Eqs. (244) and (245), as well as the asymmetric minimum in the ratio−F21(Θ)/F11(Θ) at
backscattering angles exhibited by the STMM results. The inclusion of the cyclical diagrams serves to reproduce these
backscattering features very closely, which is again indicative of their weak-localization nature.
• The residual differences between the RT–WL and the STMM results at side- and backscattering angles decrease with

decreasing packing density, which is an expected result. However, they persist even at packing densities as small as
∼3%, possibly in part because the reduction of ρ is achieved by decreasing N and thus violating more significantly the
requisite inequality N ≫ 1.

In another recent paper [378], the RT theory was tested against the results of a controlled laboratory experiment.
Specifically, the results of high-accuracy measurements of the Stokes reflection matrix for fully-characterized suspensions

11 Note that in [312] the RT exponential extinction law was reproduced by near-field STMM computations.
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Fig. 42. Scattering by a spherical Type-1 DRMwith a size parameter of k1R = 40 and packing densities of ρ = 3.125% and 6.250%, populatedwith identical
spherical particles with a size parameter of k1r = 2 and a refractive index ofm = 1.31. The solid, dotted, and thick gray curves depict the STMM, RT-only,
and RT–WL results, respectively. The RT phase functions are shifted downward to match the RT–WL phase functions atΘ = 150°.

of submicrometer-sized latex particles in water were comparedwith the results of a numerically exact computer solution of
the RTE based on the so-called addingmethod [57,66]. The quantitative performance of the RTEwasmonitored by increasing
the volume packing density of the latex particles from2% to 10%. The results of this study indicate that the RTE can be applied
safely to DRMswith packing densities up to∼2%. Radiative-transfer results for packing densities of the order of 5% should be
taken with great caution, while the polarized bidirectional reflectivity of suspensions with larger packing densities cannot
be accurately predicted. These conclusions are generally consistent with the results of [308].

12. Fixed particulate media

Wehave seen in Section 8 that the diffuse speckle-free regimenaturally develops from the speckle regimeupon averaging
optical observables over changing particle positions. Furthermore, we have seen in Section 11.1 that it is the averaging over
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Fig. 43. Elements of the dimensionless scattering matrix computed for an imaginary k1R = 50 spherical volume populated by N = 200 particles with
k1r = 4 andm = 1.32. Black curves: themulti-particle configuration is fixed. Gray curves: the results are averaged over the uniformorientation distribution
of the multi-particle configuration.

random particle coordinates that effectively leads to the RTE (264). In the case of a fixed particulate medium such as a
powder surface, a sheet of paper, or a layer of paint, the speckle regime caused by scattering of a collimatedmonochromatic
or quasi-monochromatic beam persists and is easily detectable with a WCR having a sufficiently fine angular resolution
[44,45,379].

As discussed in Section 5.3 of [238], the speckle regime can get suppressed in many practical applications owing to the
use of polychromatic sources of light, uncollimated illumination, and/or detectors of light integrating over awide solid angle
of scattering directions. In particular, it is the non-detection of speckle in such applications that has led to the widespread
belief that the RT theory or its ad hoc modifications can be used to describe electromagnetic scattering by fixed particulate
layers.

It is important to recognize however that the RTE has never been derived directly from the MMEs by averaging optical
observables over a range of incidence and/or scattering directions or over a finite spectral range instead of averaging over
varying particle positions. Therefore, the only way to verify quantitatively whether a fixed particulate medium can behave
optically as a DRM is to analyze the results of direct computer solutions of the MMEs.

Fig. 43 shows the results of STMM computations of the dimensionless scattering matrix for two objects. The first one is
a fixed configuration of N = 200 particles with k1r = 4 and m = 1.32 quasi-randomly and quasi-uniformly populating
an imaginary k1R = 50 spherical volume and yielding a 10% packing density. In this case the scattering matrix is defined
according to

F(Θ) = 4π
Csca

Z(θ sca = Θ, ϕsca
= 0; θ inc = 0, ϕinc

= 0), (276)

where Csca is given by

Csca =


4π

dn̂scaZ11(θ sca, ϕsca
; θ inc = 0, ϕinc

= 0), (277)

and is depicted by thin black curves. The second object is a DRMmodeled by assuming a uniform orientation distribution of
the first object. In this case the scatteringmatrix is defined by Eq. (228) and is depicted by thick gray curves. Consistent with
the discussion in Section 8.1, the sharp large-amplitude oscillations exhibited by the thin black curves represent speckles
typical of a fixed multi-particle configuration, whereas the smooth thick gray curves are representative of a DRM.

Fig. 44 is analogous to Fig. 43, but now the scattering matrix (276) of the fixed multi-particle configuration computed at
a single wavelength is replaced by the average over a range of wavelengths:

F(Θ) = 4π
⟨Csca⟩1λ

⟨Z(θ sca = Θ, ϕsca
= 0; θ inc = 0, ϕinc

= 0)⟩1λ. (278)

It is assumed that (i) the incident field is a polychromatic parallel beamwith quasi-monochromatic components, and (ii) all
quasi-monochromatic components have the same Stokes parameters (see Section 13.6 of [34]). The spectral range 1λ is
equal to 1/10 of the central wavelength, which implies that k1R ranges from 47.5 to 52.5 and k1r ranges from 3.8 to 4.2. The
numerical integration over1λwas performed using a Gaussian quadrature formula with 100 division points.

The comparison of Figs. 43 and 44 is quite revealing. First of all, it confirms that averaging the scattering matrix over a
finite spectral range serves as an extremely efficient suppressor of speckles generated by a fixedmulti-particle configuration.
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Fig. 44. Elements of the dimensionless scattering matrix computed for an imaginary spherical volume populated by N = 200 particles with m = 1.32.
Black curves: the multi-particle configuration is fixed and the results are averaged over a range of wavelengths such that k1R varies from 47.5 to 52.5 and
k1r varies from 3.8 to 4.2. Gray curves: the results are averaged over the uniform orientation distribution of the multi-particle configuration at a single
wavelength such that k1R = 50 and k1r = 4.

Second of all, it demonstrates that as a consequence of spectral averaging the scattering properties of the fixedmulti-particle
configuration become very similar to those of the ‘‘morphologically-equivalent’’ DRM. This result [380] is qualitatively
consistent with Eq. (241) which shows that the phase difference between two multi-particle sequences can be randomized
not only by changing particle positions but also by varying the wavelength.

Although these conclusions should be viewed as preliminary and should be corroborated by further research, they appear
to support the conventional belief that depending on specific measurement settings (e.g., polychromatic illumination), the
notion of a DRM can often be broadened to encompass fixed particulate media.

13. Concluding remarks

The overall objective of this Report was to outline the first-principles physical framework of the discipline of
electromagnetic scattering by a (slowly varying) DRM, formulate the resulting physical and mathematical problems
in maximally rigorous terms, and discuss the most robust and well-characterized ways of addressing these problems.
We intentionally focused on numerically exact computer solutions of the MMEs as the most reliable way of obtaining
profound physical insights unavailable with phenomenological and heuristic theories. We also discussed how the first-
order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves
can be derived directly from the Maxwell equations for very specific and well-defined kinds of particulate medium.12 The
main advantage of these numerical and analytical corollaries of theMMEs is that they obviate the need to introduce fictitious
tunable parameters and poorly defined notions such as dependent, independent, and incoherent scattering; elementary
volume elements; incoherent light rays; photons as particles of light or blobs of electromagnetic energy without phases;
and collective scattering effects. The whole evolution of physics has been in the direction of replacing phenomenological
and heuristic approaches with first-principles ones. A major objective of this Report was to summarize recent contributions
to this process.

Consistent with this objective, we stayed away from discussing phenomenological and semi-empirical theories of light
scattering by particulate media other than the effective-medium approach. As explained in [91,92], facile theories such
as those described in [84–90] are inherently flawed in that they are typically devoid of primordial physical parameters of
a DRM involved in the solution of the Maxwell equations and instead feature numerous artificial adjustable parameters.
As a consequence, they represent little more than a conglomerate of contrived yet enticingly simple formulas intended to
provide a back-of-an-envelope solution of the profoundly complex scattering problem. The use of freely tunable ad hoc
parameters makes these models a flexible interpolation tool capable of fitting almost any data. The price one has to pay for
this interpolation capability is that the best-fit model usually has little (if any) physical meaning.

Wehope that this Report serves as a convincing demonstration of substantial recent progress that hasmade the discipline
of electromagnetic scattering by a DRM a full-fledged branch of physical optics (or, to use a catchy term, of ‘‘disordered
photonics’’ [381]). In particular, direct computer solutions of theMMEs discussed in Section 8 and straightforward analytical
derivations reviewed in Section 11 have fully confirmed the purportedly mesoscopic origin of the theory of radiative

12 A more detailed discussion of the phenomenological origin of the radiative transfer theory and its recent transformation into a legitimate branch of
statistical electromagnetics can be found in [100].
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transfer and weak localization [353,354,382–384]. Indeed, they clearly demonstrate how the ‘‘macroscopic’’ regime of this
theory emerges from the ‘‘microscopic’’ particle-level regime of Maxwell’s electromagnetics upon averaging over random
realizations of a large sparse multi-particle group. Both theoretical and experimental studies discussed in Section 11.4 (see
also [385]) have revealed the inevitable breakdownof the RT–WL regimewhen the particle packing density exceeds a certain
threshold. This emphasizes the importance of efficient computer solvers of the MMEs which have no intrinsic limitations
on packing density and, in combination with the ever growing power of computer clusters, should eventually facilitate the
solution of outstanding problems of unprecedented complexity.

Still the range of scattering problems that can be solved exactly remains limited. As a consequence, approximate theories
of light scattering by DRMs will still be practiced in the foreseeable future to handle full-scale ‘‘real-life’’ problems. It is
therefore imperative to use advanced computer solvers of theMMEs aswell as controlled laboratory experiments to quantify
numerical errors of approximate approaches and understand their origin. Although further research is still needed to better
validate such popular modeling tools as the first-order-scattering approximation, the radiative transfer equation, the theory
of weak localization, and the effective-medium approach, significant progress has already been achieved, as discussed in
Sections 8.2, 9, 10 and 11.4.

The main subject of this Report can be characterized as the direct scattering problem, i.e., the calculation of
electromagnetic scattering by a known, well-defined system. We have not discussed how to solve the inverse scattering
problem, i.e., determine the physical characteristics of a particulate object by analyzing its measured scattering and
absorption properties. The vastness of this applied discipline obviously necessitates a separate review. Similarly left out
are the countless specific applications of electromagnetic scattering by particulate media in various branches of science and
technology.

In this Report we focused on isolated particulate media. Yet there is an urgent need to consider even more complex
problems involving different combinations of volume and/or surface scattering. Good examples would be a densely packed
particulate layer bounded from below by a plane interface and a layer of continuous fluctuating medium hosting randomly
positioned discrete particles and bounded by random rough interfaces. It is safe to say that the first-principles treatment of
such problems is still at an early stage of development [305,318,386–389].

Finally we note that an essential assumption made at the very outset of this Report is that the infinite host medium
surrounding the particles is nonabsorbing. A preliminary first-principles analysis of the general case of an absorbing host
can be found in [179,390,391].
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Appendix A. Benchmark STMM results

Owing to the equiprobable orientation distribution, the dimensionless scattering matrix (232) has the following
symmetric structure [1,34]:

F(Θ) =


F11(Θ) F21(Θ) F13(Θ) F14(Θ)F21(Θ) F22(Θ) F23(Θ) F24(Θ)
−F13(Θ) −F23(Θ) F33(Θ) F34(Θ)F14(Θ) F24(Θ) −F34(Θ) F44(Θ)

 . (A.1)

Table A.1 is a tabulation of the 10 independent elements of the scattering matrix computed with the STMM program [244]
for the randomly oriented compound object shown in Fig. 14a and specified in Section 7. Note that this table well
exemplifies Eq. (246). In Table A.2, we also tabulate the coefficients appearing in the expansions of the numerically most
significant scattering matrix elements in Wigner d-functions dsmn(Θ) or, equivalently, in generalized spherical functions
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Table A.1
Elements of the normalized scattering matrix calculated with the STMM computer program.

Θ (deg) F11 F21 F13 F14 F22 F23 F24 F33 F34 F44
0 49.71733 0.00000 0.00000 −0.00014 49.70581 0.00322 0.00000 49.70581 0.00000 49.69506

10 12.42281 −0.38719 0.00002 −0.00000 12.41798 0.00155 −0.00002 12.31709 1.48848 12.31480
20 3.82084 −0.65502 0.00002 0.00037 3.81143 0.00028 0.00001 3.66047 −0.77437 3.65477
30 2.46558 0.32314 −0.00004 −0.00033 2.45656 −0.00048 −0.00001 2.41573 0.25041 2.41197
40 2.96876 −0.02893 −0.00002 0.00015 2.95631 −0.00032 0.00002 2.89553 −0.57369 2.88959
50 1.00871 0.22695 −0.00003 −0.00019 0.99662 0.00000 −0.00016 0.89948 0.28267 0.89468
60 1.04317 −0.09226 0.00002 −0.00008 1.03129 0.00054 −0.00002 0.98187 −0.26947 0.97817
70 0.40002 0.19768 0.00001 −0.00012 0.39089 0.00027 0.00003 0.29308 0.03631 0.29193
80 0.53819 −0.09156 0.00001 0.00004 0.52842 0.00018 −0.00003 0.49913 −0.11133 0.49892
90 0.24845 0.13979 −0.00013 0.00018 0.24058 −0.00015 0.00013 0.15711 −0.03949 0.15781

100 0.16012 −0.03083 0.00000 0.00010 0.14943 −0.00039 −0.00008 0.12980 −0.01340 0.13269
110 0.19072 0.09828 −0.00024 −0.00043 0.17921 0.00032 −0.00024 0.10879 −0.04054 0.11226
120 0.10523 0.01397 −0.00007 0.00000 0.08762 0.00003 −0.00023 0.02627 −0.06017 0.03571
130 0.17251 0.04556 0.00023 −0.00022 0.14978 0.00007 0.00001 0.10869 −0.00973 0.12077
140 0.32879 0.00751 0.00023 −0.00009 0.29739 −0.00018 −0.00050 0.04533 −0.27640 0.06741
150 0.14684 0.02090 0.00016 0.00075 0.09466 0.00010 0.00066 0.03747 −0.04800 0.07547
160 0.76055 0.01776 −0.00121 0.00079 0.70377 −0.00073 0.00117 0.39784 −0.52574 0.44526
170 0.40934 0.22432 0.00055 −0.00063 0.37337 −0.00021 0.00003 0.24795 −0.04579 0.27032
180 0.38852 0.00000 0.00000 −0.00581 0.24250 0.00000 0.00000 −0.24250 0.00000 −0.09647

Table A.2
Expansion coefficients calculated with the STMM computer program.

n αn
1 αn

2 αn
3 αn

4 βn
1 βn

2

0 1.00000 0.00000 0.00000 0.90630 0.00000 0.00000
1 1.86553 0.00000 0.00000 1.89662 0.00000 0.00000
2 2.29661 3.61509 3.43653 2.21923 −0.09381 0.13309
3 1.86558 2.44923 2.45022 1.91094 −0.02746 0.00610
4 1.94148 2.23947 2.13993 1.92623 −0.04024 0.18993
5 1.82032 1.92938 1.86526 1.79708 0.00112 −0.05645
6 1.96397 2.10089 2.06841 1.96043 0.05146 0.21263
7 2.17566 2.09321 2.04990 2.15775 0.12290 −0.02730
8 2.51398 2.61833 2.58468 2.50124 0.13264 0.12198
9 2.79420 2.70146 2.69891 2.82529 0.23022 −0.11972

10 2.80854 3.03972 2.98293 2.79412 0.21611 −0.04008
11 2.83598 2.74434 2.74189 2.88242 0.29442 −0.20541
12 2.56817 2.85635 2.82965 2.61048 0.21075 −0.07325
13 2.73807 2.57889 2.48558 2.70521 0.26578 −0.20495
14 2.55909 2.82990 2.84695 2.63705 0.10429 0.00955
15 3.05048 2.82332 2.72507 3.01411 0.13466 −0.19354
16 3.04930 3.32459 3.32160 3.10138 −0.02963 0.03529
17 3.36077 3.16079 3.22556 3.51389 −0.27596 −0.19771
18 2.99934 3.37988 3.27850 3.00480 −0.46426 −0.79836
19 2.08446 2.05418 2.00679 2.13122 −0.04756 −0.78261
20 1.23452 1.52855 1.26855 1.03331 0.17120 −0.84357
21 0.03859 0.01828 0.00073 0.02990 0.22586 −0.01528
22 0.10947 0.12174 0.10523 0.09718 0.03328 −0.02163
23 0.03300 0.03695 0.03270 0.02979 0.01255 −0.00690
24 0.00812 0.00913 0.00803 0.00728 0.00372 −0.00150
25 0.00171 0.00192 0.00166 0.00150 0.00091 −0.00026
26 0.00032 0.00036 0.00030 0.00027 0.00019 −0.00004
27 0.00005 0.00006 0.00005 0.00004 0.00004 0.00000
28 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000
29 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Pn
mm′(cosΘ) = im−m

′

dnmm′(Θ) [20,25,34,66,392,393]:

F11(Θ) = nmax
n=0

αn
1P

n
00(cosΘ) =

nmax
n=0

αn
1d

n
00(Θ), (A.2)

F22(Θ)+F33(Θ) = nmax
n=0

(αn
2 + α

n
3)P

n
22(cosΘ) =

nmax
n=0

(αn
2 + α

n
3)d

n
22(Θ), (A.3)

F22(Θ)−F33(Θ) = nmax
n=0

(αn
2 − α

n
3)P

n
2,−2(cosΘ) =

nmax
n=0

(αn
2 − α

n
3)d

n
2,−2(Θ), (A.4)
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F44(Θ) = nmax
n=0

αn
4P

n
00(cosΘ) =

nmax
n=0

αn
4d

n
00(Θ), (A.5)

F21(Θ) = nmax
n=0

βn
1P

n
02(cosΘ) = −

nmax
n=0

βn
1d

n
02(Θ), (A.6)

F34(Θ) = nmax
n=0

βn
2P

n
02(cosΘ) = −

nmax
n=0

βn
2d

n
02(Θ). (A.7)

Note that

⟨cosΘ⟩ =
1
3
α1
1 . (A.8)

The number of nonzero terms in the expansions (A.2)–(A.7) is, strictly speaking, infinite. In practice, however, a finite upper
summation limit nmax is chosen such that the corresponding truncated sums differ from the respective scattering matrix
elements within the requisite numerical accuracy on the entire interval Θ ∈ [0, π] of scattering angles. All numerical
accuracy parameters in the STMM program were increasingly tightened until the numbers in Tables A.1 and A.2 converged
to within plus/minus a few units in the last decimals given.

Appendix B. List of acronyms

DDA discrete-dipole approximation
DRM discrete randommedium
EMA effective-medium approximation
EMR effective-medium rule
EOA effective-object approximation
FDTDM finite-difference time-domain method
FEs Foldy equations
II-TMM invariant-imbedding T -matrix method
MMEs macroscopic Maxwell equations
PSTDM pseudo-spectral time-domain method
QED quantum electrodynamics
RT radiative transfer
RTE radiative transfer equation
STMM superposition T -matrix method
TMM T -matrix method
VIE volume integral equation
WCR well-collimated radiometer
WL weak localization
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