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Executive Summary

This report develops in detail the mathematics needed to solve the vector (polarized) radiative
transfer equation (VRTE) using invariant imbedding theory. The scalar (unpolarized) version of
invariant imbedding theory was developed for the oceanographic setting in the text Light and
Water (Mobley, 1994). This report parallels that work and extends the scalar equations to the
vector level. The presentation of the vector-level equations is complete, including generic internal
sources and wind-blown sea surfaces with multiple scattering by gravity-capillary waves. Issues
of computer array storage are addressed, and flow charts of the computations are given. The
vector-level invariant imbedding theory as developed here is new.

Chapter 1 formulates the vector radiative transfer problem for prediction of the time-averaged
propagation of polarized light in a plane-parallel ocean. Chapter 2 shows how the continuous-
variable equations of Chapter 1 are discretized for solution on a computer.

Chapter 3 shows how the reflectance and transmittance properties of wind-blown sea surfaces
can be computed using Monte Carlo simulation. The Fresnel reflectance and transmission formulas
for polarized light are first presented for a level sea surface. Wind-blown sea surfaces are then
discussed in detail. The generation of random realizations of sea surfaces is reviewed for tech-
niques using either the Cox-Munk wave-slope model, or using wave energy spectra and fast Fourier
transforms to generate random surfaces for fully developed seas. Monte Carlo ray tracing is then
developed in great detail for arbitrary sea surfaces. This algorithm goes beyond any previous work
and enables the computation of polarized reflectance and transmission by fully developed seas,
including multiple scattering of light by the surface waves.

Chapter 4 then develops the invariant imbedding solution of the in-water VRTE. The VRTE is
partitioned into separate sets of equations for upwelling and downwelling light, which is a key feature
of invariant imbedding theory. These equations are then Fourier decomposed in the azimuthal
direction. This leads first to local interaction equations, which govern how infinitesimal slabs
of water reflect and transmit light, and then to global interaction equations, which govern how
finitely thick slabs of water reflect and transmit light. Upward and downward sets of differential
equations are developed for the operators occurring in the global interaction equations. Given the
absorbing and scattering properties of the water, solution of these equations gives a “bare slab” or
“boundaryless” solution of the VRTE within the water column.

Chapter 5 then shows how to incorporate the boundary conditions at the sea surface and
sea bottom into the bare slab solution for the water column. Those boundary conditions define
specific environmental conditions such as the incident sun and sky radiance, surface wave state, and
bottom reflectance. Combining the boundary conditions with the bare slab internal solution gives
the solution of the VRTE for the full system of sea surface, water column, and bottom boundary
for a specific set of inputs. Adding the boundaries to the water body leads to vector-level invariant
imbedding relations, imbed rules, and union rules corresponding to–but much more complex than–
those found in the scalar theory. The final output of these equations is the Stokes vector within
and leaving the water body.

Chapter 6 gives a flow chart of the entire computation process. Two appendices complete the
report. The first supplies for reference the formulas for Fourier decomposition of functions of one



or two discrete variables. The second gives the algorithm for ray tracing in three-dimensional space
as a photon interacts with a random sea surface.

In the interest of completeness, this report also contains much material that is considered “well
known.” However, in reality, this information is spread among many publications and is confused
by different notations, conventions, and terminologies. It is hoped that parts of this report may
therefore also serve as a tutorial on the basics of polarized radiative transfer for those who do not
wish to delve into the mathematics of invariant imbedding theory. There is emphasis throughout
on the physical interpretation of the often complicated equations. These ancillary discussions are
one of the luxuries of a technical report versus a journal article.

The widely used HydroLight software uses the scalar versions of the equations to solve the scalar
radiative transfer equation. Corresponding software, called HydroPol (HydroLight-Polarized), is
under development to implement the vector-level solution techniques developed here. The HydroPol
source code is documented via references to the equations in this report.

This report is available online as Mobley(2014) in the references section of the Ocean Optics
Web Book at http://www.oceanopticsbook.info/view/references/publications
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Dedication

Rudolph W. Preisendorfer (1927-1986) was one of the founding fathers of hydrologic optics. He
was a pencil-and-paper mathematician whose greatest contribution to science was the development
of invariant imbedding theory for solution of the scalar (unpolarized) radiative transfer equation
in the oceanographic setting. That work and much more is presented in his six-volume treatise
Hydrologic Optics (Preisendorfer, 1976). The mathematics he developed for the scalar equation is
the core of the HydroLight software, which I began developing with him in the years before his
untimely death. Invariant imbedding theory has proved to be robust, accurate, and extremely fast
compared to many other techniques for solving the scalar radiative transfer equation. Preisendorfer
however said almost nothing about polarization and, to my knowledge, neither he nor anyone else
has extended invariant imbedding theory to the vector (polarized) radiative transfer equation in
the way it is done here for oceanic computations.

It was my privilege to work with Rudy during my postdoctoral and early career years (1977-
1986). If I have accomplished anything in the present work, it is because he showed the way. I
humbly dedicate this extension of his work to his memory.
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“Great God! this is an awful place and terrible enough for us to have laboured to it.... Well, it
is something to have got here,.... Now for the run home and a desperate struggle. I wonder if we
can do it.”

–R. F. Scott upon reaching the South Pole, Jan 17, 1912

“Great God! this is an awful derivation and terrible enough for me to have labored to it....
Well, it is something to have got here,.... Now for the programming a desperate struggle to debug.
I wonder if I can do it.”

–C. D. Mobley upon finishing the HydroPol algorithm, 102 years later
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Caveat to the Reader

This document shows my development of invariant imbedding theory for the vector radiative
transfer equation in a plane parallel ocean. When I started this work, I thought it would be a
straightforward extension of the mathematics for the scalar case as developed in Hydrologic Optics
and restated in Light and Water (Mobley, 1994). I was in for a rude awakening. A number of
unforeseen complications arose because of loss of certain symmetries in going from the scalar to the
vector theory. The mathematics thus turned out to be unexpectedly messy and the development
was very time consuming.

I have done my best to check and check again that my derivations are correct. However, there
remains much room for error, both in the formulation of certain parts of the theory (in particular
in the way the global interaction principles are formulated) and as simple typos. The reader is
therefore cautioned that this document is just “Version 1.0” of the HydroPol solution algorithm,
and almost no equation seen here is absolutely guaranteed to be correct. I have added footnotes
at several places where something unexpected occurred in the development, or where a bit of
philosophical explanation is needed. I truly wish Rudy Preisendorfer were still here to check the
equations presented below, especially those in Chapters 4 and 5 .

Two topics have been omitted from this first version of these notes: the detailed formulation
of internal source terms for fluorescence and Raman scatter by water, and the formulation of the
polarized reflectance properties of an infinitely deep layer of water. The first is needed for the
inclusion of specific types of inelastic scatter in the solution, and the second enables the simulation
of an infinitely deep water body below the greatest depth of interest. Those matters will be
considered after the code is fully debugged for a source-free, finite-depth water body. Thus these
notes will be revised as the HydroPol software is developed.

The only way to know if I have done everything correctly is if these equations, when pro-
grammed into the HydroPol software, lead to computed underwater Stokes vectors that agree with
measurements and with independently developed Monte Carlo codes for prediction of underwater
polarized light fields. That work is under way but is far from complete at the time of this writing.
Meanwhile, if you think you found an error, you probably did. I welcome your comments and
corrections.
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CHAPTER 1

Formulation of the Vector Radiative Transfer Problem

These notes presume a basic knowledge of radiometry, optical oceanography, and polarization as
given in Light and Water (Mobley, 1994), Kattawar and Adams (1989), Kattawar (1994), and
the introductory parts of Mischenko et al. (2002). The mathematics developed here to solve the
vector (or polarized) radiative transfer equation (VRTE) parallels that for the scalar (unpolarized)
radiative transfer equation (SRTE). The development and solution of the SRTE as used in the un-
polarized HydroLight software are given in detail in Light and Water, which guides the development
of the corresponding vector equations. Occasional reference will therefore be made to the scalar
equations in Light and Water, with those scalar equations being prefaced here by an “L&W”, e.g.
Eq. (L&W 8.74). The mathematical development in this report is extremely detailed compared to
a journal article describing the same material. This level of detail is necessary because the associ-
ated computer code must implement these equations down to the last subscript and array index.
The HydroPol source code is documented with comments linking to the corresponding equations
of this report.

There are many numerical methods for solving the VRTE. Many of the pioneering papers are
collected in Kattawar (1991). Some of these methods seem to have been published and used for
studies in a few papers, but never found widespread usage. Other techniques–Monte Carlo simula-
tion in particular–have found widespread application by many users. The solution technique used
in HydroPol is an extension of the invariant imbedding algorithm used for the SRTE in the widely
used HydroLight software. Invariant imbedding is mathematically complicated, but its computa-
tional efficiency and accuracy have been well established by over two decades of HydroLight usage.
Invariant imbedding has several advantages over other solution techniques, the most important of
which are

1. Radiances are computed in all directions simultaneously (some techniques compute the radi-
ance in only one direction per run of the computer code).

2. All orders of multiple scattering are included in the calculations (some techniques include
only the first few orders of multiple scattering).

3. Computer run time is linearly proportional to the optical depth to which the VRTE is solved
(run time for some techniques increases exponentially with optical depth).
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As will been seen, the HydroPol invariant imbedding algorithm involves several steps:

1. The VRTE and associated boundary conditions are directionally discretized by integrating
continuous functions of direction over finite solid angles. The numerically computed Stokes
vectors are then exact values averaged over the finite solid angles.

2. The VRTE is rewritten as a pair of equations for upward and downward directions.

3. The VRTE is Fourier decomposed in azimuthal direction, which allows the solution in the
interior of the water body to be computed as a sequence of independent “small” problems,
rather than as one “large” problem.

4. These upward and downward equations are reformulated in terms of reflectance and trans-
mittance functions for finitely thick layers of water. Those reflectance and transmittance
functions depend only in the inherent optical properties of the water body and can be com-
puted independently of the particular boundary conditions (i.e., incident lighting and bottom
reflectance) applied to the water body.

5. The surface and bottom boundary conditions are then applied to the generic interior solu-
tion to obtain the solution of the VRTE for specific conditions of incident lighting, bottom
reflectance, and internal sources.

6. Finally, the physical Stokes vectors are then reconstituted from the Fourier amplitudes.

Invariant imbedding as outlined above was developed by Preisendorfer for solution of the SRTE
in a series of papers culminating in his Hydrologic Optics treatise (Preisendorfer, 1976). The
algorithm as applied to the SRTE is described in detail in Chapters 7 and 8 of Light and Water.
The extension of the scalar invariant imbedding equations to the VRTE as given in this report is
apparently new.

1.1 Terminology and Notation

The state of polarization of a light field is specified by the four-component Stokes vector, whose
elements are related to the complex amplitudes of the electric field vector E resolved into directions
that are parallel (E‖) and perpendicular (E⊥) to a conveniently chosen reference plane. However,
there are two versions of the Stokes vector seen in the literature, and these two versions have
different units and refer to different physical quantities. The coherent Stokes vector describes a
quasi-monochromatic plane wave propagating in one exact direction, and the vector components
have units of power per unit area (i.e., irradiance) on a small surface element perpendicular to the
direction of propagation. To be specific, the coherent Stokes vector is defined as (Zhai et al., 2012)

S =


I

Q

U

V

 =
√

ε

µm


E‖E

∗
‖ + E⊥E

∗
⊥

E‖E
∗
‖ − E⊥E

∗
⊥

E‖E
∗
⊥ + E⊥E

∗
‖

i(E‖E∗
⊥ − E⊥E

∗
‖

 . (1.1)
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Here ε is the electric permittivity of the medium, which has units of Farad/m2 or SI units of
A2 s4 kg−1 m−3; and µm is the magnetic permeability of the medium with units of Henry/m or
kg m s−2 A−2. Electric fields have units of Newton/coulomb or kg m s−3 A−1. Thus the elements
of the Stokes vector have units of kg s−3 or Watt/m2. E∗ denotes complex conjugate, hence the
components of the Stokes vector are real numbers.

The diffuse Stokes vector is defined as in Eq. (1.1) but describes light propagating in a small
set of directions surrounding a particular direction and has units of power per unit area per unit
solid angle (i.e., radiance). It is the diffuse Stokes vector that appears in the radiative transfer
equation as developed here. The differences in coherent and diffuse Stokes vectors are rigorously
presented in Mischenko (2008).

Some authors (e.g. Bohren and Clothiaux, 2006) omit the
√
ε/µm factor in Eq. (1.1) because

they are interested only in relative values such as the degree of polarization or other ratios of the
components of the Stokes vector, not absolute magnitudes, but this omission is both confusing and
physically incorrect. Units and magnitudes matter! The different units of coherent and diffuse
Stokes vectors, and whether or not the

√
ε/µm factor is included in the definition of the Stokes

vector, have subtle but very important consequences in how light propagation across a dielectric
interface such as the air-water surface is formulated, as will be seen below. The recent paper by
Zhai et al. (2012) gives a definitive discussion of these matters.

HydroPol uses SI units for all quantities except wavelength, which is in nanometers as is cus-
tomary in optical oceanography. Thus spectral radiance has units of W m−2 sr−1 nm−1 and spectral
irradiances have units of W m−2 nm−1. The mathematics needed to solve the VRTE using invari-
ant imbedding theory becomes quite complicated, e.g., matrices whose elements are matrices, all
of which must be turned into a computer program. Precise terminology and notation are required
to keep everything straight. Table 1.1 shows the notation used.

Notation Examples Usage
primed variables θ′, φ′, ξ′ incident or unscattered directions
unprimed variables θ, φ, ξ final or scattered directions
bold face p, ξ points in space or unit vectors defining directions

in 3D space
underline S, P 4× 1 Stokes vectors S or 4× 4 matrices whose elements

are numbers
double underline R, τ composite matrices whose elements are themselves matrices

or vectors
tilde M̃ , P̃i,j matrices or their elements that have been “reduced” by

factoring out the (1,1) element of the corresponding matrix
P̃ , so that P̃i,j = Pi,j/P1,1; hence P̃1,1 = 1.

caret or hat τ̂ , P̂i,j Fourier amplitudes of the respective (unhatted) physical
quantity

Table 1.1: Notation.
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1.2 Geometry

We next choose coordinate systems and show in detail how to resolve Stokes vectors in these
coordinate systems as needed for scattering calculations.

1.2.1 Coordinate Systems

Figure 1.1 shows the coordinate systems used in HydroPol. Depth and direction are defined in
a 3D Cartesian coordinate system with depth measured positive downward from 0 at the mean
sea surface. Polar angle θ is defined from 0 in the +z or downwelling direction to π in the −z
upwelling direction. +x points in the downwind direction; thus ±y is the cross-wind direction. As
will be seen in §5.1, using a wind-centered coordinate system makes it easier to model a random sea
surface with different along-wind and cross-wind slope statistics. Azimuthal angle φ is measured
counterclockwise from +x when looking in the −z direction. The sun is placed at an azimuthal
angle of φsun relative +x. If the sun is placed in the +x azimuthal direction at φsun = 0, unscattered
photons from the sun are then traveling in the −x direction at φ = 180 deg.

Figure 1.1: HydroPol coordinate systems. The left panel shows the x-y-z Cartesian system, which
is fixed in space and used to define the spherical (r, θ, φ) coordinate system. The right panel shows
an incident photon direction ξ′ whose Stokes vector is S′. The h′-v′-ξ′ system is a local system
(changing with θ′, φ′) for defining photon direction and resolving Stokes vectors with respect to
directions that are perpendicular and parallel to the incident meridian plane, part of which is
shaded in blue. In HydroPol, this figure is turned “upside down,” with the x-y plane being the
mean sea surface, x pointing downwind, and z pointing downward into the water.
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The unit vectors in the directions of increasing (r, θ, φ) are

r = sin θ cosφx + sin θ sinφy + cos θ z , (1.2a)

ϑ = cos θ cosφx + cos θ sinφy− sin θ z , (1.2b)

ϕ = − sinφx + cosφy . (1.2c)

Let ξ denote a unit vector pointing in the direction of light propagation, as given by angles (θ, φ).
(In Fig. 1.1, ξ′ = r.) The components of ξ are given by

ξ = ξxx + ξyy + ξzz = (ξx, ξy, ξy) (1.3a)

where

ξx = sin θ cosφ , (1.3b)

ξy = sin θ sinφ , (1.3c)

ξz = cos θ . (1.3d)

In radiative transfer theory, direction (θ, φ) always refers to the direction of photon travel. Thus
light traveling straight down is traveling in the +z or θ = 0 direction. To detect this radiance, an
instrument is pointed in the −z or θ = π direction, which is termed the zenith-viewing direction.
Radiance traveling straight upward in the −z or θ = π direction is referred to as the nadir-viewing
radiance since it is detected by an instrument pointing in the nadir (θ = 0) direction. Radiance is
often more conveniently plotted as a function of the viewing direction (θv, φv) = (θ − π, φ+ π).

We will generally use a prime to denote an incident or unscattered direction, e.g, ξ′ or (θ′, φ′).
Unprimed variables denote final or scattered directions, e.g. ξ or (θ, φ). However, in the devel-
opment of the sea-surface reflectance and transmittance equations in Chapter 3, it will be more
convenient to use subscripts i, r, and t for incident, reflected, and transmitted (refracted) directions,
respectively, e.g. ξi, ξr, and ξt.

We will have frequent need to define unit vectors in directions perpendicular and parallel to a
given plane (which can be a meridian plane, a scattering plane in the water volume, or the plane
of incident, reflected, and transmitted light for light incident onto an air-water or bottom surface,
all of which are defined below). HydroPol uses the following conventions for defining these unit
vectors. It is common in the literature to let p denote a vector parallel to a plane, and s denote
a vector perpendicular (senkrecht in German) to a plane. The perpendicular vector s is chosen
to be in the direction given by the vector cross product of the incident direction crossed with the
final direction. The parallel vector p is then defined as the direction of propagation cross the
perpendicular direction. Thus the perpendicular cross parallel directions give the direction of light
propagation: s× p = ξ, where × denotes the vector cross product.

For an incident direction ξ′ and the associated Stokes vector S′ specified in the incident meridian
plane, the first vector is taken to be z and the second is the direction of propagation. Thus
h′ ≡ z × ξ′/|z × ξ′| as seen in the right panel of Fig. 1.1. In this case |z × ξ′| = sin θ′, and
h′ = ϕ′. Similarly, v′ ≡ ξ′ × h′ = −ϑ′, and h′ × v′ = ξ′. In our geometry, meridian planes are
perpendicular to the mean sea surface. The h′ vector as just defined is parallel to the mean sea
surface and therefore is often referred to as the “horizontal” direction; v′ lies in a vertical plane
and is correspondingly called the “vertical” direction. For a final direction ξ and its Stokes vector
S in the final meridian plane, the first vector is the direction ξ and the second is z.
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Figure 1.2: Partition of the entire
water body into surface, water col-
umn, and bottom layers.

This vector cross product algorithm for specifying perpendicular and parallel directions will be
convenient for sea surface reflectance and transmission calculations in which light can propagate
from one tilted wave facet to another without reference to meridian planes, except for the incident
and final directions when a photon enters or leaves the region of the sea surface.

The Q and U components of a Stokes vector describe linear polarization with the plane of
polarization specified relative to a particular coordinate system. The I component is the total
radiance, and V describes circular polarization; these quantities do not depend on the coordinate
system and are invariant under a rotation of the coordinate system. The blue arrows in Fig. 1.1
represent the plane of oscillation of the electric field vector E parallel to the meridian plane, i.e. for
vertical plane polarization. The components of S′ = [1, 1, 0, 0]T as shown thus represent radiance
of magnitude 1 W m−2 sr−1 nm−1 that is 100% vertically plane polarized.

For the development of invariant imbedding theory for the VRTE, it will be convenient to
divide the entire water body into the sea surface, the water column, and the bottom, as shown in
Fig. 1.2. Depth z = a = 0 refers to a location in the air just above the mean sea surface; depth
z = w = 0 is in the water just below the mean sea surface. The sea surface is thus a “layer” of
zero thickness, which physically represents a discontinuity in the index of refraction between the
air above and the water below. This layer will be denoted [a,w]. The water column extends from
depth z = w = 0 to some maximum depth of interest at z = m. This user-specified depth m is the
maximum depth to which the VRTE will be solved. The water body can be divided into sublayers,
e.g., [w, z] is the water from the surface to any depth z, and [z,m] is the water from depth z to the
maximum depth of interest. The IOPs within the water body are generally functions of depth; the
water-column layer notation [w, z] and [z,m] does not imply that the layers are homogeneous. A
bottom boundary condition is applied at depth m. This bottom boundary condition can describe
either an opaque reflecting bottom physically located at depth z = m = b, or it can describe the
reflectance properties of an infinitely deep, homogeneous, source-free water body below depth m,
in which case b = ∞ and the bottom layer of water is denoted [m,∞]. The entire water column is
the union of these surface, water, and bottom layers: [a, b] = [a,w] ∪ [w,m] ∪ [m, b].
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1.2.2 Scattering Geometry

In HydroPol the elements of input and output Stokes vectors are defined relative to meridian planes,
as described above. However, scattering from an incident direction ξ′ to a final direction ξ is defined
in terms of the included scattering angle ψ and the scattering plane, as illustrated in Fig. 1.3. Using
Eq. (1.3) to express the incident direction ξ′ and scattered direction ξ in terms of the incident and
scattered polar and azimuthal angles gives the scattering angle ψ:

cosψ = ξ′ · ξ
= cos θ′ cos θ + sin θ′ sin θ cos(φ− φ′) . (1.4)

Figure 1.3: The scattering plane and the incident and final meridian planes showing the coordinate
systems and rotations used to specify scattering of polarized light. The scattering plane is partly
shaded in red.

Consider an incident beam of light propagating in direction ξ′ = r as in Fig. 1.1. Direction ξ′ is
specified by polar and azimuthal directions (θ′, φ′). Primed variables denote unscattered or incident
directions; unprimed variables denote scattered or final directions. The z axis and the direction of
light propagation ξ′ define the incident meridian plane, part of which is shaded in blue in the right
panel of Fig. 1.1. The 4 × 1 (diffuse) Stokes vector S′ = [I ′, Q′, U ′, V ′]T for this beam of light is
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described with reference to “horizontal” and “vertical” directions, +h′ and +v′ respectively, which
were defined above; the superscript T denotes transpose. Note that the horizontal unit vector +h′

is perpendicular to the meridian plane, and the vertical vector +v′ is parallel to the meridian plane.
To compute how an incident Stokes vector S′ is scattered to a final vector S, the horizontal

and vertical components of S′ in the incident meridian plane must first be rotated into components
parallel and perpendicular to the scattering plane. The coordinate system after rotation of v′ and
h′ about the ξ′ axis is labeled p′ (parallel to the scattering plane) and s′ (perpendicular to the
scattering plane). Note that s′ × p′ still gives the direction of propagation ξ′. As shown in Fig.
1.3, rotation angle α′ takes v′ into p′ (and h′ into s′). In HydroPol, rotation angles are positive for
counterclockwise rotations when looking “into the beam,” e.g. in the −ξ′ direction. This is similar
to rotations about the z axis of Fig. 1.1 having positive angles φ for counterclockwise rotations
when looking in the −z direction.

When computing single scattering with both ξ′ and ξ being expressed in their respective merid-
ian planes, the rotation angles can be obtained from spherical trigonometry applied to the triangle
defined by z, ξ′, and ξ, which is shown in the inset in Fig. 1.3. Given θ′, φ′, θ, φ, spherical trigonom-
etry gives the rotation angles α′ and α as (e.g., van de Hulst (1980), Vol. 2, page 499, or Mischenko
et al. (2002) page 90)

cosα′ = (cos θ − cos θ′ cosψ)/(sinψ sin θ′) (1.5)

or

sinα′ = − sin θ sin(φ− φ′)/ sinψ . (1.6)

and

cosα = (cos θ′ − cos θ cosψ)/(sinψ sin θ) (1.7)

or

sinα = − sin θ′ sin(φ− φ′)/ sinψ (1.8)

for ψ 6= 0 or π and for 0 ≤ φ − φ′ ≤ π. If π < φ − φ′ < 2π, then α′ and α are given by the
negatives of these equations. The scattering angle ψ is given by Eq. (1.4). Note that the rotation
and scattering angles depend only on the difference in azimuthal angles via φ − φ′. Special cases
are required when θ′, θ, or ψ are zero. For ψ = 0, set α′ = α = 0 since φ′ = φ =⇒ sin(φ−φ′) = 0.
For ψ = π, set α′ = α = 0 since φ = φ′ + π =⇒ sin(φ − φ′) = 0. If sin θ′ = 0, replace Eqs. (1.5)
and (1.7) with (Hu et al., 2001)

cosα′ = − cos θ′ cos(φ− φ′) (1.9)

cosα = cos θ′ . (1.10)

If sin θ = 0, replace Eqs. (1.5) and (1.7) with

cosα′ = cos θ (1.11)

cosα = − cos θ cos(φ− φ′) . (1.12)

However, when doing calculations of multiple scattering between sea surface wave facets, a light
ray can reflect from one wave facet to another several times before the incident ray finally leaves
the surface region and needs to be rotated into the final meridian plane. In this case, it is more
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convenient to obtain the rotation angles from the perpendicular (or parallel) axes as determined
for the incident ray direction onto a facet and the normal to the tilted wave facet. The details of
these calculations are given in §3.2. However, it can be seen from Fig. 1.3 that the rotation angles
can be obtained from cos−1(v′ ·p′) and cos−1(p ·v), where the dot denotes the vector dot product.
The exact equations that yield rotation angles from these vector dot products are given in §3.2.2.

Once the incident Stokes vector is specified in the scattering plane, the scattering matrix is
applied to obtain the final Stokes vector, which is then expressed in the s-p-ξ scattering plane
coordinate system defined for the final direction: s×p = ξ. Finally, the parallel and perpendicular
components of the final Stokes vector must be expressed as horizontal and vertical components
in the final meridian plane as specified by the h-v-ξ system. As illustrated in Fig. 1.3, this
requires a counterclockwise rotation through an angle of α, where α is the “interior” angle of the
spherical triangle illustrated in the figure. If we let R(γ) represent a counterclockwise (positive)
rotation through angle γ and M(ψ) represent scattering through scattering angle ψ, then we can
symbolically represent this scattering process by

S = R(α)M(ψ)R(α′)S′ . (1.13)

There is a subtlety in these rotations. Stokes vectors are not vectors in 3D space like the various
unit vectors specifying directions, they are just 4-tuples of real numbers. (True vectors are defined
by how their components behave under a coordinate transformation, and Stokes vectors don’t
satisfy these transformation conditions.) Two of the Stokes components, I and V are independent
of the coordinate system. But the other two components, Q and U , are defined relative to the plane
of vibration (not a unique direction) of the electric field vector and thus depend on the coordinate
system used to specify the “horizontal” and “vertical” planes. The consequence of this is that we
do not need to resolve the Stokes vectors along one particular direction, but only with reference to
planes. This can be done with the s and p vectors as defined above, but using -s and -p would work
equally well. Thus the counterclockwise rotation through angle α leading to h = −ϕ and v = ϑ as
seen in Fig. 1.3 is equivalent to a clockwise rotation by π − α, leading to h = ϕ and v = −ϑ, as
seen for ξ′. This ambiguity means that the rotation matrices that carry Stokes vectors from one
coordinate system to another depend on twice the rotation angle that carries true direction vectors
from one coordinate system to another. That is to say, for a rotation of coordinate systems through
an angle γ, the rotation matrix R(γ) depends on 2γ.

For our choice of a positive rotation being counterclockwise when looking into the beam, the
Stokes vector rotation matrix is (e.g., Mischenko et al. (2002) page 25)

R(γ) =


1 0 0 0
0 cos 2γ − sin 2γ 0
0 sin 2γ cos 2γ 0
0 0 0 1

 . (1.14)
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These rotation matrices have several obvious but important properties:

R(π) = I , (1.15a)

R(π + γ) = R(γ) , (1.15b)

R(π − γ) = R(−γ) , (1.15c)

R(−γ) = R−1(γ) = RT (γ) , (1.15d)

R(γ1)R(γ2) = R(γ1 + γ2) . (1.15e)

Equation (1.15a) shows that rotating a coordinate system through an angle of π, which turns s and
p into -s and -p leaves the Stokes vector unchanged, consistent with the previous remark about
directions -s, -p being equivalent to s, p as regards Stokes vectors.

It is noted for completeness that a positive rotation in 3D space by angle γ about an axis
specified by unit vector u = uxx + uyy + uzz = (ux, uy, ux) is

R3D(u, γ) = cos γ + u2
x(1− cos γ) uxuy(1− cos γ)− uz sin γ uxuz(1− cos γ) + uy sin γ

uyux(1− cos γ) + uz sin γ cos γ + u2
y(1− cos γ) uyuz(1− cos γ)− ux sin γ

uzux(1− cos γ)− uy sin γ uzuy(1− cos γ) + ux sin γ cos γ + u2
z(1− cos γ)

 (1.16)

for a counterclockwise rotation when looking in the −u direction. Although not needed for Stokes
vector manipulations, this matrix can be used to check quantities determined by other means. For
example, s′ = R3D(ξ′, α′)h′ as seen in Fig. 1.3.

The choice of coordinate systems and rotation angles is not unique. Recall the definition of the
Stokes vector in Eq. (1.1), which involves the components of the electric field in directions that
are parallel and perpendicular to a “conveniently chosen” reference plane. Kattawar and Adams
(1989), Kattawar (1994), Zhai et al. (2012), and Mischenko et al. (2002) all choose that reference
plane to the be meridian plane. (These authors use somewhat different notation; our h and v
are Kattawar’s r and l, respectively. Mischenko et al. (2002) (page 16) on the other hand use the
spherical coordinate system unit vectors ϑ and ϕ for the vertical and horizontal axes.) Thus in the
ocean setting they regard the “horizontal” direction (parallel to the mean sea surface) as being the
“perpendicular” direction (relative to the meridian plane), and “vertical” to the mean sea surface
as being the “parallel” direction. Note in Eq. (1.1) that if the parallel component of the electric
field is zero, then the second element of the Stokes vector is proportional to −E⊥E∗

⊥ = −E2
⊥, which

is a negative number. A Stokes vector for light reflected from the sea surface with horizontal linear
polarization is therefore proportional to S = [1,−1, 0, 0]T , which they refer to as perpendicular
polarization. Their choice of the reference plane means that the Mueller matrix that transmits
only horizontally polarized light has the form

M̃h =


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 . (1.17)

However, Bohren and Huffman (1983) and Hecht (1989) choose their “parallel” direction to be
parallel to a horizontal direction, such as a laboratory bench top or the mean sea surface, and their
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vertical direction is perpendicular to the bench top or mean sea surface. Thus their Stokes vector
for horizontal polarization (parallel to the mean sea surface) is S = [1, 1, 0, 0]T and their Mueller
matrix that transmits only horizontally polarized light has the form

M̃h =


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 .

The difference choices arise perhaps from the viewpoints of describing polarization in a convenient
way for a laboratory experiment with reference to a table top, versus modeling light incident onto
the sea surface with reference to meridian planes.

Similar confusion is found in the choice of rotation angles. Kattawar (and his students in their
papers) and Bohren and Huffman (1983) define a positive rotation as being clockwise when looking
into the beam. Since a clockwise rotation through angle γ is the same as a counterclockwise
rotation through −γ, Kattawar’s rotation matrix is the transpose of the one in Eq. (1.14) (see
Eq. 1.15d). Thus Kattawar (e.g., in Kattawar and Adams (1989) Eq. (10)) writes Eq. (1.13)
as S = R(−α)M(ψ)R(−α′)S′ (again, with minor differences in notation; my α′ is Kattawar’s
Φ, etc.). Others often write a rotation as R(π − α) rather than R(−α); these are equivalent
by Eq. (1.15c). Chandrasekhar (1960) also defines a positive rotation as being clockwise when
looking into the beam. However, he uses a different definition for the Stokes vector for which
only the fourth component is independent of coordinate system, so his rotation matrix is more
complicated. Mischenko defines a positive rotation as being clockwise when looking in the direction
of propagation. This is equivalent to counterclockwise when looking into the beam as used here;
thus his rotation matrix is the same as that in Eq. (1.14). van de Hulst (1980) also uses the same
rotation convention as is used in HydroPol. All of this rotation business is considered well known,
so the details are often omitted in publications. (“Well known,” of course, means that when you
encounter this material for the first time, you have to spend many days figuring out the confusing
apparent differences in publications by different authors.) Fortunately, the only real requirement
for Stokes vectors, coordinate systems, and rotations is consistency in usage once a choice has been
made.

1.3 The Vector Radiative Transfer Equation

With this understanding of how to describe scattering of polarized light, we can upgrade the SRTE
to the vector level. Both HydroLight and HydroPol use a plane-parallel ocean in which the inherent
optical properties (IOPs) can vary arbitrarily with depth but do not vary with horizontal position.
The same holds true of the surface and bottom boundary conditions; they are the same for all
horizontal positions. These codes therefore cannot simulate sloping bottoms, the effects of objects
in the water column, point sources of bioluminescence, or the underwater light from an airborne
laser with a finite surface footprint; these are all inherently 3D radiative transfer problems for
which Monte Carlo simulation is the appropriate solution technique. Likewise, HydroLight and
HydroPol solve time-independent RTEs and cannot simulate time-dependent processes such as
pulse stretching from a pulsed lidar.
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The time-independent, 1D, SRTE is (L&W 5.23)

cos θ
dL(z, θ, φ, λ)

dz
= − c(z, λ)L(z, θ, φ, λ)

+
∫ 2π

0

∫ π

0
β(z; θ′, φ′ → θ, φ;λ)L(z, θ′, φ′, λ) sin θ′dθ′dφ′

+ σ(z, θ, φ, λ) . (1.18)

Here L is the unpolarized radiance and σ is a source term that represents radiance inputs from
bioluminescence, Raman scatter, or fluorescence; σ has units of W m−3 sr−1 nm−1. This equation
expresses location as geometric depth z in meters and the IOPs in terms of the beam attenuation c
and the volume scattering function β. Note that β has units of m−1 sr−1. The notation β(z; θ′, φ′ →
θ, φ;λ) reminds us that we are scattering radiance from incident direction (θ′, φ′) to final direction
(θ, φ). The factor sin θ′dθ′dφ′ is the differential element of solid angle in spherical coordinates.

In this work, we consider only isotropic media, which means that the inherent optical properties
are independent of direction within the medium1. This in turn means that scattering depends only
on the angle between the incident and scattered directions, not on the directions themselves, as
seen in Eq. (1.4).

The nondimensional optical depth ζ is defined by

dζ(λ) = c(z, λ)dz . (1.19)

This equation can be integrated to convert geometric depth to optical depth, or vice versa:

ζ(z, λ) =
∫ z

0
c(z′, λ)dz′ or z(ζ, λ) =

∫ ζ

0

dζ ′

c(ζ ′, λ)
. (1.20)

Note that the optical depth corresponding to a given physical depth z depends on wavelength via
c(z, λ).

Dividing Eq. (1.18) by c(z, λ) and using Eq. (1.19) gives the SRTE in terms of optical depth.
It is common to use µ = cos θ as the polar angle variable. We can factor the volume scattering
function β into the scattering coefficient b (units of m−1) times the scattering phase function β̃

(units of sr−1). Finally, defining the non-dimensional albedo of single scattering ωo = b/c, we can
re-write Eq. (1.18) as

µ
dL(ζ, µ, φ, λ)

dζ
=− L(ζ, µ, φ, λ)

+ ωo(ζ, λ)
∫ 2π

0

∫ 1

−1
β̃(ζ;µ′, φ′ → µ, φ;λ)L(ζ, µ′, φ′, λ)dµ′dφ′

+
1

c(ζ, λ)
σ(ζ, µ, φ, λ) . (1.21)

All quantities are now shown as functions of optical depth.

1Crystals, or a cirrus cloud containing oriented ice crystals, are examples of anisotropic media that have different

optical properties for different directions within the medium.
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To upgrade Eq. (1.18) to the vector level, we need to

1. Replace the radiance L with the Stokes vector S;

2. Replace the volume scattering function β with the phase matrix P ;

3. Replace the source term for scalar radiance, σ, with one for the emission of polarized light.

Note that the 4×4 phase matrix P , which is the vector equivalent of the volume scattering function,
also has units of m−1 sr−1.

To upgrade Eq. (1.21) to the vector level, we need to

1. Replace the radiance L with the Stokes vector S;

2. Replace the phase function β̃ with the normalized phase matrix P̃ = P/b;

3. Replace the source term for scalar radiance, σ, with one for the emission of polarized light,
Σ.

Both the phase function β̃ and the reduced phase matrix P̃ have units of sr−1. The 1D, time-
independent, VRTE is thus compactly written in matrix form as

µ
dS(ζ, µ, φ, λ)

dζ
=− S(ζ, µ, φ, λ)

+ ωo(ζ, λ)
∫ 2π

0

∫ π

0
P̃ (ζ;µ′, φ′ → µ, φ;λ)S(ζ, µ′, φ′, λ)′dµ′dφ′

+ Σ(ζ, µ, φ, λ) . (1.22)

This matrix equation represents 4 scalar equations for the 4 components of the Stokes vector.
The integral term connects these four components and shows how scattering transforms various
states of polarization (components of the Stokes vector) for light traveling in all incident directions
into other states of polarization of light traveling in the θ, φ direction of interest. In particular,
the (i, j) element of P̃ shows how scattering converts incident light in polarization state j (the
jth element of S′) into polarization state i of the final Stokes vector S. The 1/c(ζ, λ) factor
multiplying the source function σ in the scalar equation (1.21) has for notational convenience
been incorporated into the definition of the vector source function Σ, which therefore has units of
radiance, W m−2 sr−1 nm−1.

1.4 The Phase Matrix

We next consider the phase matrix in more detail. The phase matrix can be expressed in various
ways:

P (ζ;µ′, φ′,→ µ, φ;λ) = P (ζ;µ′, µ, φ− φ′;λ)

= R(α)M(ψ)R(α′) (1.23)

= β(ψ)R(α) M̃(ψ)R(α′) (1.24)

= b(ζ, λ) β̃(ψ)R(α) M̃(ψ)R(α′) (1.25)

= b(ζ, λ) β̃(ψ) ˜̃P (1.26)

= b(ζ, λ) P̃ . (1.27)
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The terminology relating to phase matrices is confusing, and there is no uniformity of notation
in the literature. It is therefore worth spelling out several distinctions:

• The phase matrix P is a 4 × 4 matrix that transforms the incident or unscattered Stokes
vector S′ into the final or scattered vector S, with both vectors expressed in meridian planes.

• The scattering matrixM is a 4×4 matrix that transforms S′ into S, with both vectors expressed
in the scattering plane. (The term scattering matrix is commonly used when the scattering
is caused by particles or molecules, as in the ocean. In laboratory optics the transformation
from S′ to S is often caused by lenses, filters, mirrors, etc, and the term Mueller matrix
is commonly used. However, scattering matrix and Mueller matrix are synonymous in that
they both transform Stokes vectors in the scattering plane.) The scattering matrix elements
generally depend on depth and wavelength, not shown here, as well as on scattering angle.

• R(α′) and R(α) are the rotation matrices that carry Stokes vectors into and out of the
scattering plane. The rotation matrices are non-dimensional; it is the scattering matrix that
carries the units of m−1 sr−1, and the phase matrix therefore has the same units.

• The (1,1) element of the scattering matrix, M1,1, transforms the total incident radiance, the
I ′ element of S′, into total scattered radiance, the I element of S. In different terminology,
M1,1(ψ) is thus the volume scattering function β(ψ) as used in scalar radiative transfer theory.

• It is customary to factor the volume scattering function M1,1(ψ) out of each element of
M to obtain a dimensionless reduced scattering matrix M̃ whose elements are M̃i,j(ψ) =
Mi,j(ψ)/M1,1(ψ). This is similar to factoring the scattering coefficient b(z, λ) out of the
volume scattering function to obtain the scattering phase function β̃(ψ) = β(ψ)/b(z, λ), as
seen in Eq. (1.25).

• ˜̃P is called the reduced phase matrix because it is constructed from the reduced scattering
matrix M̃ ; it is likewise dimensionless.

• P̃ in the last equation is called the normalized phase matrix. Note that the (1,1) element of
the normalized phase matrix P̃ is just the scattering phase function β̃. P̃ therefore has units
of sr−1.

By definition, the phase function β̃(θ′, φ′ → θ, φ) gives the probability per unit solid angle Ω
centered on (θ, φ) that radiance traveling in any direction (µ′, φ′) will be scattered into any other
direction (µ, φ). The phase function therefore satisfies the normalization condition∫ 2π

φ=0

∫ π

θ=0
β̃(θ′, φ′ → θ, φ))dΩ(θ, φ) = 1 for any (θ′, φ′) . (1.28)

That is, the probability is 1 that the radiance will be scattered into some direction. For isotropic
media, the phase function depends only on the scattering angle ψ and this equation can be written

2π
∫ π

0
β̃(ψ) sinψdψ = 2π

∫ π

0
P̃1,1(ψ) sinψdψ = 1 . (1.29)

For almost all problems in optical oceanography, it is sufficient to consider scattering by a dilute
mixture of randomly oriented, non-spherical particles such as phytoplankton or minerals. (Here
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“dilute” means that the individual particles are separated by many times the wavelength of the
light, so that coherent scattering does not occur.) Symmetry considerations for such particles (e.g.
Mischenko et al., 2002) show that the scattering matrix then has only 10 independent components.
The reduced scattering matrix for such particles has the form

M̃ =


1 M̃12(ψ) M̃13(ψ) M̃14(ψ)

M̃12(ψ) M̃22(ψ) M̃23(ψ) M̃24(ψ)
−M̃13(ψ) −M̃23(ψ) M̃33(ψ) M̃34(ψ)
M̃14(ψ) M̃24(ψ) −M̃34(ψ) M̃44(ψ)

 . (1.30)

The 10th independent element of the scattering matrix M is the the volume scattering function
M1,1(ψ) = β(ψ), which has been factored out in creating M̃ . Particles with additional symmetries,
such as mirror-symmetric particles or spherical particles, have simpler scattering matrices with
many of the above matrix elements being zero. However, HydroPol allows for matrices of the form
of Eq. (1.30), even though the M̃ used in a particular calculation is usually simpler.

The normalized phase matrix P̃ as used in HydroPol (Eq. 1.22) can now be written in full as

P̃ = β̃ R(α) M̃(ψ)R(α′)

= β̃(ψ)


1 0 0 0
0 cos 2α − sin 2α 0
0 sin 2α cos 2α 0
0 0 0 1



×


1 M̃12(ψ) M̃13(ψ) M̃14(ψ)

M̃12(ψ) M̃22(ψ) M̃23(ψ) M̃24(ψ)
−M̃13(ψ) −M̃23(ψ) M̃33(ψ) M̃34(ψ)
M̃14(ψ) M̃24(ψ) −M̃34(ψ) M̃44(ψ)




1 0 0 0
0 cos 2α′ − sin 2α′ 0
0 sin 2α′ cos 2α′ 0
0 0 0 1

 (1.31)

Letting c = cos 2α, s′ = sin 2α′, etc., and mij = M̃i,j(ψ), the normalized phase matrix after matrix
multiplications becomes

P̃ = β̃(ψ)


1 c′m12 + s′m13

cm12 + sm13 c′(cm22 + sm23) + s′(cm23 − sm33)
sm12 − cm13 c′(sm22 − cm23) + s′(sm23 + cm33)

m14 c′m24 − s′m34

−s′m12 + c′m13 m14

−s′(cm22 + sm23) + c′(cm23 − sm33) cm24 − sm34

−s′(sm22 − cm23) + c′(sm23 + cm33) sm24 + cm34

−s′m24 − c′m34 m44

 (1.32)

Note that although the scattering matrix elements M̃ij(ψ) and M̃ji(ψ) have the symmetries
seen in Eq. (1.30), those symmetries are lost in the phase matrix because of the rotations.
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1.4.1 The Rayleigh Scattering Matrix

If the scattering particles are homogeneous spheres that are much smaller than the wavelength of
light, the so-called Rayleigh scattering regime, the scattering matrix has the form

MRay =βRayM̃Ray

=bRayβ̃RayM̃Ray

=bRay
3

16π
(1 + cos2 ψ)


1 − sin2 ψ

1+cos2 ψ
0 0

− sin2 ψ
1+cos2 ψ

1 0 0
0 0 2 cosψ

1+cos2 ψ
0

0 0 0 2 cosψ
1+cos2 ψ

 (1.33)

Note that the Rayleigh phase function β̃Ray = 3
16π (1 + cos2 ψ) satisfies the normalization condition

(1.29). Figure 1.4 shows the reduced Rayleigh scattering matrix plotted as a 4 × 4 plot, with the
upper left plot showing the (1,1) element of M̃Ray and the lower right plot showing M̃Ray(4, 4).

Measurements of scattering matrices for ocean water (Voss and Fry, 1984) and different algal
species (Svensen et al., 2011) show that the reduced scattering matrices are similar to that for
Rayleigh scattering, although the phase functions are much more highly peaked at small scattering
angles than β̃Ray. Thus, to a first approximation, scattering matrices for ocean water can be
modeled by combining a highly peaked phase function with a Rayleigh reduced scattering matrix:

M =β M̃Ray

=b β̃ M̃Ray . (1.34)

Such scattering matrices are sufficient for code debugging and idealized simulations. The reduced
Rayleigh scattering matrix can be replaced by measured values for more realistic simulations.

1.4.2 Dependence of the Phase Matrix on Azimuthal Angle

The phase function β̃(ψ) in the SRTE depends on the scattering angle ψ, computed via Eq. (1.4).
This equation shows that the phase function depends on the incident and scattered azimuthal angles
via cosine of the difference in the azimuthal angles. Because β̃(µ′, φ′ → µ, φ) depends only on the
difference φ− φ′, we can without loss of generality set φ′ = 0, which merely anchors the difference
φ − φ′ to φ′ = 0 for computational purposes. The dependence on cos(φ − φ′) also means that the
phase function can be expanded as a Fourier cosine series in the azimuthal angle φ.

Unfortunately this cos(φ − φ′) dependence is lost in the vector phase matrix because of the
rotation matrices (van de Hulst, 1980). The phase matrix still depends on φ− φ′, but some phase
matrix elements depend on cos(φ− φ′) and some depend on sin(φ− φ′). Figure 1.5 illustrates this
for the normalized Rayleigh phase matrix defined in Eqs. (1.27) and (1.33). Note that the non-zero
elements of the upper left and lower right 2×2 blocks of matrix elements are non-zero at φ−φ′ = 0
and 180 deg. These 8 matrix elements can be expanded as Fourier cosine series, just as for the
scalar phase function. However, the non-zero elements of the lower left and upper right 2×2 blocks
of elements are 0 at φ− φ′ = 0 and 180 deg. These matrix elements therefore must be expanded as
Fourier sine series. This result holds true for any scattering matrix. This mixed cosine and sine and
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Figure 1.4: The reduced Rayleigh scattering matrix M̃Ray(ψ). Each element is plotted as a function
of the scattering angle ψ. The upper left plot is the (1,1) matrix element; the lower right plot is
the (4,4) element.
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dependence of the phase matrix elements on azimuthal angle considerably complicates the solution
of the VRTE compared to that of the SRTE, as will be seen in Chapter 4.

The phase function for the SRTE can be written as a function of either cos(φ−φ′) or cos(φ′−φ).
However, reversing the order of φ and φ′ in the phase matrix of the VRTE introduces a sign change
in the elements that depend on sin(φ− φ′). For consistency, the development below always writes
azimuthal angles in the order of scattered direction minus incident direction, i.e. φ−φ′, or φv −φs
after discretization.

1.4.3 Symmetries of the Phase Matrix

Hovenier (1969) derived several symmetry relations that must be obeyed by phase matrices. These
symmetries result from considerations of time-reversal invariance of the scattering process and from
the geometric symmetries of the scattering particles. Define the matrices

Π = Π−1 = ΠT =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


and

Υ = Υ−1 = ΥT =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

Phase matrices whose scattering matrix describes randomly oriented non-spherical particles, i.e.
whose normalized phase matrices have form of Eq. (1.32), obey the symmetry relations

P (−µ′,−µ, φ′ − φ) = P (µ′, µ, φ− φ′) (1.35a)

P (−µ,−µ′, φ′ − φ) = ΠP T (µ′, µ, φ− φ′) Π (1.35b)

P (µ′, µ, φ′ − φ) = ΠΥP (µ′, µ, φ− φ′) ΥΠ (1.35c)

If the scattering matrix describes particles with a plane of symmetry, the reduced scattering matrix
has the form

M̃ =


1 M̃12(ψ) 0 0

M̃12(ψ) M̃22(ψ) 0 0
0 0 M̃33(ψ) M̃34(ψ)
0 0 −M̃34(ψ) M̃44(ψ)

 . (1.36)

In that case, the phase matrix obeys four additional symmetry relations:

P (µ, µ′, φ′ − φ) = ΥP T (µ′, µ, φ− φ′) Υ (1.37a)

P (µ, µ′, φ− φ′) = ΠP T (µ′, µ, φ− φ′) Π (1.37b)

P (−µ,−µ′, φ− φ′) = Υ P T (µ′, µ, φ− φ′) Υ (1.37c)

P (−µ′,−µ, φ− φ′) = ΠΥ P (µ′, µ, φ− φ′) ΥΠ (1.37d)

These symmetry relations provide an important check on the correctness of the discretized phase
matrices, which will be computed as described in §2.2.
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Figure 1.5: The normalized phase matrix for Rayleigh scattering, P̃Ray, plotted as a function of
φ − φ′ for fixed polar angles θ′ = 20 deg and θ = 60 deg. Note the block structure as regards
expansion of elements in either cosine or sine series.
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1.5 Boundary Conditions at the Sea Surface

The VRTE developed in the previous section describes how light is absorbed and scattered within
the water. It is also necessary to determine how light enters and leaves the water, and how it is
reflected by the bottom if the water has a finite depth. Thus, in order to solve the VRTE, we
must specify boundary conditions for the Stokes vector at the sea-surface and for an opaque but
reflecting surface at the sea bottom.

The boundary conditions at the sea surface for the scalar RTE are given by (L&W 4.3)

L(a, θ, φ) =
∫∫

2πd

raw(θ′, φ′ → θ, φ)L(a, θ′, φ′) dΩ(θ′, φ′)

+
∫∫

2πu

twa(θ′, φ′ → θ, φ)L(w, θ′, φ′) dΩ(θ′, φ′) for (θ, φ) ∈ 2πu (1.38)

and (L&W 4.4)

L(w, θ, φ) =
∫∫

2πu

rwa(θ′, φ′ → θ, φ)L(w, θ′, φ′) dΩ(θ′, φ′)

+
∫∫

2πd

taw(θ′, φ′ → θ, φ)L(a, θ′, φ′) dΩ(θ′, φ′) for (θ, φ) ∈ 2πd (1.39)

The notation
∫∫

2πd
(
∫∫

2πu
) denotes integration over all θ′, φ′ in the downward (upward) hemisphere

of directions (2π steradians). The four scalar radiance transfer functions raw, rwa, taw and twa have
units of sr−1. raw(θ′, φ′ → θ, φ), for example, specifies how radiance incident onto the sea surface
from downwelling direction (θ′, φ′) is reflected back upward into direction (θ, φ) by the water surface,
per unit of solid angle. Equation (1.38) thus shows that the upwelling radiance in the air (depth
argument a) just above the sea surface comes from downwelling radiance in the air reflected back
upward by the sea surface, and from upwelling radiance incident onto the sea surface from below
(depth w) and transmitted through the surface. A similar interpretation holds for Eq. (1.39).

These equations are easily upgraded to the vector level. Just as for scattering within the water,
the “surface scattering” processes of reflection and refraction are described by 4× 4 scattering ma-
trices. In parallel with the scalar case, there are four of these matrix sea-surface transfer functions:
raw describes how air-incident light is reflected by the surface back to the air, taw describes how
air-incident light is transmitted through the surface into the water, rwa reflects water-incident light
back to the water, and twa transmits light from the water into the air. The vector equivalents of
(1.38) and 1.39) are thus

S(a, θ, φ) =
∫∫

2πd

raw(θ′, φ′ → θ, φ)S(a, θ′, φ′) dΩ(θ′, φ′)

+
∫∫

2πu

twa(θ
′, φ′ → θ, φ)S(w, θ′, φ′) dΩ(θ′, φ′) for (θ, φ) ∈ 2πu (1.40)

and

S(w, θ, φ) =
∫∫

2πu

rwa(θ
′, φ′ → θ, φ)S(w, θ′, φ′) dΩ(θ′, φ′)

+
∫∫

2πd

taw(θ′, φ′ → θ, φ)S(a, θ′, φ′) dΩ(θ′, φ′) for (θ, φ) ∈ 2πd (1.41)
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When solving the VRTE, the sky radiance S(a, θ′, φ′) incident onto the sea surface is considered
known.

The four sea-surface transfer functions are conceptually like the phase matrix seen in the VRTE
of Eq. (1.22). That is, they describe reflection or transmission (i.e., scattering) from incident
direction (θ′, φ′) to final direction (θ, φ), with incident and final Stokes vectors expressed in their
meridian planes. For a level sea surface, the incident and final meridian planes are the same. For a
wind-blown sea surface, the reflected and transmitted light for a single incident ray will generally
lie in a different meridian plane than the incident light. Indeed, for a time- or space-averaged
collection of random sea surfaces, a given incident direction yields reflected and transmitted light
in all directions. Chapter 3 shows how to compute these sea-surface transfer functions, first for a
level surface, and then for wind-blown surfaces.

1.6 Bottom Boundary Conditions

For complete generality, the bottom boundary condition could be formulated with a pair of equa-
tions like those at the sea surface. This would allow, for example, modeling a fish tank with a
clear glass bottom with light entering the water column from below the physical bottom. However,
for problems of oceanographic interest, it is sufficient to consider a bottom that reflects light but
does not allow light to enter the water from below the bottom. In that case, there is only radiance
incident onto the bottom being reflected back upward into the water column. There is no radiance
being transmitted upward through the bottom, nor are we interested in radiance being transmitted
downward below the bottom. Thus the bottom boundary condition reduces to just

S(m, θ, φ) =
∫∫

2πd

rmb(θ
′, φ′ → θ, φ)S(m, θ′, φ′) dΩ(θ′, φ′) for (θ, φ) ∈ 2πu . (1.42)

where depth argument m indicates the depth where the bottom boundary condition is applied.
Recall from Fig. 1.2 that this is the maximum depth to which the VRTE is to be solved. Depth m
can be either a finite depth with a physical bottom, or a depth in the water column below which
the water in infinitely deep, homogeneous, and source-free. rmb is a 4× 4 matrix that describes the
reflectance properties of the bottom layer [m, b].

It should be noted that it does not matter whether rmb describes a finite-depth, opaque, physical
bottom (i.e, a layer [m, b] = [m,m]) or an infinitely deep water column (i.e, a layer [m, b] = [m,∞]),
so long as rmb describes how downwelling light at depth m is reflected back upward by whatever is
at depth m and below.

1.6.1 Finite-depth Bottoms

In the case of an opaque bottom at depth z = m = b, the bottom boundary condition is commonly
written in terms of the vector bidirectional reflectance distribution function (VBRDF):

S(m, θ, φ) =
∫∫

2πd

V BRDF (θ′, φ′ → θ, φ) cos θ′ S(m, θ′, φ′) dΩ(θ′, φ′) (1.43)

Each (i, j) element of the VBRDF has the form of a scalar BRDF that reflects light from incident
direction (θ′, φ′) into direction (θ, φ), and from polarization state j to i. The (1,1) element of
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the VBRDF is the scalar BRDF. In general, these matrix elements will depend on wavelength.
The cos θ′ factor appears in this equation because the radiance reflectance function rmb as used in
HydroPol is defined for surfaces normal to the directions of light propagation, whereas V BRDF is
defined for light incident onto a horizontal surface. Just as for the sea surface, rmb and V BRDF

have units of sr−1 and include the effects of rotations between meridian planes and the reflection
plane.

Svensen et al. (2012) measured and modeled the reflectance properties of Spectralon for polar-
ized light. Some models have been developed for the VBRDF of terrestrial vegetation and soils
(e.g. Schott, 1999). However, there are no such measurements or models for typical ocean bottom
materials such as sand, mud, sea grass, or coral. Such materials are typically highly scattering
rough surfaces that diffusely reflect light into all directions. For most oceanographic applications,
it will be sufficient to consider VBRDFs that depend only on the difference in reflected and incident
azimuthal angles, i.e.,

V BRDF (θ′, φ′ → θ, φ) = V BRDF (θ′, θ, φ− φ′) . (1.44)

Such VBRDFs should describe most bottom materials, and HydroPol is constructed to handle any
VBRDF of this form.

However, such VBRDFs would not describe a sandy bottom with a linear ripple structure,
which would reflect light differently for “along ripple” vs “cross ripple” directions. Such bottoms
could be modeled in the same way as the sea surface reflectance.

Multiple scattering tends to depolarize light. Many bottom materials have rough surfaces that
multiply scatter incident light in the process of eventually reflecting it away from the surface.
Therefore, pending actual measurements, it is expedient, and perhaps even reasonable, to model
sediments and and aquatic vegetation as Lambertian, depolarizing surfaces. rmb then has the simple
form

rmb ≡ rLamb =
R(λ) cos θ′

π


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (1.45)

Here R(λ) = Eu(λ)
Ed(λ) is the wavelength-dependent irradiance reflectance of the bottom for unpolarized

light; π carries the units of sr−1. Because only the (1,1) matrix element is nonzero, the rotation
matrices, which do not affect the (1,1) matrix element, are not included in Eq. (1.45). Matrices of
this form have been used by Zhai et al. (2008) in studies of underwater imaging.

1.6.2 Infinitely Deep Water

The vector reflectance properties of an infinitely deep layer of homogeneous, source-free water below
depth z = m are much more complicated than for an opaque bottom and have not yet been worked
out. The development would presumably follow that for the scalar case seen in Light and Water
Section 9.5. The option for an infinitely deep bottom boundary condition can be added after the
code has been developed and validated for the case of finite-depth opaque bottoms. Meanwhile,
infinitely deep bottoms can be simulated simply by placing an opaque bottom at finite depth m

sufficiently deep that the bottom reflectance does not significantly affect the radiance at the greatest
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depth of interest. The only penalty for this is increased run time for solving the VRTE to a great
depth.

1.7 Summary of the Continuous Mathematical Problem

We can now succinctly state the mathematical problem to be solved. HydroPol solves the one-
dimensional, time-independent VRTE

µθ
dS(ζ, µ, φ, λ)

dζ
=− S(ζ, µ, φ, λ)

+ ωo(ζ, λ)
::::::::

∫ 2π

0

∫ π

0
P̃ (ζ;µ′, φ′ → µ, φ;λ)
:::::::::::::::::::::

S(ζ, µ′, φ′, λ)dµ′dφ′

+ Σ(ζ, µ, φ, λ)
::::::::::::

, (1.46)

between the sea surface at depth ζ = 0 and the bottom at depth ζ = m, subject to the boundary
conditions at the sea surface

S(a, µ, φ, λ) =
∫∫

2πd

raw(µ′, φ′ → µ, φ;λ)
::::::::::::::::::::

S(a, µ′, φ′, λ)
:::::::::::::

dµ′dφ′

+
∫∫

2πu

twa(µ
′, φ′ → µ, φ;λ)

::::::::::::::::::::
S(w, µ′, φ′, λ) dΩ(µ′, φ′) for (µ, φ) ∈ 2πu (1.47)

and

S(w, µ, φ, λ) =
∫∫

2πu

rwa(µ
′, φ′ → µ, φ;λ)

::::::::::::::::::::
S(w, µ′, φ′, λ) dµ′dφ′

+
∫∫

2πd

taw(µ′, φ′ → µ, φ;λ)
::::::::::::::::::::

S(a, µ′, φ′, λ)
:::::::::::::

dµ′dφ′ for (µ, φ) ∈ 2πd , (1.48)

and at the bottom at depth ζ = m

S(m,µ, φ, λ) =
∫∫

2πd

rmb(µ
′, φ′ → µ, φ;λ)

::::::::::::::::::::
S(m,µ′, φ′, λ) dµ′dφ′ for (µ, φ) ∈ 2πu . (1.49)

The quantities with a wavy underline are assumed known. These are the the water column IOPs,
the internal source (if any), the sky radiance incident onto the air-side of the sea surface, the
air-water surface reflectance and transmittance properties, and the bottom reflectance properties.
After solution of these equations, the Stokes vector S(ζ, θ, φ, λ) is known within (depths 0 ≤ ζ ≤ m)
and leaving (depth label ζ = a) the water.
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CHAPTER 2

Discretization of the VRTE

The VRTE and its boundary conditions represent a continuum of depths, directions, and wave-
lengths. In order to solve these equations on a computer, they must be discretized to obtain a
finite number of output variables, viz. Stokes vectors for a finite number of depths, directions, and
wavelengths. There are various ways in which to do this. For example, a function of direction can
be expanded as an infinite series and then truncated after a finite number of terms. The result
would then be an approximate Stokes vector for an exact direction. HydroPol, on the other hand,
averages functions of direction over finite solid angles. The resulting Stokes vectors are exact values
averaged over finite solid angles.

2.1 Discretization of Stokes Vectors

Figure 2.1 shows the directional bins used in HydroPol, which are the same as those used in the
standard version of HydroLight. Let Ξ represent the set of all directions ξ = (θ, φ). Ξ is divided
into rectangular regions, called quads, of size 10 deg in polar angle by 15 deg in azimuthal angle,
plus two polar caps of 5 deg half angle. The quad boundaries are analogous to lines of constant
latitude and longitude on the earth. This unit sphere of directions can be thought of as centered
at the origin of the x-y-z coordinate system, which is shown in blue. The red line at the “equator”
divides the set of all directions into hemispheres of upward (Ξ− or Ξu) and downward (Ξ+ or Ξd)
directions.

As will be seen in Chapter 4, invariant imbedding splits the VRTE into sets of “upward” and
“downward” equations. Polar angle θ is normally measured from 0 in the +z direction to 90 deg at
the equator. However, rather than continuing with the measurement of θ to π or 180 deg in the −z
direction, it will be convenient to think of the upward and downward hemispheres as each having
θ run from 0 at the pole to 90 deg at the equator. The θ quad boundaries thus run from 5 deg for
the polar cap boundary, through 15, 25, ..., 85, and 90 deg, for a total of M = 10 ∆θ or ∆µ bins
in each hemisphere. These quads are numbered from u = 1 next to the equator to u = M = 10 for
the polar caps. Because of the partitioning into upward and downward hemispheres, the equator
must always be a quad boundary, hence the row of quads next to the equator has ∆θ = 5 deg. The
two 5 deg ∆θ quads next to the equator can, if desired, be combined during post-processing of the
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Figure 2.1: The partition of the unit sphere
of directions into a finite number of solid an-
gles. The coordinate system is drawn with +z
pointing downward, as in HydroPol. The +x
direction is downwind. The perspective view
of this figure can be thought of as being in the
water looking obliquely upward.

solution radiances to obtain a horizontal quad of size ∆θ = 10 deg.
Azimuthal angle φ is measured from 0 in the +x direction, and the first φ quad is likewise

centered on +x. For reasons that will be seen in §5.1, the coordinate system is “wind centered,”
with +x being in the downwind direction. Thus x is always downwind, z is downward into the
water, and y = z× x is the crosswind direction. The sun can be placed at any azimuthal direction
relative to the wind.

The invariant imbedding solution algorithm used in HydroPol uses a Fourier decomposition in
the azimuthal direction, which requires an even number of ∆φ bins with each ∆φ bin being the
same size. We therefore write 2N for the total number of azimuthal quads. For 15 deg ∆φ quads,
there are 2N = 24 φ quads, numbered v = 1 to v = 2N = 24, with quad 1 being the one centered
on +x. In addition, selecting the number of quads to be a multiple of 4, as here, is convenient
for calculation of radiances at azimuthal directions of 0, 90, 180, and 270 degrees because those
directions are then at the centers of quads.

The total number of quads and polar caps is thus 2(M − 1)2N + 2 = 434. The quad with
θ band index u and φ band index v is denoted Q(u, v) or Quv, or Q(M) or QM for a polar cap.
With these conventions, it can be seen that the shaded green quad in Fig. 2.1 corresponds to quad
Q(u, v) = Q(5, 7) in the downward hemisphere (recall that +z is downward as emphasized in Fig.
2.1, so the green quad as drawn is in the Ξd or Ξ+ hemisphere). The (θ, φ) range of this quad is θ
= 45 to 55 deg and φ = 82.5 to 97.5 deg. This quad would contain radiance traveling downward
at a nominal angle (quad center) of 50 deg from the nadir direction and perpendicular to the wind
direction. Polar cap quads have no φ dependence and must always be treated as a special case.

The solid angle of Q(u, v) is

Ωuv =
∫∫

Q(u,v)
dΩ =

∫
∆θu

∫
∆φv

sin θdθdφ

=
∫

∆µu

∫
∆φv

dµdφ = ∆µu∆φv , (2.1)

or ΩM = 2π[1 − cos(θ(M−1))] = 2π[1 − µ(M−1)] for a polar cap, where θ(M−1) is the boundary of
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the polar cap.
To convert the variables in the VRTE from continuous functions of depth, direction, and wave-

length, to a finite number of values for discrete depths, directions, and wavelengths, HydroPol

1. Integrates the VRTE over quads of finite solid angle Ωuv,

2. Integrates the VRTE over wavelength bands of finite bandwidth ∆λj , j = 1, ..., J ,

3. Saves the solution at only a finite number of depths zk, k = 1, ...,K.

Thus the computed Stokes vectors are

S(k, u, v, j) =
1

∆λj
1

Ωuv

∫
∆λj

∫
∆µu

∫
∆φv

S(zk, µ, φ, λ) sin θ dµ dφ dλ . (2.2)

These integrations are applied to each of the four [I,Q,U, V ]T Stokes components. The wavelength
bands ∆λj do not need to be equal in size.

As will be seen, the depths where output is saved refer to exact depths in the water column, not
to finite-depth bins over which variables are depth averaged. HydroPol is not a “layered” model in
which the inputs and outputs are assumed to be constant or average values within finite-thickness
layers (as is the case, for example, with the discrete ordinates and layer adding and doubling
solution methods). Indeed, the IOP inputs to HydroPol must be suppled as continuous functions of
depth, and the solution algorithm solves the VRTE with arbitrarily fine depth resolution, which is
determined by the accuracy parameters of the numerical differential equation solver. The solution
is simply saved at the finite set of user-requested output depths zk as the VRTE is solved as a
continuous function of depth.

The proper interpretation of S(k, u, v, j) is that it is the exact Stokes vector S(z, µ, φ, λ) averaged
over direction within quad Q(u, v) and over wavelength within band ∆λj, at a particular depth zk.

The chosen quad angular partition is a balance between the conflicting needs of having suffi-
ciently high angular resolution in the radiance distribution and keeping the run times acceptably
small. Numerical studies with the scalar HydroLight code show that a finer angular resolution does
not change computed quantities such as irradiances or AOPs by more than roughly one percent,
whereas accuracy starts to degrade for a coarser resolution. However, the run time is proportional
the square of the number of quads because scattering must be computed from every quad into
every other quad. Thus finer angular resolution comes at a high computational cost with almost
no improvement in numerical accuracy for the quantities of interest to most users.

The wavelength bands are usually chosen (by the user at run time) to match those of oceano-
graphic sensors, typically ∆λ = 5 or 10 nm. Run time is roughly proportional to the number of
wave bands. However, the optical depth is wavelength dependent, so wavelengths greater than 700
nm, where water absorption becomes very large, can take much longer than shorter wavelengths.

Neither the number of depths K where output is requested nor their spacing significantly affects
run time. Requesting additional output depths does not change the values at the computed depths,
it only increase the size of the output files. The size of the output files is directly proportional to
the number of output depths, quads, and wavelength bands.
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2.2 Quad Averaging

For a general function of direction F (θ, φ) = F (µ, φ), the average over all directions in quad Q(u, v),
termed the quad average F (u, v), is defined as (L&W 4.52)

F (u, v) =
1

Ωuv

∫
∆θu

∫
∆φv

F (θ, φ) sin θ dθ dφ

=
1

Ωuv

∫
∆µu

∫
∆φv

F (µ, φ) dµ dφ . (2.3)

Note that F (u, v) has the same dimensions as F (θ, φ), e.g., units of radiance if F is a Stokes vector.
As an example, let µu(1), µu(2) and φv(1), φv(2) denote the µ and φ boundaries of quad Q(u, v).

Then the quad average of the polar angle variable µ over this quad is

1
Ωuv

∫ µu(2)

µu(1)

∫ φv(2)

φv(1)
µdµ dφ =

=
1

Ωuv

1
2
[µ2
u(2)− µ2

u(1)][φv(2)− φv(1)]

=
1

Ωuv

1
2
[µu(2) + µu(1)][µu(2)− µu(1)][φv(2)− φv(1)]

=
1

∆µu∆φv
µu∆µu∆φv

= µu (2.4)

Here µu = 1
2 [µu(2) + µu(1)] is the average of the quad boundary values. This example belabors a

simple calculation, but it does serve to illustrate how quad averaging works.
We can thus see that the quad average of the left-hand side of the VRTE, Eq. (1.22), is

1
Ωuv

∫
∆µu

∫
∆φv

µ
dS(z, µ, φ, λ)

dz
dµ dφ =

=
d

dz

{
1

Ωuv

∫
∆µu

∫
∆φv

µS(z, µ, φ, λ) dµ dφ
}

= µu
dS(z, u, v, λ)

dz
. (2.5)

Here we have noted that depth and direction are independent variables, so the order of integration
over direction and differentiation with respect to depth can be interchanged. This quad-averaged
term is discretized in wavelength as shown in Eq. (2.2).

Scattering involves bi-directional functions of incident (µ′, φ′) and scattered (µ, φ) directions.
The corresponding quad average of a bi-directional function F (µ′, φ′ → µ, φ) is (L&W 4.63)

F (r, s→ u, v) =
1

Ωuv

∫
∆µu

∫
∆φv

[∫
∆µr

∫
∆φs

F (µ′, φ′ → µ, φ) dµ′ dφ′
]
dµ dφ . (2.6)

The bi-directional functions needed in HydroPol all describe scattering (either in the water col-
umn or at a boundary surface) and have units of sr−1. Thus a phase matrix element Pi,j(ψ) =
Pi,j(µ′, φ′ → µ, φ) tells how much radiance is scattered from direction (µ′, φ′) to direction (µ, φ) and
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from polarization state j to i per unit solid angle in the scattered direction. The corresponding quad-
averaged function Pi,j(r, s → u, v) is however non-dimensional. This is because Pi,j(r, s → u, v)
tells how much radiance is scattered in total (not per unit solid angle) from quad Q(r, s) into quad
Q(u, v).

As seen in Eq. (1.22), to directionally discretize the VRTE, we must quad average integrals of
the form ∫ 2π

0

∫ π

0
P̃ (µ′, φ′ → µ, φ)S(µ′, φ′)dµ′dφ′ .

Quad averaging is applied to each matrix element or product of elements, e.g. Pi,jSj , in such
quantities. Dropping the matrix and element notation for brevity, the quad average of such an
integral becomes

1
Ωuv

∫
∆µu

∫
∆φv

{∫ 2π

0

∫ π

0
P (µ′, φ′ → µ, φ)S(µ′, φ′) dµ′ dφ′

}
dµ dφ

=
1

Ωuv

∫
∆µu

∫
∆φv

{∑
r

∑
s

∫
∆µr

∫
∆φs

P (µ′, φ′ → µ, φ)S(µ′, φ′) dµ′ dφ′
}
dµ dφ

=
∑
r

∑
s

{
1

Ωuv

∫
∆µu

∫
∆φv

[∫
∆µr

∫
∆φs

P (µ′, φ′ → µ, φ)S(µ′, φ′) dµ′ dφ′
]
dµ dφ

}
=

∑
r

∑
s

P (r, s→ u, v)S(r, s) . (2.7)

In the second equation, the integral over all incident directions has been written as a sum of integrals
over all quads Q(r, s). The next equation interchanges the order of integration over the scattered-
direction quad Q(u, v) and the summation over incident direction quads. The final equations uses
the definition of Eq. (2.6). Note that the quad average of the integrals reduces to sums over the
quad-averaged integrand. The solid angle factors resulting from the differentials dµ dφ are built
into the quad-averaged terms; there are thus no explicit ∆µu∆φv factors in the final expression.

These results are sufficient to show that the directional and wavelength discretized VRTE is

µu
dS(ζ, u, v, j)

dζ
=− S(ζ, u, v, j)

+ ωo(ζ, j)
∑
r

∑
s

P̃ (ζ; r, s→ u, v; j)S(ζ, r, s, j)

+ Σ(ζ, u, v, j) . (2.8)

Symbolically, u = 1, ..., 2M and v = 1, ..., 2N to cover all directions. The polar cap special cases
will be considered below. The j index represents the jth wavelength band. This is the system of
equations solved by HydroPol, subject to discretized boundary conditions at the sea surface and
bottom.

It should be noted that the development of this discretized VRTE via quad averaging did not
make any assumptions about the phase matrix (or phase function, in the scalar theory) other than
isotropy of the scattering medium. In particular, it was not necessary to expand the phase matrix as
an infinite series of Legendre polynomials, and then truncate that series to a finite number of terms,
as is required by the discrete ordinates solution method (e.g., L&W 9.1). Such expansions cause
numerical difficulties for highly peaked phase functions (e.g., L&W Fig. 9.1), which are typical of
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ocean waters. One of the most important conceptual and numerical virtues of quad averaging is
that it can handle arbitrary phase functions.

Discretization of the surface boundary conditions (1.40) and (1.41) follows in a similar fashion
to that for the path integral in the VRTE. The result is

S(a, u, v) =
∑
r

∑
s

r,s∈Ξd

raw(r, s→ u, v)S(a, r, s)

+
∑
r

∑
s

r,s∈Ξu

twa(r, s→ u, v)S(w, r, s) for (u, v) ∈ Ξu (2.9)

and

S(w, u, v) =
∑
r

∑
s

r,s∈Ξu

rwa(r, s→ u, v)S(w, r, s)

+
∑
r

∑
s

r,s∈Ξd

taw(r, s→ u, v)S(a, r, s) for (u, v) ∈ 2Ξd . (2.10)

The discretized transfer functions are computed as in (2.6), e.g.,

taw(r, s→ u, v) =
1

Ωuv

∫
∆µu

∫
∆φv

[∫
∆µr

∫
∆φs

taw(µ′, φ′ → µ, φ) dµ′ dφ′
]
dµ dφ . (2.11)

Note that, just as in the scalar case, the discretized function taw(r, s → u, v) is nondimensional,
whereas the continuous function of direction, taw(µ′, φ′ → µ, φ), has units of sr−1. Finally, the
discretized bottom boundary condition is

S(b, u, v) =
∑
r

∑
s

r,s∈Ξd

rb(r, s→ u, v)S(b, r, s) for (u, v) ∈ Ξu. (2.12)

Finally, note that polar caps are always a special case because they have no φ dependence. Thus
the sums represented symbolically by

∑
r

∑
s must explicitly account for the polar caps r = M and

s undefined. In the computer code, the polar cap values are stored in array location (r, s) = (M, 1),
with the array elements (r = M, s = 2, ..., 2N) being unused (and set to zero for convenience).
Thus the path radiance term for scattering into Q(u, v) is evaluated in the computer code as∑

r

∑
s

P̃ (ζ; r, s→ u, v; j)S(ζ, r, s, j) =

M−1∑
r=1

2N∑
s=1

P̃ (ζ; r, s→ u, v; j)S(ζ, r, s, j) + P̃ (ζ;M, 1 → u, v; j)S(ζ,M, 1, j) . (2.13)
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2.2.1 Numerical Evaluation of Quad Averages

Quad averages of functions F (θ, φ) of direction, e.g., the four elements of the sky radiance S(a, θ, φ),
are defined by Eq. (2.3). Quad averages of bi-directional functions are defined by Eq. (2.6). There
are two ways to compute quad averages. If the function is an analytic function, numerical integra-
tion can be used. This is the case for phase matrices, or for the Fresnel reflectance and transmittance
functions for a level sea surface. However, if the function represents a surface reflectance or trans-
mittance for a wind-blown sea surface, no analytic function exists, and Monte Carlo simulation
must be used. That situation will be described in §3.2.

Quad averages of analytic functions F (θ, φ) are numerically computed as a double summation
over subquads of each quad Q(u, v). A Q(u, v) quad is divided into nµ ≥ 1 and nφ ≥ 1 subquads of
size δµ(u) = ∆µu/nµ, δφ(v) = ∆φv/nφ, etc. The double integral of Eq. (2.3) is then approximated
as a double summation over the sub-quads, e.g.

F (u, v) =
1

Ωuv
δµ(u)δφ(v)

nµ∑
i=1

nφ∑
j=1

F (µi(u), φj(v)) . (2.14)

Phase matrices, surface reflectance and transmission functions for a level sea surface, and bottom
VBRDF functions involve two directions as seen in Eq. (2.6). Quad averages (and the associated
Fourier amplitudes) of these functions are pre-computed and stored for repeated use in solving the
VRTE for various IOP and other inputs. A quadruple integration like that shown in Eq. (2.11) is
computed as follows. The Q(r, s) and Q(u, v) quads are divided into nµ ≥ 1 and nφ ≥ 1 subquads of
just as for Eq. (2.14). The integrals of Eq. (2.6) are then approximated as a quadruple summation
over the sub-quads (L&W 8.13):

F (r, s→ u, v) =
1

Ωuv
δµ(u)δφ(v)δµ(r)δφ(s)

nµ∑
i=1

nφ∑
j=1

nµ∑
k=1

nφ∑
`=1

F (ψijk`) . (2.15)

where ψijk` is the angle between the centers of the subquads. ψijk` is obtained from Eq. (1.4):

cos(ψijk`) = µi(u)µk(r) +
√

1− µ2
i (u)

√
1− µ2

k(r) cos[φj(v)− φ`(s)] . (2.16)

Experience with the discretization of phase functions in HydroLight shows that nµ = 3 and
nφ = 4, which give roughly 3 × 4 deg subquads, work well except for quads with near-forward
scattering and highly peaked phase functions. For adjacent quads, which correspond to small
scattering angles, the values of nµ and nφ are increased by a factor of 10 to get high angular
resolution of phase functions at small scattering angles. A similar increase in subquad resolution
can be done in Eq. (2.14) if needed, e.g. for the computation of quad averaged sky radiance for
the quad containing the sun, for which the radiance depends strongly on direction near the sun’s
location.

Finally, when the incident and scattered quads are the same, so that the scattering angle can
be very small, the forward-scatter-quad phase function values are corrected via the normalization
condition (1.28). That equation is discretized by writing the integration over all (θ, φ) as a sum of
integrations over all quads Q(u, v), integrating the equation over Q(r, s), and applying the definition
of Eq. (2.6). The resulting discretized version of Eq. (1.28) is

1
Ωrs

∑
u

∑
v

β̃(r, s→ u, v)Ωuv = 1 . (2.17)
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That is, for each incident quad Q(r, s), the sum of β̃(r, s → u, v)Ωuv/Ωrs over all scattered quads
Q(u, v) is 1. After discretization, this sum is evaluated as a check on the accuracy of the phase
function numerical discretization of Eq. (2.15). The sum over quads is usually within a few percent
of the correct value of 1 for all (r, s) values. Phase functions change most rapidly at very small
scattering angles, and are also then the hardest to measure. Thus most of the error in discretizing
phase functions occurs for the forward scatter quad, i.e. when (r, s) = (u, v). Thus a final correction
to the forward-scatter quads is made by solving this equation for the forward-scatter term (L&W
8.14):

β̃(r, s→ r, s) = 1− 1
Ωrs

∑
u

∑
v

(u,v) 6=(r,s)

β̃(r, s→ u, v)Ωuv . (2.18)

Equation (2.18) is then used to recompute the forward-scatter quads. This forces the discretized
phase function to exactly satisfy the required normalization condition (2.17) regardless of any errors
in the evaluation of Eq. (2.15). Since the phase function is just the (1,1) element of the phase
matrix, this same renormalization is used in HydroPol for the (1,1) element of the phase matrix:

P̃11(r, s→ r, s) = 1− 1
Ωrs

∑
u

∑
v

(u,v) 6=(r,s)

P̃11(r, s→ u, v)Ωuv . (2.19)

Unfortunately, there does not seem to be a corresponding check for the other elements of the
phase matrix. However, the other elements of the reduced phase matrix are well behaved, so if
the numerical integration for the (1,1) element is accurate, then the discretization for the other
elements should also be accurate.

2.3 Summary of the Discretized Mathematical Problem

We can now summarize the discretized mathematical problem. HydroPol solves the one-dimensional,
time-independent discretized VRTE

µu
dS(ζ, u, v, j)

dζ
=− S(ζ, u, v, j)

+ ωo(ζ, j)
:::::::

∑
r

∑
s

P̃ (ζ; r, s→ u, v; j)
::::::::::::::::::

S(ζ, r, s, j)

+ Σ(ζ, u, v, j)
:::::::::::

, (2.20)

between the sea surface at depth ζ = 0 and the bottom at depth ζ = b, subject to the boundary
conditions at the sea surface

S(a, u, v, j) =
∑
r

∑
s

r,s∈Ξd

raw(r, s→ u, v; j)
::::::::::::::::::

S(a, r, s, j)
:::::::::::

+
∑
r

∑
s

r,s∈Ξu

twa(r, s→ u, v; j)
:::::::::::::::::

S(w, r, s, j) for (u, v) ∈ Ξu (2.21)
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and

S(w, u, v, j) =
∑
r

∑
s

r,s∈Ξu

rwa(r, s→ u, v; j)
::::::::::::::::::

S(w, r, s, j)

+
∑
r

∑
s

r,s∈Ξd

taw(r, s→ u, v; j)
:::::::::::::::::

S(a, r, s, j)
:::::::::::

for (u, v) ∈ Ξd , (2.22)

and at the bottom at depth ζ = b

S(m,u, v, j) =
∑
r

∑
s

r,s∈Ξd

rmb(r, s→ u, v; j)
::::::::::::::::::

S(m, r, s, j) for (u, v) ∈ Ξu . (2.23)

The quantities with a wavy underline are assumed known. These are the the water column IOPs,
the internal source (if any), the sky radiance incident onto the air-side of the sea surface, the air-
water surface reflectance and transmittance properties, and the bottom reflectance properties, all
in discretized form. After solution of these equations, the Stokes vector S(ζ, u, v, j) is known within
(depths 0 ≤ ζ ≤ m) and leaving (depth label ζ = a) the water.
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CHAPTER 3

The Air-Water Surface

The air-water surface boundary conditions seen in Eqs. (2.21) and (2.21) are stated in terms of
four surface transfer functions, raw, taw, rwa, and twa, which are assumed known. These functions
are the inherent optical properties of the sea surface. They depend on the surface wave state and
water index of refraction, but not on the light incident onto the surface from above or below. This
chapter shows how to compute these air-water surface transfer functions. We first consider the case
of a level sea surface, and then the much more complicated situation of a wind-blown, wave-covered
surface.

3.1 Reflection and Transmission by a Level Sea Surface

Consider a level or flat air-water surface. This simplest of environmental conditions is important
for three reasons. First, a wind-blown sea surface can be modeled as a collection of randomly
tilted, but locally flat, wave facets. Each tilted facet reflects and transmits light according to the
laws for a flat surface. Thus a full understanding of how a flat surface reflects and transmits light
is the foundation of modeling wind-blown surfaces. Second, the equations for a flat surface are
analytically tractable and provide an important check on the numerical computations in the limit
of zero wind speed. Third, level sea surfaces occasionally do occur in nature in the absence of
wind-generated waves or swell.

Light can be incident onto this surface from the air, in which case part is reflected back to
the air by the surface and part is transmitted through the surface into the water. Light can also
be incident onto the underside of the sea surface, in which case part (or all) is reflected back to
the water and part can be transmitted through the surface into the air. These two situations are
illustrated in Fig. (3.1). For either air- or water-incident light, Si denotes the Stokes vector of the
incident light, Sr is the reflected light, and St is the transmitted light. Angles θi, θr, and θt are
the incident, reflected, and transmitted directions of the light propagation measured relative to the
normal to the surface. Si, Sr, and St all lie in the same plane.

Just as for scattering within the water, the “surface scattering” processes of reflection and
refraction are described by 4 × 4 scattering matrices. There are four of these matrices: Raw
describes how air-incident light is reflected by the water surface back to the air, T aw describes
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Figure 3.1: Reflection and transmission by a
level air-water surface.

how air-incident light is transmitted through the surface into the water, Rwa reflects water-incident
light back to the water, and Twa transmits light from the water into the air. However, because Si,
Sr, and St are coplanar, scattering by the level surface does not involve rotation matrices as does
scattering within the water body. (Or, from another viewpoint, the incident and final meridian
planes and the scattering plane are all the same, the rotation angles α′ and α are thus both 0, and
the rotation matrices reduce to identity matrices.)

The reflection and (especially) transmission of polarized light by a dielectric surface such as
a level water surface are rather complicated processes, and the literature contains a number of
different (and, indeed, sometimes incorrect) mathematical formulations of the equations. The
formulas given in Garcia (2012) are appropriate to the needs of HydroPol and are used here. Note,
however, that although the equations in Garcia (2012) are correct, some of his derivations and
interpretations are incorrect, as explained by Zhai et al. (2012). Both papers must be used to
understand the equations now presented. The equations in Garcia (2012) will be referenced by
(G21) and so on; the corresponding equations in Zhai et al. (2012) will be referenced as (Z5), etc.

The reflectance and transmittance matrices have a general formulation for the interface between
any two dielectric media a and b. Let na be the index of refraction of medium a and nb be that
of medium b. In general na and nb are complex numbers, but for the air-water surface we take
nair = 1 and nwater ≈ 1.34 to be the real indices of refraction. For reflection, the reflected angle θr
equals the incident angle θi. For transmission from a to b, the transmitted angle is given by Snel’s
law, na sin θa = nb sin θb, or

θb = sin−1

(
na sin θi
nb

)
. (3.1)

For water-incident light, na = nwater and nb = nair, in which case the transmitted angle be-
comes undefined beyond the critical angle for total internal reflection, which for water is θtir =
sin−1(1/nwater) ≈ 48 deg. For water-incident angles greater than θtir the incident light is totally
reflected back to the water and no light is transmitted to the air.

Let Rab denote the reflectance matrix for radiant energy (or power) incident from medium a
and reflected back by medium b. Rab thus represents either Raw or Rwa. Likewise, let T ab denote
the transmittance matrix for light incident from medium a and transmitted through the surface
into medium b. T ab thus represents either T aw or Twa.
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With these preliminaries, the reflectance matrix Rab is (G10)

Rab =


1
2(R‖R∗‖ +R⊥R

∗
⊥) 1

2(R‖R∗‖ −R⊥R
∗
⊥) 0 0

1
2(R‖R∗‖ −R⊥R

∗
⊥) 1

2(R‖R∗‖ +R⊥R
∗
⊥) 0 0

0 0 <{R‖R∗⊥} ={R‖R∗⊥}
0 0 −={R‖R∗⊥} <{R‖R∗⊥}

 . (3.2)

Here <{R‖R∗⊥} denotes the real part of R‖R∗⊥ and ={R‖R∗⊥} is the imaginary part.
The transmission matrix T ab is (G11 or Z3)

T ab = fT


1
2(T‖T ∗‖ + T⊥T

∗
⊥) 1

2(T‖T ∗‖ − T⊥T
∗
⊥) 0 0

1
2(T‖T ∗‖ − T⊥T

∗
⊥) 1

2(T‖T ∗‖ + T⊥T
∗
⊥) 0 0

0 0 <{T‖T ∗⊥} ={T‖T ∗⊥}
0 0 −={T‖T ∗⊥} <{T‖T ∗⊥}

 . (3.3)

The components of these equations are given by (G7):

R‖ =
nb cos θa − na cos θb
nb cos θa + na cos θb

(3.4)

R⊥ =
na cos θa − nb cos θb
na cos θa + nb cos θb

(3.5)

T‖ =
2na cos θa

nb cos θa + na cos θb
(3.6)

T⊥ =
2na cos θa

na cos θa + nb cos θb
. (3.7)

In general, the indices of refraction are complex numbers and these equations must be used. How-
ever, for real indices of refraction, as is the case in HydroPol, the matrix elements can be simplified
at the expense of having a special case for water-incident angles greater that the critical angle.

Define
nab =

na
nb

and nba =
nb
na

. (3.8)

Then for the case of air-incident light, i.e., na ≤ nb, or water-incident light with the incident angle
less than the critical angle, i.e., na > nb and θa < θtir, the equations yield the real forms (G14 and
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G15)

R‖R
∗
‖ =

(
cos θa − nab cos θb
cos θa + nab cos θb

)2

(3.9)

R⊥R
∗
⊥ =

(
nab cos θa − cos θb
nab cos θa + cos θb

)2

(3.10)

<{R‖R∗⊥} =
(

cos θa − nab cos θb
cos θa + nab cos θb

) (
nab cos θa − cos θb
nab cos θa + cos θb

)
(3.11)

={R‖R∗⊥} = 0 (3.12)

T‖T
∗
‖ =

(
2nab cos θa

cos θa + nab cos θb

)2

(3.13)

T⊥T
∗
⊥ =

(
2nab cos θa

nab cos θa + cos θb

)2

(3.14)

<{T‖T ∗⊥} =
4n2

ab cos2 θa
(cos θa + nab cos θb)(nab cos θa + cos θb)

(3.15)

={T‖T ∗⊥} = 0 . (3.16)

It should be noted that for the case of normal incidence, θi = 0, both R‖R∗‖ and R⊥R∗⊥ reduce to

R‖R
∗
‖ = R⊥R

∗
⊥ =

(
nb − na
nb − na

)2

. (3.17)

This gives a reflectance of Rab(θi = 0) = 0.0209 for nwater = 1.338, for both air- and water-incident
light.

For the case of total internal reflection, i.e., na > nb and θa ≥ θtir, the following equations are
to be used (G22):

R‖R
∗
‖ = 1 (3.18)

R⊥R
∗
⊥ =1 (3.19)

<{R‖R∗⊥} =
2 sin4 θa

1− (1 + n2
ab) cos2 θa

− 1 (3.20)

={R‖R∗⊥} = −
2 cos θa sin2 θa

√
sin2 θa − n2

ba

1− (1 + n2
ab) cos2 θa

(3.21)

and all elements of the transmission matrix elements are 0:

T ab = Twa = 04×4 , (3.22)

where 04×4 is the 4× 4 matrix of zeros.
Finally, the all-important transmission factor fT in Eq. (3.3) requires discussion. The fT factor

is derived from conservation of energy across the surface. However, that conservation law can
be expressed in terms of either radiance or irradiance. For coherent Stokes vectors with units of
irradiance, fT is given by (Zhai et al. (2012), Eq. 9, or Hecht (1989), Eq. 4.59)

fT =
nb cos θb
na cos θa

. (3.23)
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The cosine factors result from the different cross-sectional areas of the incident and transmitted
beams due to the change in direction given by Snel’s law. The index-of-refraction factors result
from the different rates at which energy is transported toward or away from the surface in the two
media, i.e., from the differences in the speeds of light in the two media. For diffuse Stokes vectors
with units of radiance, as is the case in the present discussion, fT is given by (Zhai et al. (2012),
Eq. 5)

fT = n2
ba

(
nb cos θb
na cos θa

)
. (3.24)

The extra factor of n2
ba in the radiance version results from the change in solid angle when crossing

the surface, i.e., for the n2 law for radiance. The fT value given in Eq. (3.23) is the form to be
used for Monte Carlo ray tracing of individual photons, which carry energy but do not have an
associated solid angle. In that case, the n2 law for radiance is built in to the radiance reflectance
functions photon by photon as their directions change when crossing the interface according to
Snel’s law.

The preceding equations give everything needed to compute the reflection and transmission of
light by a level sea surface, either by analytical formulas in the case of a level surface, or by Monte
Carlo simulation in the case of a wind-blown sea surface.

As is usually the case, the literature contains a variety of notations, terminology, and formula-
tions. The R‖, R⊥, T‖, T⊥ terms seen above specify how electric field amplitudes are reflected and
transmitted for electric fields parallel and perpendicular to the dielectric interface. Snel’s law can
be used to obtain forms equivalent to Eqs. (3.4)-(3.7) in which the indices of refraction do not
appear explicitly (e.g., Born and Wolf (1975), Eqs. 20a, 21a):

R‖ =
tan(θa − θb)
tan(θa + θb)

(3.25)

R⊥ = − sin(θa − θb)
sin(θa + θb)

(3.26)

T‖ =
2 sin θb cos θa

sin(θa + θb) cos(θa − θb)
(3.27)

T⊥ =
2 sin θb cos θa
sin(θa + θb)

. (3.28)

The fractions of reflected and transmitted energy are obtained from the square of the electric field
amplitudes. Hence these terms appear as products in Eqs. (3.2) and (3.2). The (1,1) element of
Rab gives the irradiance (energy) reflectance for air-incident unpolarized light. Using the alternate
forms just above gives the Fresnel reflectance for unpolarized irradiance seen in Light and Water,
Eq. (4.14a):

RF =
1
2
(R‖R

∗
‖ +R⊥R

∗
⊥) = (

1
2

{[
sin(θa − θb)
sin(θa + θb)

]2

+
[
tan(θa − θb)
tan(θa + θb)

]2
}
. (3.29)

The corresponding transmitted irradiance for unpolarized light is

TF = fT
1
2
(T‖T

∗
‖ + T⊥T

∗
⊥)

=
nb cos θb
na cos θa

1
2

{[
2 sin θb cos θa

sin(θa + θb) cos(θa − θb)

]2

+
[
2 sin θb cos θa
sin(θa + θb)

]2
}

= 1−RF , (3.30)
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where the fT of Eq. (3.23) is used for energy transfer.
Figure 3.2 shows the Raw and T aw matrices as a function of incident angle θi for nair = 1 and

nwater = 1.338. The (1,1) matrix elements are shown in the upper-left plot, and the (4,4) elements
are in the lower-right plot. The red curves are Raw(θi) and the blue curves are T aw(θi). The
reflectance curve for Raw(1, 1) is the same as seen in any elementary physics text (e.g. Eq. 3.29): it
starts at 0.0209 for normal incidence (as shown above for nwater = 1.338) and rises to 1 at grazing
incidence. The transmission curve for Taw(1, 1) on the other hand may look incorrect because it
has values greater than one. Its value at normal incidence is

Taw(1, 1) =
4n3

b

(1 + nb)2
= 1.7528

However, this value is indeed correct and is a consequence of the fact that we are dealing with a
diffuse Stokes vector with units of radiance. When radiance travels from air to water, the solid
angle in air is reduced by a factor of 1/n2

water (a consequence of Snel’s law), which increases the
radiance by a factor of n2

water compared to the radiance for the same amount of power propagating
in air. This is termed the n-squared law for radiance. The curves in Fig. (3.2) agree exactly with
the corresponding plots in Garcia (2012, his Figs. 1-3).

If we were dealing with coherent Stokes vectors with units of irradiance, then the fT factor of
Eq. (3.23) would be used.. The transmittance for normal incidence then would then be

Taw(1, 1) = (4nb)/(1 + nb)2 = 0.9791 ,

which with the reflectance sums to one (and also sums to one for all other incident angles). It is,
after all, the Law of Conservation of Energy, not the law of conservation of radiance.

The vertical dotted line in Fig. (3.2) shows the location of Brewster’s angle,

θBrew = tan−1(nb) , (3.31)

which is tan−1(1.338) = 53.23 deg in the present case. At this angle, Raw(1, 2) = Raw(2, 1) =
−Raw(1, 1), and Raw(3, 3) = Raw(4, 4) = 0. In the present case Raw(1, 1) ≈ 0.04 at θBrew, and the
reflection process Sr = Raw(θi = θBrew)Si becomes

Sr =


0.04 −0.04 0 0
−0.04 0.04 0 0

0 0 0 0
0 0 0 0



I

0
0
0

 =


0.04I
−0.04I

0
0

 . (3.32)

With our choice of “parallel” and “perpendicular” referring to the meridian plane, this Raw
has the form of a horizontal polarizer, as was discussed in connection with Eq. (1.17), and
Sr = [0.04I,−0.04I, 0, 0]T represents light linearly polarized in a direction parallel to the mean
sea surface. Thus, at the Brewster’s angle, unpolarized incident radiance is totally horizontally
polarized upon reflection.

It should also be noted that the non-zero Taw(2, 1) means that unpolarized radiance becomes
partly linearly polarized upon transmission through the surface. Thus transmission by the air-water
surface induces a partially polarized underwater light field, even if the sea surface is illuminated by
unpolarized light.
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Figure 3.2: Reflectance and transmittance matrices as functions of the incident angle θi for air-
incident radiance. Raw is in red and T aw is in blue. The vertical dotted line at θi = 53.23 deg is
Brewster’s angle.
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Figure (3.3) shows Raw and T aw as reduced matrices, i.e. after dividing each element by its (1,1)
component. These plots show more clearly the behavior of the Raw matrix elements at Brewster’s
angle. These curves agree exactly with the corresponding plots in Kattawar and Adams (1989,
their Fig. 4).

Figure (3.4) shows Rwa and Twa. The vertical dotted line is at the critical angle for total
internal reflection, which in the present case is θtir = 48.36 deg. For angles less than the critical
angle, the transmission is never more than about 0.54. This again shows the n-squared law for
radiance. In going from water to air, the in-water radiance is decreased by a factor of 1/n2

water

when crossing the surface because the solid angle in air is greater than that in water by a factor of
n2

water. The (1,1) elements show that beyond the critical angle there is no transmission and total
reflection. These curves agree with the corresponding plots in Garcia (2012) (his Figs. 4-6).

Figure (3.5) shows the reduced water-to-air matrices. These curves agree with the corresponding
plots in Kattawar and Adams (1989) (their Fig. 5)1.

The non-zero matrix elements of course depend on incident angle as seen above, but also depend
weakly on the wavelength via the wavelength dependence of nwater.

The Raw etc. matrices are non-dimensional reflectances and transmittances. The continuous-
variable raw etc. seen in Eqs. 1.40 and 1.41 are radiance reflectances and transmittances with units
of sr−1. We can add Dirac delta functions to the Raw etc. to indicate the the exact directions of the
reflected and transmitted light, which also gives sr−1 dimensions to the result. Let ξ(θ, φ) denote
a unit vector pointing in direction (θ, φ). Then the delta function that “picks out” a particular
direction ξo(θo, φo) is defined by

δ(ξ − ξo) ≡ 0 if ξ 6= ξo, (3.33)

and ∫
4π
f(ξ)δ(ξ − ξo)dΩ(ξ) ≡ f(ξo). (3.34)

where f(ξ) is any function of direction. Note that because the element of solid angle dΩ(ξ) has
units of steradian, if follows that δ(ξ− ξo) has units of 1/steradian. When performing integrations
over directions (µ, φ), dΩ(ξ) = dµ dφ and the delta function becomes δ(ξ−ξo) = δ(µ−µo) δ(φ−φo).

We can thus write the surface transfer functions for a level sea surface as

raw = Raw δ(ξ − ξraw
) (3.35)

taw = T aw δ(ξ − ξtaw
) (3.36)

rwa = Rwa δ(ξ − ξrwa
) (3.37)

twa = T aw δ(ξ − ξtwa
) (3.38)

Here ξraw
is the direction of the air-incident light as reflected upward by the surface, ξtaw

is the
direction of the light transmitted through the surface into the water, etc. The reflected directions
are given by the law of reflection, θ = θ′. The transmitted directions are given by Snel’s law, 3.1.
For a level surface, the incident and final meridian planes and the reflection-transmission plane are
all the same. Thus the rotation matrices reduce to identity matrices and are not shown.

1The signs of the T wa(3, 4) and T wa(4, 3) elements are reversed in the original Fig. 5, which according to Kattawar

had a sign error.
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Figure 3.3: The reflectance and transmittance matrices of Fig.(3.2) normalized by their (1,1) ele-
ments. The vertical dotted line is Brewster’s angle.

41



Figure 3.4: Reflectance and transmittance matrices as functions of the incident angle θi for water-
incident radiance. Rwa is in red and Twa is in blue. The vertical dotted line is the critical angle
for total internal reflectance.

42



Figure 3.5: The reflectance and transmittance matrices of Fig.(3.4) normalized by their (1,1) ele-
ments. The 34 and 43 elements are the reverse of Fig. 5 in Kattawar and Adams (1989), which
had a sign error in these two elements.
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3.2 Reflection and Transmission by a Wind-blown Sea Surface

Wind-blown sea surfaces are vastly more complicated than level surfaces. The properties of the sea
surface that determine its optical properties are the wave height and wave slope. The slope is of
primary importance because the slope, along with the direction of an incident light ray, determines
the angles of incidence and transmission seen in the Fresnel formulas. The wave height and slope
in turn depend not just on the wind speed, but also on how long the wind has been blowing (the
duration) and over what distance upwind from the point of interest (the fetch), on the direction of
wave propagation relative to any current, on the possible presence of surface contaminants, on the
depth in shallow water, and to a lesser extent even on air-sea temperature difference. Fortunately
these details can be left to the physical oceanographers. This section shows how to compute the
optical properties of a given sea surface, without regard for the environmental conditions that
created that surface.

Recall that what HydroPol needs for its surface boundary conditions are the four discretized
transfer functions raw,..., taw seen in Eqs. (2.21) and (2.22). These transfer functions give the time-
or space-averaged optical properties of wind-blown sea surfaces for a given set of environmental
conditions. In practice, we can build up a library of these properties as functions of wind speed
and water index of refraction. Then a given HydroPol run can select the appropriate set of surface
transfer functions for the chosen wind speed and wavelength (the index of refraction depends on
wavelength).

The surface transfer functions will be estimated by Monte Carlo ray tracing applied to numerous
random realizations of the sea surface corresponding to a fixed set of environmental conditions such
as wind speed. A random realization of the surface can be thought of as a snapshot of a patch
of sea surface of some size, typically on the order of 10-100 m on a side. The surface elevations
within this patch are known at a finely spaced grid of points, with perhaps 1000 or more points in
each spatial direction. Ray tracing is used to compute the reflection and transmission properties
of each realization for the full range of incident and final directions. Finally, averages over many
such realizations–perhaps 105 or more–give the needed transfer functions.

We first show how sea surfaces can be modeled as a network of triangular wave facets, each of
which is locally flat but randomly tilted from the horizontal. After generating a surface realization,
we consider in detail how to trace rays through 3D space as they are reflected and refracted by
the surface. This is a rather complicated business for two reasons. First, there can be multiple
interactions of a ray with the surface because a ray reflected or refracted by one wave may intersect
a neighboring wave some distance away, generating still more reflected and refracted rays. Second,
each tilted wave facet has its own scattering plane for incident and scattered light, so careful
attention must be paid to the rotations that carry the Stokes vector from one facet to another. We
finally show how the Monte Carlo results lead to the needed transfer functions.

3.2.1 Modeling the Sea Surface as a Grid of Triangular Wave Facets

Figure 3.6 shows an idealized view of part of a water surface and a multiply scattered ray. A finite
region of the mean water surface is resolved by a hexagonal grid of triangles, called triads. The
sea surface elevation is defined at each triad vertex, so that the waves are represented by a set of
triangular wave facets, which can be above or below mean sea surface. These facets are contained
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in a hexagonal domain of 3D space defined by the boundaries of the hexagonal grid. Four such
wave facets are shown in Fig. 3.6.

Figure 3.6: Illustration of the hexagonal domain of triangular wave facets for a particular surface
realization and ray paths. Observe the orientation of the horizontal triads relative to the downwind
direction.

The virtues of resolving the sea surface as a grid of triangles should be obvious. The three points
of surface elevation for a wave facet determine a plane in 3D space, and the Fresnel equations of the
previous section can be applied to that plane. If the surface were described by a rectangular grid of
points, for example, then some additional decision would have to be made regarding the orientation
in space of the point of intersection within the surface region specified by the four points giving
the elevations of the rectangular wave element.

The hexagonal grid of Fig. 3.6 has Nhex = 2 “rings” or “layers” of triads around the center
point of the grid. For actual simulations, many more triads are used, as will be shown below. A
hexagonal grid with Nhex layers of triads has Nnodes = 3Nhex(Nhex + 1) triad vertices where the
surface elevations are defined.

There are several ways to generate surface elevations at the triad vertices, and we next describe
the two most important. The simplest and most widely used method is based on the wind-speed
wave-slope model of Cox and Munk (1954). The second is based on wave energy spectra.
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Method 1: Surface Generation Based on Cox-Munk Statistics

The classic study by Cox and Munk (1954) used photos of sea-surface sun glint taken from aircraft to
deduce the slope statistics of the surface waves for various wind speeds. The result is a statistical
model of the alongwind and crosswind wave slopes as a function of wind speed. Their model
describes the slopes due to whatever gravity and capillary waves were on the sea surface at the
time the photos were taken. The virtue of the Cox-Munk wind-speed wave-slope equations is that
they are very simple, and consequently they are widely used for sea surface generation (e.g., Zhai
et al. (2010) and in HydroLight). The disadvantage of using their model is that the generated
surface reproduces only the surface slope statistics, and not also the surface height statistics. The
resulting surface is thus a rough surface with randomly sloping wave facets, but with the facet
elevations never deviating much from the mean sea surface. Consequently, this model misses some
wave features such as shadowing by large gravity waves, which can be important at near horizontal
incident or viewing directions. Indeed, the Cox-Munk model breaks down for horizontal viewing
directions (Zeisse, 1995). However, because proper modeling of wave slopes is the critical factor
for computing the surface optical properties, the Cox-Munk model is often adequate for solar and
viewing directions that are not near the horizon.

Let ζ(x, y) be the sea surface elevation at location (x, y). The wind is blowing in the +x
direction. The alongwind and crosswind wave slopes are

ζa =
∂ζ

∂x
and ζc =

∂ζ

∂y
,

respectively. The Cox and Munk (1954) model says that these slopes are normally distributed with
zero mean and alongwind and crosswind variances given by

σ2
a = saU where sa = 3.16× 10−3 s m−1 (3.39a)

σ2
c = scU where sc = 1.92× 10−3 s m−1 (3.39b)

where U is the wind speed at 12.5 m above mean sea level.
To construct a surface realization based on the Cox-Munk equations, we first pick a value of

Nhex, which defines the number of triads in the hexagonal grid. Let the first triad, illustrated in
Fig. 3.7, have vertices v1,v2 and v3, where the surface elevations are ζi = ζ(xi, yi), i = 1, 2, 3.
Then the alongwind and upwind slopes for this triad are

ζa =
∆ζ
∆x

=
ζ2 − ζ1
δ

(3.40a)

ζc =
∆ζ
∆y

=
ζ3 − 1

2(ζ1 + ζ2)
ε

(3.40b)

where δ and ε are defined in Fig. 3.7. Let 〈κ〉 denote the ensemble average of κ, i.e. the average
of κ over all of the surface realizations in the ensemble. Then by construction

〈ζj〉 = 0 and 〈ζiζj〉 = σ2δi−j ,

where i, j = 1, 2, 3 and δk is the Kronecker delta symbol defined in Eq. (A.1). Similarly, it follows
that ζa and ζc are distributed with zero means and variances

σ2
a = 〈ζ2

a〉 =
2σ2

δ2
and σ2

c = 〈ζ2
c 〉 =

3σ2

2ε2
, (3.41)
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Figure 3.7: Triad dimensions and ver-
tices as used for surface generation.

and that ζa and ζc are uncorrelated: 〈ζaζc〉 = 0. The elevation of the centroid of the facet is

ζ =
ζ1 + ζ2 + ζ3

3
.

This ζ is normally distributed with zero mean and variance

σ2
ζ = 〈ζ2〉 =

σ2

3
. (3.42)

We can now fix the triad sizes δ and ε, and the vertical scale σ, as a function of the wind speed
U . From Eqs. (3.39) and (3.41) we have

ε2

δ2
=

3sa
4sc

. (3.43)

This means that the shape of the triad is independent of the wind speed and the physical units of
δ and ε. That is to say, the slopes of the facets are independent of their physical size. The value of
σ is obtained from Eqs. (3.39) and (3.41),

σ2 =
1
2
saδ

2U . (3.44)

Thus the vertical scale of the waves depends on the wind speed (the waves become more choppy as
the wind increases).

Given the independence of the slopes on the triad physical dimensions, we are free to set δ = 1
and generate the surface wave elevations using

δ =1 (3.45a)

ε =
(

3sa
4sc

)1/2

(3.45b)

σ =
(sa

2
U

)1/2
(3.45c)

where the values of sa and sc are given in Eq. (3.39)
To generate a surface grid based on the Cox-Munk slope model, we first use Eqs. (3.45a) and

(3.45b) to lay out the (x, y) locations of the triad vertices. Then to define the surface elevations
for the first triad, labeled 1 in Fig. in Fig. 3.7, we draw three random numbers from a normal
distribution with 0 mean and variance σ2, denoted N (0, σ2), with σ given by the wind speed U

and Eq. (3.45c). These random numbers are the surface elevations ζ1, ζ2, and ζ3 at triad vertices
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v1, v2, and v3. To define the next facet, number 2 in the figure, only one new random number is
drawn, which gives the elevation ζ4 at vertex v4. The previously computed elevations at v2, and
v3, and this ζ4 at v4 then define facet 2. Each subsequent facet requires only one new random
number, e.g., v2, and v4 plus a new ζ5 at v5 define facet 3, and so on. Sea surface wave facets
defined in this manner then obey the slope statistics given by the Cox-Munk model of Eqs. (3.39).

Figure 3.8 is an example of a sea surface generated as a hexagonal grid of triangluar wave facets
using the Cox-Munk slope statistics for a wind speed of U = 6 m s−1. The x, y, z values are scaled
in terms of the triad x-dimension δ = 1. The notable feature of this surface is that all waves have
a horizontal scale of order a few δ in size. That is, there is no obvious superposition of both large-
and small-scale waves, as is typically the case of a real ocean surface. With this method, the wave
elevations are simply whatever they need to be so that the facets reproduce the Cox-Munk wave
slope statistics.

Figure 3.8: Example of a sea surface generated using the Cox-Munk wind-speed wave-slope statistics
and a hexagonal grid of triangular wave facets. Light blue indicates wave crests (large positive
values) and dark blue is wave troughs (large negative values). The graphics program used to create
this visual rendering of the surface causes some smoothing, so the individual wave facets are not
apparent.

Method 2: Surface Generation Based on Wave Energy Spectra

More realistic sea surface realizations that model the wave height, from which the slopes are ob-
tained directly, can be obtained at the expense of doing more physics and mathematics. Without
going into the details, the foundation of this process is as follows. Suppose that we have measured
the sea surface elevation ζ(xr, ys) ≡ ζ(r, s) at a given time and over a rectangular grid of spatial
points (xr, ys), r = 1, ..., Nx, s = 1, ..., Ny. This grid covers an area of some physical size X × Y ,
e.g. 0 ≤ x ≤ X, 0 ≤ y ≤ Y , with a grid spacing of ∆x = X/Nx and ∆y = Y/Ny. The longest
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wavelengths resolvable by this grid are X and Y in the respective directions, and the smallest
waves are of wavelength 2∆x = 2X/Nx and 2∆y = 2Y/Ny. The surface comprises waves of all
wavelengths between these two limits.

Linear wave theory says that this surface can be represented as a sum of sinusoids:

ζ(xr, ys) =
a0

2
+
Nx/2∑
u=1

Ny/2∑
v=1

[au,v cos(kuxr + kvys) + bu,v sin(kuxr + kvys)] , (3.46)

where the au,v and bu,v are the amplitudes of the waves with spatial frequencies ku = 2πu/X and
kv = 2πv/Y ; ku and kv have units of radian per meter (a0 represents mean sea level and can be
set to 0). This decomposition can be placed in the form of a discrete Fourier transform pair:

ζ(r, s) =
Nx−1∑
u=0

Ny−1∑
v=0

ζ̂(u, v)e+i2π(ru/Nx+sv/Ny) (3.47)

ζ̂(u, v) =
1

NxNy

Nx−1∑
r=0

Ny−1∑
v=0

ζ(r, s)e−i2π(ru/Nx+sv/Ny) . (3.48)

Equation (3.48) is usually called the discrete Fourier transform, and Eq. (3.47) is the inverse
transform. (These equations can be written in various ways. The form used here is that of Bracewell
(1986).) Note that although ζ(r, s) is real, ζ̂(u, v) is in general a complex number. However, ζ̂(u, v)
is Hermitian, which means that ζ̂∗(u, v) = ζ̂(−u,−v), where * denotes the complex conjugate. The
Hermitian-ness of ζ̂(u, v) guarantees that when used in Eq. (3.47), the resulting ζ(r, s) is real.
These matters can be pursued in texts on Fourier transforms, e.g., Bracewell (1986).

The energy of a wave is proportional to the square of its amplitude. Thus the square of ζ̂(u, v)
is proportional to the energy contained in waves with frequencies of ku, kv in the respective x, y
directions. The quantity E(ku, kv) = ‖ζ̂(u, v)‖2 = ζ̂(u, v)ζ̂∗(u, v) is therefore known as the wave
energy spectrum. E(ku, kv) shows how the wave energy is partitioned into waves of different spatial
frequencies, which is of great interest to physical oceanographers. Much work has therefore been
done to develop models of wave energy spectra as functions of wind speed, fetch, and duration.
These models can be used to generate random realizations of surface waves such that the generated
surfaces are consistent with the chosen energy spectrum.

One way this can be done is given in §4.5 of Mobley (1994). However, Eq. (4.77) of that
work amounts to a brute-force evaluation of Eq. (3.46) or (3.47) and is much too computationally
intensive for use in generating the thousands of wave surfaces for large spatial regions and and large
Nx, Ny. However, if Nx and Ny are both powers of 2, then the sums of Eqs. (3.47) and (3.48) can
be evaluated using the Fast Fourier Transform (FFT) algorithm, and the computer time is orders
of magnitude less.

To use a given energy spectrum E(ku, kv) to generate a random surface realization ζ(r, s), we
first choose the X,Y and Nx, Ny values, which determine the physical size of the spatial region
and the fineness of the wave resolution. This gives an x-y grid of points at which ζ(r, s) is to
be determined. Next choose an energy spectrum E(ku, kv), which will be a complicated set of
equations depending on wind speed and perhaps other environmental parameters such as fetch.
Then for each (u, v) combination, draw independent random numbers ρ1(u, v) and ρ2(u, v) from a
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N (0, 1) distribution, and form the quantity

ζ̂o(u, v) =
1√
2
[ρ1(u, v) + iρ2(u, v)]

√
E(ku, kv)

2
. (3.49)

Here i =
√
−1 and all other quantities are real. The expectation of ‖ζ̂o‖2 is (omitting the (u, v)

argument for brevity)

〈‖ζ̂o‖2〉 = 〈ζ̂oζ̂∗o 〉 = 〈
[

1√
2
(ρ1 + iρ2)

√
E/2

] [
1√
2
(ρ1 − iρ2)

√
E/2

]
〉

=
E
2

(
〈ρ2

1〉+ 〈ρ2
2〉

)
= E

because 〈ρ2
1〉 = 〈ρ2

2〉 = 1 for N (0, 1) random variables, and 〈ρ1ρ2〉 = 0 because these random
variables are uncorrelated. Thus this ζ̂o is consistent with the chosen energy spectrum. However,
ζ̂o(u, v) is not Hermitian, so using ζ̃o(u, v) in Eq. (3.47) would not give a real sea surface.

However, the quantity

ζ̂(u, v) =
1
2
[ζ̂o(u, v) + ζ̂∗o (u, v)] (3.50)

is Hermitian. An analysis like that for 〈‖ζ̂o‖2〉 shows that 〈‖ζ̂‖2〉 = E . Thus the ζ̂(u, v) of Eq.
(3.50), when used in Eq. (3.47), gives a sea surface realization that is real and consistent with the
chosen wave energy spectrum.

Figure 3.9 shows an example of a random surface generated in this manner. The spatial region is
X×Y = 25×25 m, which is resolved by Nx×Ny = 2048×1024 grid points. The smallest resolved
wavelength in the x direction is then 2 × 25/2048 = 0.024 m, and twice that in the crosswind
direction. Thus this particular surface resolves all wavelengths from 25 m gravity waves almost
down to capillary waves, which have wavelengths of order 1 cm. The energy spectrum was that of
Elfouhaily et al. (1997) with a wind speed of 6 m s−1 and other parameters set to values for a fully
developed sea. The computer time required for generation of this surface by the FFT evaluation
of Eq. (3.47) was only 0.56 seconds even though there were almost 2.1 × 106 surface elevations
generated. (This time is for the IDL FFT routine on a 2.4 GHz computer.) The visual appearance
of this surface is much different than for the Cox-Munk surface of Fig. 3.8. In particular, it is now
obvious that the surface is a superposition of waves of different horizontal scales, even though the
smallest-scale waves are not visually apparent in this figure.

Although the sea surface of Fig. 3.9 was rapidly generated and resolves a wide-range of wave-
lengths, the surface elevations are defined on a rectangular x-y grid, not on the triangular grid used
for ray tracing. However, this is not a problem. Figure 3.10 shows how a rectangular FFT grid
can be mapped to a hexagonal grid of triangular wave facets. It may seem wasteful to compute
the surface elevation at each of the blue grid points (the points where the blue lines intersect)
and then discard roughly half of these points to subsample the FFT grid to obtain a hexagonal
grid. However the extremely fast run time of the FFT algorithm makes this option much more
efficient than the regular Fourier technique given in Mobley (1994) (his Eq. 4.77). That technique
computes the surface elevations only at the triad vertices, but requires much more time to evaluate
the equivalent of Eq. (3.46), in which the au,v, bu,v coefficients are randomly determined from the
chosen wave energy spectrum. Figure 3.10 also makes clear why Ny was chosen be Nx/2 in the
generation of the FFT grid. Ny = Nx/2 allows every row of y values to be used, even though
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Figure 3.9: Example sea surface generated by FFT techniques. Light blue is high elevations and
dark blue is low. The surface appears visually rougher than a real sea surface because of the
expanded vertical scale relative to the horizontal dimensions.

only every other x value is retained when generating the hexagonal grid. Figure 3.11 shows the
sea surface of Fig. 3.9 after subsampling to create a hexagonal grid of wave facets. Visually, the
original and subsampled surfaces are indistinguishable at the scale of these figures.

Sea surface generation using FFT techniques is widely used, especially in creating computer-
animated movies. However, the devil is in the details. When computing ζ̂(u, v) from sea surface
elevations via Eq. (3.48), ζ̂(u, v) has both positive and negative spatial frequencies. These cor-
respond to waves traveling both “left” and “right.” In essence, with just a snapshot ζ(r, s) of
the sea surface, the mathematics cannot tell which direction the waves are going. The resulting
energy spectrum E(ku, kv) also has positive and negative ku, kv, with E(−ku,−kv) = E(ku, kv), and
is termed a “two-sided” spectrum. However, wave spectra are usually presented as “one-sided”
spectra showing only the positive frequencies, but with double the magnitude of the two-sided E .
One-sided spectra show how much energy is contained in a give frequency interval, without regard
to the sign of the ku or kv argument, i.e., without regard for the direction the waves are traveling
relative to a given axis. Thus the one-sided E used in Eq. (3.49) is divided by 2. The widely cited
tutorial by Tessendorf (2004) gives equations corresponding to Eqs. (3.49) and (3.50) (his Eqs. 41
and 43), but without dividing E by 2, and without the factor of 1

2 in Eq. (3.50). In a round-trip
calculation from energy spectrum to sea surface and back to energy spectrum, his equations do
not conserve energy by a factor of (2

√
2)2 = 8. That is, his versions of Eqs. (3.49) and (3.50)

generate wave amplitudes that are too large. This is acceptable for the movie industry, which has
never worried about conserving energy or exceeding the speed of light, but it isn’t good enough
for science. There are other subtleties such as tricks of array storage regarding how FFT routines
order the frequencies. These matters need not concern us here, but do require care in the computer
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Figure 3.10: Example mapping of a rectangular computational grid used in FFT simulations of a
random sea surface (blue lines) to a hexagonal grid of triangular wave facets used in ray tracing
(red dots). This example has Nx = 16 points in the x direction and Ny = 8 in the y direction for
the FFT calculations. The FFT grid points at the right and top, shown by the dotted blue lines,
are obtained by the inherent spatial periodicity of the surface as determined by FFT techniques.
Thus the surface elevation of point 35 is the same as that of point 27, point 57 is the same as point
1, etc. One of the triads generated from the FFT grid is shaded in red.

programming associated with surface generation using FFT techniques.

3.2.2 Ray Tracing in a Grid of Triangular Wave Facets

After a surface has been generated–i.e., after the elevations are defined at each triad vertex–a light
ray described by a known Stokes vector is aimed toward the surface from any chosen direction.
Figure 3.6 shows such a ray entering the hexagonal domain at point A. Every such initial ray
eventually strikes a surface wave facet, as at point B. Each encounter of a ray with a wave facet
usually generates both a reflected and a refracted daughter ray, the exception being total internal
reflection, which generates only a reflected ray. The directions and radiant properties of these
daughter rays are determined by Snel’s law and the Fresnel equations applied to the plane surface
of the facet. The incident angle onto the facet is computed from the incident ray direction and the
direction of the normal to the wave facet. The daughter rays may undergo further encounters with
other wave facets. As illustrated in Fig. 3.6, the first refracted ray at B, heading downward through
the water, leaves the hexagonal domain at D without further scattering. The first reflected ray at
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Figure 3.11: The rectangular FFT grid of Fig. 3.9 after conversion to a hexagonal grid and
recentering to (x, y) = (0, 0) at the origin of the hexagon.

B, however, intercepts another facet at C, generating two more rays. The reflected ray starting
from C leaves the domain at E. The refracted ray starting from C encounters yet another facet
at F and undergoes a total internal reflection before leavint the domain at G. Thus this initial
ray finally results in one reflected and two refracted rays emerging from the hexagonal domain.
The radiant properties at the points of emergence contribute to the corresponding reflectance and
transmittance properties connecting the incident and final directions.

The interactions between random surface facets and rays incident from any direction lead to
a proliferation of daughter rays that cannot be predicted in advance. These rays are processed as
follows. Whenever a ray is created, either as an initial ray or as a daughter ray, the ray information
is immediately “pushed” into, i.e. stored in, a two-dimensional array S, called the stack. The
information recorded in the stack includes

• the point p of the ray’s origin,

• the ray’s direction ξ,

• a vector s, which perpendicular to the meridian or scattering plane used to specify the Stokes
vector at p,

• a 4 × 4 matrix W. W is essentially a weighting function that describes the ray’s current
radiant properties; W is described in §3.2.2.

The dimensions of the stack array are (Nmaxrays, 25). Nmaxrays is the maximum number of rays
that can be stored at once. Experience with stack arrays in the HydroLight code shows there there
are never more than 10 rays in the stack awaiting processing at any one time during ray tracing.
Therefore we can set Nmaxrays = 10. The dimension of 25 is determined by the 3 numbers for the
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initial point, the 3 for the ray direction, 3 for the perpendicular vector direction, and 16 for the
elements of the weight matrix.

During processing the next available ray in the stack is “pulled” from the stack and traced
to completion. Completion occurs either when the ray leaves the hexagonal domain or when it
encounters a wave facet. If the ray leaves the domain, its properties are tallied to the accumulating
estimate. If the ray encounters a wave facet, the daughter ray or rays are “pushed” into the stack
to away further processing. After completion of one ray, the next one is pulled from the stack and
processed. This use of a push-pull stack allows the number of rays to grow as needed, according to
the interactions of rays with the random surface. The stack will eventually be emptied, at which
time a new initial ray is created. Figure 3.12 shows a flowchart of these operations.

Tracing the path of a light ray through 3D space as it is reflected and refracted by the sea
surface is in principle no more complicated than determining where a straight line intersects a
plane. Those calculations are purely geometric and do not depend on the polarization state of the
light. However, the application of the basic geometric concepts to the irregular geometry of the
wave facets comprising a random realization of the sea surface is rather tedious. The details of
those geometric calculations are given in Appendix B.

When the light ray being traced represents polarized light, careful account must be taken of the
rotations that carry the Stokes vectors from one scattering event to the next. The Stokes vector
Si of an incident ray is specified in the incident meridian plane, defined by the z axis and the
direction ξ′ of the ray. When that ray intersects a surface wave facet, the incident direction and
the local normal n to the surface facet determine the plane containing the incident, reflected, and
refracted directions. This is a local scattering plane in the sense of Fig. 1.3. The incident Stokes
vector must be rotated from the incident meridian plane to the scattering plane of the facet. The
Fresnel equations of the preceding §3.1 can then be applied to compute the polarization states of
the reflected and refracted rays. If those rays leave the hexagonal domain, they are then rotated
into the final meridian plane. In the case of a single scattering by a wave facet, the rotation angles
can be determined from the spherical triangle defined by the incident and final meridian planes and
the plane of reflection and refraction. This is the same geometry as the scattering situation shown
in Fig. 1.3.

However, for scattering by a wind-blown sea surface, many rays will intersect another wave
facet, perhaps several times, before leaving the hexagonal domain. Thus rays may go from one
wave facet to another without being referred to any meridian plane (that could be done, but would
cause unneeded calculations). We thus need an algorithm to determine the scattering planes of
intersected facets, along with the associated rotation matrices that carry the Stokes vectors from
one wave facet to another. Only the rays leaving the hexagonal domain need to referred to a
meridian plane. This section describes the vector analysis needed to determine these facet-to-facet
scattering planes and rotations. We assume here that the ray paths and points of facet intersection
are known from the calculations described in Appendix B.

Figure 3.13 illustrates a single scattering of an air-incident ray by a surface wave facet. Air-
incident means that the ray intersects the surface facet from the air side. Such a ray is always
traveling downward for an initial ray, but may also be traveling upward for rays that have been
scattered by a previous wave facet (as will be seen in Fig. 3.15 below). At the start of ray tracing,
we know the incident ray direction ξi. This direction, along with the z axis, defines the incident
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Figure 3.12: Flow chart of the Monte Carlo ray tracing computation of the sea surface transfer
functions.
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meridian plane, which is shown by a red dotted line in Fig. 3.13 connecting the pole, the tail
of the ξi vector as drawn, and the equator. The associated Stokes vector Si is specified relative
to horizontal and vertical directions, hi and vi, which are respectively perpendicular and parallel
to the incident meridian plane. Vectors hi and vi are determined so that “perpendicular” cross
“parallel” is in the direction of light propagation. For an incident ray this rule gives

hi =
z× ξi
|z× ξi|

, (3.51a)

vi = ξi × hi , (3.51b)

ξi = hi × vi . (3.51c)

(For the degenerate case of ξi = ±z, we are free to set hi = x and vi = ±y.) Vectors hi and vi
and shown by green arrows in the figure. The green dotted line passing through the tail of the ξi
vector makes it easy to see that this hi is in the −ϕ direction as given by Eq. (1.2b). Vector vi is
parallel to the meridian plane, and is in the −ϑ direction.

As was explained in the discussion of rotation angles in §1.2.2, we could just as well define
hi = ξi × z/|ξi × z|. This would reverse the directions of hi and vi in Fig. 3.13, but that gives the
same Stokes vector components because rotations by 180 deg leave Stokes vectors unchanged.

The incident vector always intersects a wave facet, which is illustrated by the blue triangle in
Fig. 3.13. The unit outward normal to the wave facet is n. The vertices of the wave facet are
known from the ray tracing algorithm of Appendix B, from which n is given by Eq. (B.16). The
facet normal n is tilted from the normal to the mean sea surface, z, by polar and azimuthal angles
(θn, φn). These angles are related to n by Eqs. (1.3a)-(1.3c):

θn = cos−1 nz

φn = tan−1(ny/nx) .

The incident direction ξi and the facet normal n define the scattering plane containing the
incident, reflected (ξr) and transmitted (ξt) rays. The plane containing these four rays is indicated
by the dashed circle in Fig. 3.13, and the part of that plane containing ξi as drawn, n, and ξr
is shaded in red. The incident Stokes vector must be rotated from the incident meridian plane
into a coordinate system whose axes that are normal (s) and parallel (p) to the scattering plane.
Using the choices of incident direction cross facet normal equals the perpendicular vector, and
perpendicular cross parallel equals direction of propagation, give

s =
ξi × n
|ξi × n|

, (3.52a)

p = ξi × s , (3.52b)

ξi = s× p . (3.52c)

Vector s lies in the plane of the wave facet and is is normal to each of ξi, n, ξr, and ξt. Vector p
lies in the scattering plane and is normal only to ξi.

The rotation angle 0 ≤ αi < 2π that rotates the incident Stokes vector into the scattering plane
is the angle that rotates the initial perpendicular direction hi into the direction perpendicular to the
scattering plane. (This same angle rotates vi into p.) The rotation angle can therefore be obtained
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Figure 3.13: Directions and angles for an air-incident ray. Red arrows show the incident, reflected,
and transmitted ray directions. The respective meridian planes are shown by red dotted lines. The
light blue triangle represents the wave facet, whose normal n is shown in blue. The three sets
of green arrows show the horizontal and vertical directions for specification of the Stokes vectors
in the incident and final meridian planes. The maroon dashed line connecting the tail of ξi and
the heads of n, ξr, and ξt identifies the scattering plane containing the incident, reflected, and
refracted directions; part of the scattering plane is shaded in red. Angles (θ, φ) give the directions
of vectors with respect to the x-y-z axes. The θF angles give the incident, reflected, and transmitted
directions relative to the facet normal n; these are the angles used in the Fresnel formulas of §3.1.
The α angles are the rotation angles.
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Figure 3.14: The four cases for determining Stokes vector rotation angles. v1 is the initial direction,
which is rotated into the final direction v2 by a counterclockwise rotation about direction ξ.

from the dot product of hi and p. However, there is some ambiguity in the angle obtained this
way. This is resolved by recalling the choice of a positive rotation being counterclockwise when
looking into the beam. In general, the rotation angle is the angle required to rotate the first vector
v1 counterclockwise into the second vector v2 when looking into the rotation axis, which is vector
v3 = v1×v2. In the present case, v1 = hi, v2 = s, and v3 = ξi is the rotation axis. In general, four
cases must be considered, as shown in Fig. 3.14. The rotation angle depends on whether v1 · v2 is
positive or negative, and on whether v1 × v2 is parallel or antiparallel to the rotation axis. In the
present case, v1 × v2 = hi × s is by construction parallel to ξi, in which case

αi = | cos−1(v1 · v2)| = | cos−1(hi · s)| . (3.53)

If v1 × v2 is antiparallel to ξ, then

αi = 2π − | cos−1(v1 · v2)| = 2π − | cos−1(hi · s)| . (3.54)

Vector v1 × v2 is parallel (antiparallel) to ξ if the z component of v1 × v2 has the same (different)
sign as the z component of ξ.

When a ray finally leaves the hexagonal domain, its Stokes vector Sf must be specified in the
final meridian plane. The final horizontal and vertical directions are obtained from choosing the
first direction to be the final ray direction ξf (= ξr or ξt) cross z. Then, as above, vf = ξf × hf .
The final rotation angle αf , which carries the Stokes vector from the most recent wave facet s and
p axes to the final hf and vf axes, is obtained by Eq. (3.53) or (3.54). The green sets of hr,vr
and ht,vt vectors in the figure show the horizontal and vertical axes for the final meridian planes
of the reflected and transmitted vectors. A green circumpolar dotted line makes clear that ht is in
the −ϕ direction, as is hr. The numerical values shown in the figure inset give the directions and
rotation angles (all in degrees) for the vectors of this figure.

It should be remembered that all of the vectors seen in Fig. 3.13 apply at the point of intersection
between a ray and a wave facet. In other words, all of the arrows in Fig. 3.13 should be drawn
with their tails at the point of intersection, i.e. at the origin of the x-y-z coordinate system. This
makes the figure hopelessly messy, but does make the rotations easier to visualize.
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These rules for computing directions and rotation angles give all that is needed to carry Stokes
vectors from one wave facet to another. Figure 3.15 shows an example of multiple scattering
between surface wave facets. The left part of the figure shows a water-incident ray intersecting
the first wave facet from below (thus the blue triangular wave facet hides the head of the ξi arrow
as drawn). This scattering yields a reflected ray, which leaves the hexagonal domain. The Stokes
vector for this ray is rotated from the scattering plane s1,p1 coordinates of the first facet to the
final meridian plane horizontal and vertical hr,vr system shown in the the left part of the figure.
That rotation angle is given by αr in the inset of the left figure.

Figure 3.15: Illustration of multiple scattering by surface wave facets. A water-incident ray even-
tually yields one ray in the air and two in the water that leave the hexagonal domain and whose
Stokes vectors are tallied. There is one intermediate ray from the first facet to the second that does
not contribute directly to the final result.

The water-incident ray also yields a transmitted ray, which is heading slightly upward (at
θt = 72.5 deg, or 17.5 deg above the horizontal). Before leaving the hexagonal domain, that ray
intersects another wave facet, now from the air side, as shown in the right part of the figure. The
transmitted ray from the first facet, ξt of the left figure, becomes the incident ray for the second
facet, ξi of the right figure. The Stokes vector St of the first transmitted ray is specified in the
s1,p1 coordinates of the first facet. This Stokes vector must be rotated into the s2,p2 coordinates
of the second facet. As in Eq. (3.52a), s2 = ξi × n2/|ξi × n2|. For these particular vectors, s1 × s2

is antiparallel to ξi, so the rotation angle α12 that takes the Stokes vector from the first facet
to the second is given by Eq. (3.54), where now this formula gives α12 = 2π − | cos−1(s1 · s2)|.
The intersection of first transmitted ray with the second facet yields reflected and refracted rays.
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Both of these rays leave the hexagonal domain, and their Stokes vectors are then rotated into their
respective final meridian planes, as shown by the green hr,vr and ht,vt arrows of the right figure.

The next step of the ray tracing discussion is to specify exactly what is to be computed in the
Monte Carlo simulation. Recall from the surface boundary conditions (2.21) and (2.22) that what
is needed are four quad-averaged sea-surface transfer functions raw(r, s → u, v), rwa(r, s → u, v),
taw(r, s → u, v), and twa(r, s → u, v). These functions transform incident Stokes vectors S(r, s)
into final Stokes vectors S(u, v). These transfer functions are inherent optical properties of the sea
surface that describe its effect on incident light; they are independent of the incident light itself. The
transfer functions are essentially scattering phase matrices that describe how the surface scatters
light from any incident direction into any other direction, and as such they include the effects of
the rotations from the incident meridian plane of S(r, s) to the final meridian plane of S(u, v). For
the case of air-incident light being reflected back upward by the surface, and for multiple scattering
between wave facets, we can write

S(u, v) = raw(r, s→ u, v)S(r, s)

= R(αf )M(ψm)R(αm−1,m) · · ·R(α1,2)M(ψ1)R(αi)S(r, s) (3.55)

Here

• αi is the rotation angle that rotates the initial S(r, s) into the scattering plane of the first
wave facet.

• M(ψ1) is any of the four Fresnel reflectance and transmittance functions Raw, Rwa, T aw, or
Twa for a level water surface, as given in §3.1.

• ψ1 represents the scattering angle for the incident and reflected or transmitted directions used
in the Fresnel function. ψ1 thus represents a θi, θr or θi, θt pair depending on whether the
incident ray is reflected or transmitted at facet 1.

• R(α1,2) is the rotation matrix that takes the Stokes vector M(ψ1)R(αi)S(r, s) from the scat-
tering plane of the first wave facet to the scattering plane of the second wave facet.

• R(αm−1,m) carries the current Stokes vector from wave facet m− 1 to the last facet m.

• M(ψm) is the Fresnel reflection or transmission function for the last wave facet.

• R(αf ) is the rotation matrix that carries the Stokes vector from the scattering plane of the
last wave facet to the final meridian plane associated with S(u, v).

For given quads Q(r, s) and Q(u, v), the surface transfer function is a product of rotation
matrices and Fresnel reflectance and transmittance matrices. These rotation and Fresnel matrices
are determined by the particular wave facets intercepted by the ray path connecting Q(r, s) and
Q(u, v). Note that a single air-incident ray usually contributes to both raw and taw, since the
reflected and refracted daughter rays can leave the hexagonal domain in any direction. Likewise, a
water-incident ray usually contributes to both rwa and twa. Thus in the ray tracing described next,
we need to keep track of four accumulating weight arrays, W(s)

raw(r, s→ u, v) and three others. The
subscript on W specifies which of the four weight arrays is referenced: Wraw for the weight array
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leading eventually to raw, and Wtaw, Wrwa, or Wtwa for the other four functions. The superscript
index (s) labels that the weight array is for the sth surface realization. As seen next, a particular ray
has associated with it a single weight array W, which will be tallied to one of the four accumulating
weight arrays W(s)

raw(r, s→ u, v), etc.
The flow chart of Fig. 3.12 outlines the general procedure for Monte Carlo computation of

raw(r, s → u, v) and the other three surface functions. The details of the calculations for the sth

surface realization and a single initial ray from one quad Q(r, s) are as follows:

1. Choose a random point within Q(r, s) and aim a ray ξi from that point to a particular target
point t near the center of the hexagonal grid used to define the current sea surface realization.

2. Compute the point pi where the initial ray enters the hexagonal domain as described in §B.1.

3. Compute the initial horizontal direction hi from Eq. (3.51a), as is used to specify Stokes
vectors in the initial meridian plane.

4. Initialize the weight matrix W i to the 4× 4 identity matrix: W i = I4×4.

5. Push the initial ray information (pi, ξi,hi,W i) into the stack. This completes the ray initial-
ization.

6. Pull the next available ray (p′, ξ′, s′,W ′) from the stack and trace it to completion. (If the
ray pulled from the stack is an initial ray, then s′ as pulled will the value of hi. If the ray
pulled has already intersected a facet, then the pulled s′ will be the s of the previous facet.)

(a) If the ray intersects a wave facet:

i. Compute the direction s perpendicular to the scattering plane for the intersection
of the ray with the facet, using Eq. (3.52a).

ii. Compute the rotation angle α using Eq. (3.53) or (3.54) with v1 = s′ and v2 = s.

iii. Update the weight using W = R(α)W ′. The R(α) rotation carries the Stokes vector
from its previous reference plane into the scattering plane of the wave facet.

iv. Determine the directions of the reflected (ξr) and transmitted (ξt, if there is one)
rays at the point p of intersection.

v. For the reflected ray, multiply the weight W by the Fresnel reflectance function
RF = Raw or Rwa, depending on whether the initial ray is air-incident or water-
incident. That is, set the weight for the reflected ray to be Wr = RFW. The angles
of incidence and transmission for use in RF are determined from the dot product
of the incident vector and the normal to the wave facet. Push the reflected ray
information (p, ξr, s,Wr) into the stack to await further processing.

vi. For the transmitted ray (if there is one), multiply the weight W by the Fresnel
transmittance function TF = T aw or Twa, depending on whether the initial ray is
air-incident or water-incident. That is, set the weight for the transmitted ray to be
Wt = TFW. Push the transmitted ray information (p, ξt, s,Wt) into the stack to
await further processing.

(b) If the ray leaves the hexagonal domain:
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i. Determine the quad Q(u, v) receiving the final ray. The initial and final quads for
this ray path determine which of the four weight arrays W(s)

raw(r, s→ u, v) etc. will
receive the ray’s final weight array.

ii. Compute the final horizontal direction hf = ξ′ × z.

iii. Compute the final rotation angle αf that takes the Stokes vector into the final
meridian plane.

iv. Update the ray’s weight array to its final value: Wf = R(αf )W ′.

v. Add the final weight for this ray to the accumulating weight array that connects
quads Q(r, s) and Q(u, v), e.g. W(s)

raw(r, s→ u, v) := W(s)
raw(r, s→ u, v) +Wf .

7. If the stack is not empty, return to Step 6 and begin processing the next ray. If the stack
is empty, return to Step 1 and initialize a new ray from a different quad. Repeat this cycle
until a ray has been traced from a random direction within each quad, for the given surface
realization.

The above steps trace a ray from a random direction within each quad, for a given surface
realization. Note that a single initial ray in Step 1 generally contributes to the accumulating weights
for two or more different final quads. The exception occurs if the initial ray is totally internally
reflected and that reflected ray leaves the hexagonal domain without further intersections with the
surface. In that case, only one final quad receives the entire ray weight.

This entire process is repeated for a large number S of sea surface realizations; typically S = 105

or more. After tracing rays from each quad for each surface realization, we compute the ensemble
averages of the four weight arrays as

〈Wraw(r, s→ u, v)〉 =
1
S

S∑
s=1

W(s)
raw(r, s→ u, v) , (3.56)

with corresponding equations for the other three weight arrays. (Note: Eq. (3.56) represents the
conceptual process. However, the code does not store separate arrays for each surface realization;
the four arrays are just added to until the prescribed number of surface simulations has been
reached. Then the final value of W(s)

raw(r, s→ u, v) is divided by S.)
The ray tracing calculations just described give four ensemble averages 〈Wraw(r, s → u, v)〉,

etc. These quantities are the averages of the product R(αf )M(ψm) · · ·M(ψ1)R(αi), shown in Eq.
(3.55), for many different ray paths connecting quads Q(r, s) and Q(u, v). One final step remains to
convert these ensemble averages into the surface radiance transfer functions seen in the boundary
conditions.

Recall that the first element of a Stokes vector S = [I,Q,U, V ]T gives the total radiance without
regard to its state of polarization. The I term thus represents the total energy of the light ray
(within the solid angle of the quad, measured on a surface normal to the direction of propagation).
The (1,1) elements of the Fresnel reflectance and transmittance matrices show how much of this
energy is reflected and transmitted as a function of the incident angle of the ray with a facet
normal in each ray-facet interaction. Conservation of energy of course requires that the reflected
plus transmitted energy equal the incident energy in each interaction. The (1,1) elements of the
rotation matrices (1.14) are always 1 and thus do not affect the I element of Stokes vectors. The
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weight array for each initial ray is the identity matrix, so the (1,1) element is 1. At each ray-
facet interaction, this initial value of 1 will be reduced by the value of the (1,1) element of the
Fresnel reflectance or transmittance. Thus we can see that the final value of the (1,1) element of
the ensemble-averaged weight array 〈Wraw(r, s→ u, v)〉 gives the fraction of the initial total energy
of rays from quad Q(r, s) that eventually reaches quad Q(u, v). A similar interpretation applies to
the other matrix elements. Thus, for example, the (2,3) element of W gives the fraction of energy
coming from quad Q(r, s) in a horizontal (Q > 0) or vertical (Q < 0) polarization state in the
incident meridian plane then ends up in quad Q(u, v) in a polarization state that is at +45 deg
(U > 0) or -45 deg (U < 0) in the final meridian plane. The non-dimensional ensemble averages
can therefore be interpreted as energy (or power) transfer functions.

Conservation of total energy at the sea surface therefore can be written in terms of the (1,1)
elements of the W arrays as∑

u

∑
v

u,v∈Ξu

〈Wraw(r, s→ u, v)〉1,1 +
∑
u

∑
v

u,v∈Ξd

〈Wtaw(r, s→ u, v)〉1,1 = 1 , (3.57)

for every Q(r, s) in Ξd. The notation here means that downwelling energy coming from any given
incident quad is either reflected back upward into some quad Q(u, v) in Ξu (the first term on the
left) or transmitted downward into some quad Q(u, v) in Ξd (the second term) without loss. The
corresponding conservation-of-energy equation for upwelling incident energy is∑

u

∑
v

u,v∈Ξd

〈Wrwa(r, s→ u, v)〉1,1 +
∑
u

∑
v

u,v∈Ξu

〈Wtwa(r, s→ u, v)〉1,1 = 1 , (3.58)

for every Q(r, s) = Qrs in Ξu. These equations can be compared with the surface boundary
conditions (2.21) and (2.22),

S(a, u, v) =
∑
r

∑
s

r,s∈Ξd

raw(r, s→ u, v)S(a, r, s)

+
∑
r

∑
s

r,s∈Ξu

twa(r, s→ u, v)S(w, r, s) for (u, v) ∈ Ξu (3.59)

and

S(w, u, v) =
∑
r

∑
s

r,s∈Ξu

rwa(r, s→ u, v)S(w, r, s)

+
∑
r

∑
s

r,s∈Ξd

taw(r, s→ u, v)S(a, r, s) for (u, v) ∈ Ξd . (3.60)

The surface boundary conditions show where the radiance (energy) comes from for a given output
direction Q(u, v). The conservation-of-energy equations show where the energy goes for a given
input direction Q(r, s).

Equations (3.57) to (3.60) hold for any input quad Q(r, s). The incident radiant power per unit
horizontal area of the mean sea surface is the plane irradiance E. The downwelling plane irradiance
onto the air side of the sea surface (depth index a) due to a single quad Q(r, s) ∈ Ξd is

Ed(a, r, s) = I(a, r, s) |µr|Ωrs . (3.61)
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The upwelling irradiance in quad Q(u, v) ∈ Ξu generated when the sea surface reflects this down-
welling irradiance is

Eu(a, u, v) = Ed(a, r, s) 〈Wraw(r, s→ u, v)〉1,1 , (3.62)

since, as we have seen, 〈Wraw(r, s → u, v)〉1,1 is the fraction of the total energy in Q(r, s) that
is reflected into Q(u, v). Writing Eu(a, u, v) in terms of the radiance, as in Eq. (3.61), the last
equation becomes

I(a, u, v)|µu|Ωuv = I(a, r, s)|µr|Ωrs〈Wraw(r, s→ u, v)〉1,1 , (3.63)

or

I(a, u, v) = I(a, r, s)
[
|µr|Ωrs〈Wraw(r, s→ u, v)〉1,1

|µu|Ωuv

]
. (3.64)

Now recall the surface boundary condition (3.59). This equation holds even if only one particular
input quad Q(r, s) has a nonzero Stokes vector and all other quads are dark, as is the case for Eq.
(3.64). Equation (3.59) for the first element of the Stokes vector then reduces to

I(a, u, v) = I(a, r, s) raw(r, s→ u, v)1,1 . (3.65)

Comparing Eqs. (3.64) and (3.65) immediately yields the connection between the (1,1) element of
the surface radiance transfer function rwa and the (1,1) element of the ensemble-averaged energy
transfer function Wraw:

raw(r, s→ u, v)1,1 = 〈Wraw(r, s→ u, v)〉1,1
|µr|Ωrs

|µu|Ωuv
. (3.66)

Thus the energy transfer function Wraw must be scaled by the cosines of the incident and re-
flected directions and the solid angles of the incident and reflected quads in order to obtain the
corresponding radiance transfer function raw.

Applying the same scaling to all elements of the ensemble-averaged energy transfer functions
gives the needed final part of the computation of the radiance transfer functions (L&W 4.74):

raw(r, s→ u, v) = 〈Wraw(r, s→ u, v)〉 |µr|Ωrs

|µu|Ωuv
, (3.67a)

taw(r, s→ u, v) = 〈Wtaw(r, s→ u, v)〉 |µr|Ωrs

|µu|Ωuv
, (3.67b)

rwa(r, s→ u, v) = 〈Wrwa(r, s→ u, v)〉 |µr|Ωrs

|µu|Ωuv
, (3.67c)

twa(r, s→ u, v) = 〈Wtwa(r, s→ u, v)〉 |µr|Ωrs

|µu|Ωuv
. (3.67d)

Evaluation of these equations completes the Monte Carlo simulation of the sea-surface radiance
transfer functions needed for the surface boundary conditions.

Equations 3.67 can be used in Eqs. (3.57) and (3.58) to express conservation of total energy at
the sea surface in terms of the radiance transfer functions:

1
|µr|Ωrs

∑
u

∑
v

u,v∈Ξu

raw(r, s→ u, v)1,1 |µu|Ωuv +
1

|µr|Ωrs

∑
u

∑
v

u,v∈Ξd

taw(r, s→ u, v)1,1 |µu|Ωuv = 1 ,

(3.68)
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for every Q(r, s) in Ξd. A corresponding equation holds for upward incident radiance, as in Eq.
(3.58).

Two important observations can be made about these calculations. First, the n2 law for radiance
is built into the radiance transfer functions photon by photon during the Monte Carlo ray tracing,
just as happens in nature. Second, the ray-by-ray conservation of energy in the Monte Carlo
simulations guarantees global (hemisphere-wide) conservation of energy in the radiance reflectance
and transmittance functions.

Hovenier (1969) derived 20 symmetry relations (his relations a through t) for finitely thick
layers of multiply scattering particles whose phase matrices have the symmetry of Eq. (1.36).
These relations are similar to those seen for phase matrices in Eqs. (1.35a) to (1.37d). The Fresnel
reflection and scattering matrices of Eqs. (3.2) and (3.3) obey the symmetry of Eq. (1.36). It
therefore seems that the surface reflectance and transmission functions for a wind-blown surface
should obey the Hovenier symmetry relations as well, with multiple scattering by surface wave
facets corresponding to multiple scattering by particles in a volume. Further investigation of these
symmetries by numerical simulation of wind-blown surfaces is warranted.
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CHAPTER 4

Solution of the VRTE within the Water

There are many numerical techniques for solving the radiative transfer equation. The one used in
both HydroLight and HydroPol is invariant imbedding. The details of invariant imbedding theory
as applied to the scalar RTE are given in Chapter 8 of Light and Water (Mobley, 1994). The scalar
technique used in HydroLight is extended here to the vector RTE for use in HydroPol.

The RTE and its boundary conditions constitute a linear (in the radiances) two-point boundary
value problem. That is, the linear RTE must be solved subject to boundary conditions at both the
sea surface and bottom. The essence of invariant imbedding is that it converts a linear two-point
boundary value problem into a pair of non-linear initial value problems. In the present case, one
of these initial value problems is solved starting with a boundary value at the sea surface and
integrating downward, and the other is solved starting with a boundary value at the sea bottom
and integrating upward.

Invariant imbedding is mathematically complicated and consequently tedious to program, but
the payoff is that it is both much faster in run time than the mathematically simpler (and therefore
widely used) Monte Carlo technique and more general in the allowed inputs (such as allowing
arbitrary depth dependence of the IOPs) than some other techniques. In particular, the run time
for invariant imbedding is linearly proportional to the optical depth, whereas run times increase
exponentially with optical depth for Monte Carlo solutions. Invariant imbedding allows for arbitrary
depth dependence of the IOPs, whereas other techniques (e.g., discrete ordinates and adding-
doubling methods) build up the water column as a stack of homogeneous layers, and run time is
proportional to the number of layers used.

4.1 Physical Space vs. Fourier Space

Invariant imbedding theory can be used to solve directly for the discretized Stokes vectors S(k, u, v, j).
There is an argument for doing this, namely that the mathematical development below is much
easier and the quantities involved all have simple interpretations, e.g., as physical reflectances and
transmittances that are bounded by 0 and 1. However, as will be seen in §4.5.4, a physical-space
solution algorithm requires the simultaneous solution of a set of nonlinear ordinary differential
equations (ODEs) of approximate size 128M2N (ignoring internal source terms and special cases
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for the polar caps). For the current quad partitioning with M = 10, N = 12, this gives a system of
153,600 equations. That is a formidable numerical problem.

As shown in Appendix A, a discrete function f(v) of azimuthal angle φv, v = 1, ..., 2N, can be
represented as sines and cosines via

f(v) =
N∑
`=0

[
f̂1(`) cos(`φv) + f̂2(`) sin(`φv)

]
.

This results in N + 1 generally non-zero cosine amplitudes f̂1(`) and N − 1 sine amplitudes f̂2(`).
When applied to the VRTE, Fourier analysis leads to the solution of N + 1 sets of ODEs of size
64M2 equations for cosine amplitudes, and N − 1 sets of 64M2 equations for sine amplitudes, for
the same total of 128M2N equations solved as for the physical-space formulation. However, with
Fourier analysis the ODE solutions are made as a sequence of N+1 independent “small” problems,
rather than as one “large” problem.

HydroPol, like HydroLight, therefore uses a Fourier analysis of the VRTE in azimuthal angle to
minimize computer run times. The penalty paid for this increase in numerical efficiency is a corre-
sponding increase in the complexity of the mathematical development and computer programming.

4.2 Recasting the VRTE as Upward and Downward Equations

Recall the discretized VRTE of Eq. (2.20):

µu
dS(ζ, u, v, j)

dζ
=− S(ζ, u, v, j)

+ ωo(ζ, j)
∑
r

∑
s

P̃ (ζ; r, s→ u, v; j)S(ζ, r, s, j)

+ Σ(ζ, u, v, j) , (4.1)

where u = 1, ..., 2M and v = 1, ..., 2N to cover all directions (with special cases for the polar caps).
Invariant imbedding requires that the VRTE be written as a pair of equations, one for upward

directions and one for downward directions. In addition, the sea surface boundary conditions are
formulated in terms of transmission and reflection operators that transfer radiance back and forth
across the sea surface. As was shown in Fig. 1.2, the sea surface is described mathematically
as a nonabsorbing “layer” of zero physical thickness that represents a discontinuity in the index
of refraction and therefore causes scattering (reflection and refraction) of light incident onto the
surface from above or below. A depth value of ζ = a denotes a location in the air just above the
mean sea surface, and a depth value of ζ = w denotes a location at depth 0, but in the water
just below the mean sea surface. An opaque bottom at depth ζ = m is defined by its reflectance
properties. Figure 4.1 shows a redrawn version of Fig. 1.2. As in Figs. 1.2 and 2.1, depth is
measured positive downward from 0 at the mean sea surface. Because direction +ζ is downward, a
superscript + will denote downwelling radiances (photons heading downward); superscript − will
denote upwelling radiances (photons heading upward). Thus in the figure, the downward arrow
labeled S+(a) represents downwelling radiance incident onto the sea surface from above, and S−(a)
represents upwelling radiance just above the surface, i.e., water-leaving radiance. S+(w) represents
radiance that has been transmitted through the surface and is incident onto the water below. The
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Figure 4.1: The depth coordinate system used for invariant imbedding. Upwelling and downwelling
directions are indicated, along with a few representative Stokes vectors.

sphere of directions at depth ζ highlights a quad containing an upwelling radiance S−(ζ) (red quad
and red arrow). The blue quad and blue arrow indicate downwelling direction and radiance.

Recall also that µu = cos(θu) in Eq. (4.1) ranges from −1 when θ = 180 (photons heading
straight up) to +1 when θ = 0 (photons heading straight down). It will be convenient to redefine
µu as a positive number and incorporate the negative µ values for upwelling radiance via an explicit
minus sign in the VRTE. With these conventions, and dropping the wavelength argument j for
simplicity of notation, the VRTE can be written as a pair of equations:

∓µu
dS∓(ζ, u, v)

dζ
=− S∓(ζ, u, v)

+ ωo(ζ)
∑
r

∑
s

P̃
±
(ζ; r, s→ u, v)S−(ζ, r, s)

+ ωo(ζ)
∑
r

∑
s

P̃
∓
(ζ; r, s→ u, v)S+(ζ, r, s)

+ Σ∓(ζ, u, v) . (4.2)

Now u = 1, ...,M in each hemisphere of directions (quad M is the polar cap), v = 1, ..., 2N , and
µu > 0. Note that now there are two radiances with the same (u, v) quad indices, but one is in the
upper hemisphere (− superscript) and one is in the lower (+ superscript). The + superscript on
the phase matrix P̃

+
(ζ; r, s → u, v) denotes scattering between quads Q(r, s) and Q(u, v) that lie

in the same hemisphere. The − superscript on P̃
−
(ζ; r, s→ u, v) denotes scattering between quads

in opposite hemispheres. This is illustrated in Fig. 4.2. Scattering from the green quad Q(r, s) to
the red quad Q(u, v) is described by P̃

+
(ζ; r, s→ u, v); scattering from the green to the blue quad
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Figure 4.2: Illustration of scattering within
and between hemispheres of directions. Scat-
tering within a hemisphere, e.g. from the
green quad Q(r, s) to the red quad Q(u, v),
is described by P̃+(r, s, u, v). Scattering be-
tween hemispheres, e.g. from the green quad
Q(r, s) to the blue quad Q(u, v), is described
by P̃−(r, s, u, v).

has a different scattering angle ψ and is described by P̃
−
(ζ; r, s→ u, v). Taking the top sign in Eq.

(4.2) gives the VRTE for upwelling radiances S−(ζ, u, v), and the bottom sign gives the equation
for downwelling radiances S+(ζ, u, v).

4.3 Fourier Decomposition of the Upward and Downward VRT

Equations

The next step is to Fourier decompose the upward and downward pair of VRTE of equations. As
was noted in §1.4.2, some terms of the phase matrix depend on cos(φv − φs) and some depend on
sin(φv − φs). Rather than doing different Fourier expansions for different phase matrix elements
and keeping track of which is which, it is notationally convenient to do a full Fourier expansion for
each matrix element. However, when performing actual computations, one half of the calculations
can be avoided by setting either the cosine or the sine amplitudes to zero, depending on which
matrix element is being considered. Appendix A contains for reference the various formulas for
Fourier decomposition of discrete functions of one or two azimuthal angles, as required here.

The Stokes vectors are functions of a single azimuthal angle and are decomposed as (Eq. A.6)

S±(ζ, u, v) =
N∑
`=0

[
Ŝ
±
1 (ζ, u|`) cos(`φv) + Ŝ

±
2 (ζ, u|`) sin(`φv)

]
, (4.3)

where v = 1, 2, ..., 2N . The vertical bar in the (ζ, u|`) argument list is used to separate the physical
variables from the Fourier mode variable `. The cosine and sine amplitudes are computed via Eqs.
(A.7) and (A.9), respectively. A similar equation holds for the source term Σ. In all amplitude
variables here and below, subscript 1 denotes a cosine amplitude, and subscript 2 a sine amplitude.

As noted in §1.4.2, the elements of the phase matrix depend on either cos(φv−φs) or sin(φv−φs).
Rather than keep track of which element has which dependence, it is notationally convenient to
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expand each element of P±(ζ, r, s→ u, v) as

P±(ζ, r, s→ u, v) =
N∑
k=0

[
P̂
±
1 (ζ, r, u|k) cos[k(φv − φs)] + P̂

±
2 (ζ, r, u|k) sin[k(φv − φs)]

]
(4.4)

However, in the computer code, either P̂±1i,j
or P̂±2i,j

will be zero for a particular P±i,j element.
The non-zero amplitudes in Eq. (4.4) are computed by Eqs. (A.12) and (A.14). However, polar

caps must always be treated as special cases (L&W 8.34(i)-8.34(iv)). Recall also that s = 1 or
φ′ = 0 was chosen as the reference point to anchor the azimuthal dependence on φ − φ′. Then
depending on which element of P±(ζ, r, s → u, v) is being Fourier analyzed, either the cosine or
sine formulas are used as follows (with the other amplitude set to zero):

(i) Quad-to-quad scattering: u, r = 1, 2, ...,M − 1. Equations Eqs. (A.12) and (A.14) hold as
written. Thus for given r, u values,

P̂
±
1 (r, u|k) =

1
εk

2N∑
v=1

P±(r, s = 1 → u, v) cos(kφv) for k = 0, ..., N (4.5a)

P̂
±
2 (r, u|k) =

1
γk

2N∑
v=1

P±(r, s = 1 → u, v) sin(kφv) for k = 1, ..., N − 1 (4.5b)

P̂
±
2 (r, u|k) = 0 for k = 0 or N (4.5c)

where ε` and γ` are defined by Eqs. (A.8) and (A.10).

(ii) Polar cap-to-quad scattering: r = M ;u = 1, 2, ...,M − 1.

P̂
±
1 (M,u|k) = P±(M, · → u, v) for k = 0 (4.5d)

P̂
±
1 (M,u|k) = 0 for k = 1, ..., N (4.5e)

P̂
±
2 (M,u|k) = 0 for k = 0, ..., N (4.5f)

(iii) Quad-to-Polar cap scattering: r = 1, 2, ...,M − 1;u = M .

P̂
±
1 (r,M |k) = P±(r, s = 1 →M, ·) for k = 0 (4.5g)

P̂
±
1 (r,M |k) = 0 for k = 1, ..., N (4.5h)

P̂
±
2 (r,M |k) = 0 for k = 0, ..., N (4.5i)

(iv) Polar cap-to-Polar cap scattering: r = u = M .

P̂
±
1 (M,M |k) = P±(M, · →M, ·) for k = 0 (4.5j)

P̂
±
1 (M,M |k) = 0 for k = 1, ..., N (4.5k)

P̂
±
2 (M,M |k) = 0 for k = 0, ..., N (4.5l)

70



The dot argument for s or v for polar caps is a reminder that polar caps have no φ′ or φ dependence.
In the computer code, the polar cap values can be stored in the r = M, s = 1 or u = M,v = 1
array locations, with the remaining array elements for r, u = M being unused and set to zero.

Inserting these Fourier decompositions into Eq. 4.2 gives (L&W 8.35)

∓µu
d

dζ

N∑
`=0

[
Ŝ
∓
1 (ζ, u|`) cos(`φv) + Ŝ

∓
2 (ζ, u|`) sin(`φv)

]
=−

N∑
`=0

[
Ŝ
∓
1 (ζ, u|`) cos(`φv) + Ŝ

∓
2 (ζ, u|`) sin(`φv)

]
+ ωo(ζ)

M−1∑
r=1

2N∑
s=1

{
N∑
k=0

[
P̂
±
1 (ζ, r, u|k) cos[k(φv − φs)] + P̂

±
2 (ζ, r, u|k) sin[k(φv − φs)]

]}

×

{
N∑
`=0

[
Ŝ
−
1 (ζ, r|`) cos(`φs) + Ŝ

−
2 (ζ, r|`) sin(`φs)

]}
+ ωo(ζ)P̂

±
1 (ζ,M, u|0)Ŝ

−
1 (ζ,M |0)

+ ωo(ζ)
M−1∑
r=1

2n∑
s=1

{
N∑
k=0

[
P̂
∓
1 (ζ, r, u|k) cos[k(φv − φs)] + P̂

∓
2 (ζ, r, u|k) sin[k(φv − φs)]

]}

×

{
N∑
`=0

[
Ŝ

+
1 (ζ, r|`) cos(`φs) + Ŝ

+
2 (ζ, r|`) sin(`φs)

]}
+ ωo(ζ)P̂

∓
1 (ζ,M, u|0)Ŝ

+
1 (ζ,M |0)

+
N∑
`=0

[
Σ̂
∓
1 (ζ, u|`) cos(`φv) + Σ̂

∓
2 (ζ, u|`) sin(`φv)

]
. (4.6)

Here the generic sums over r and s have been written to explicitly separate out the polar cap quads,
r = M , which have no azimuthal dependence. For polar caps, the Fourier cosine amplitude for
k = 0 is just the value of the physical variable, the cosine amplitudes are zero for k > 0, and the
sine amplitudes are zero for all k values.

Equation (4.6) is more complicated than its scalar equivalent (L&W 8.35) because it is now
necessary to have both cosine (P̂

±
1 ) and sine (P̂

±
2 ) amplitudes to represent P±, whereas the phase

function β̃ in the SRTE needed only cosine amplitudes β̂, so no subscript was needed on β̂ as seen
in L&W (8.35). The necessity of separating cosine and sign amplitudes carries through to the local
and global transmission and reflection operators, as will be seen below.

The path function terms in Eq. (4.6) have quantities of the form

N∑
l=0

N∑
k=0

f(k)g(`)
2N∑
s=1


cos[k(φv − φs)] cos(`φs)
cos[k(φv − φs)] sin(`φs)
sin[k(φv − φs)] cos(`φs)
sin[k(φv − φs)] sin(`φs)

 ,

where f(k) is a phase matrix element for a given ζ, r, u, and g(`) is a Stokes vector element for
a given ζ, r. These four combinations of cosine and sine terms are reduced as in Eqs. (A.19) to
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(A.22) to obtain 1

N∑
l=0

f(`)g(`)


ε` cos(`φv)
γ` sin(`φv)
ε` sin(`φv)
−γ` cos(`φv)

 ,

where ε` and γ` are defined by Eqs. (A.8) and (A.10):

ε` = N(1 + δ2` + δ2`−2N ) =

{
2N if ` = 0 or ` = N

N if ` = 1, 2, ..., N − 1

and

γ` = N(1− δ2` − δ2`−2N ) =

{
0 if ` = 0 or ` = N

N if ` = 1, 2, ..., N − 1 .

The Kronecker delta functions are defined by Eqs. (A.1) and (A.2).
Equation (4.6) therefore reduces to (L&W 8.36)

N∑
`=0

{
∓µu

d

dζ
Ŝ
∓
1 (ζ, u|`) cos(`φv)∓ µu

d

dζ
Ŝ
∓
2 (ζ, u|`) sin(`φv)

}

=−
N∑
`=0

{
Ŝ
∓
1 (ζ, u|`) cos(`φv) + Ŝ

∓
2 (ζ, u|`) sin(`φv)

}
+ ωo(ζ)

N∑
`=0

{
M−1∑
r=1

ε` P̂
±
1 (ζ, r, u|`)Ŝ−1 (ζ, r|`) + δ` P̂

±
1 (ζ,M, u|`)Ŝ−1 (ζ,M |`)

}
cos(`φv)

− ωo(ζ)
N∑
`=0

{
M−1∑
r=1

γ` P̂
±
2 (ζ, r, u|`)Ŝ−2 (ζ, r|`)

}
cos(`φv)

+ ωo(ζ)
N∑
`=0

{
M−1∑
r=1

γ` P̂
±
1 (ζ, r, u|`)Ŝ−2 (ζ, r|`) +

M−1∑
r=1

ε` P̂
±
2 (ζ, r, u|`)Ŝ−1 (ζ, r|`)

}
sin(`φv)

+ ωo(ζ)
N∑
`=0

{
M−1∑
r=1

ε` P̂
∓
1 (ζ, r, u|`)Ŝ+

1 (ζ, r|`) + δ` P̂
±
1 (ζ,M, u|`)Ŝ+

1 (ζ,M |`)

}
cos(`φv)

− ωo(ζ)
N∑
`=0

{
M−1∑
r=1

γ` P̂
∓
2 (ζ, r, u|`)Ŝ+

2 (ζ, r|`)

}
cos(`φv)

+ ωo(ζ)
N∑
`=0

{
M−1∑
r=1

γ` P̂
∓
1 (ζ, r, u|`)Ŝ+

2 (ζ, r|`) +
M−1∑
r=1

ε` P̂
∓
2 (ζ, r, u|`)Ŝ+

1 (ζ, r|`)

}
sin(`φv)

+
N∑
`=0

{
Σ̂
∓
1 (ζ, u|`) cos(`φv) + Σ̂

∓
2 (ζ, u|`) sin(`φv)

}
. (4.7)

1The minus sign in −γ` cos(`φv) results from the reduction of the sin[k(φv−φs)] sin(`φs) term and the minus sign

in sin(a− b) = sin a cos b− cos a sin b, so there’s no escaping it. As will be seen, this sign carries through the rest of

the derivation and causes a certain loss of symmetry in many equations, compared to the scalar equations in Light

and Water.
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The polar cap terms, which involve only ` = 0 cosine amplitudes, have been incorporated into the
sums over ` by use of δ`. Note that the minus sign in resulting from the reduction of the sums
over sin[k(φv − φs)] sin(`φs) gives a minus sign in all terms involving P̂

±
2 (ζ, r, u|`)Ŝ±2 (ζ, r|`). This

sign carries through the rest of the derivation and introduces a sign asymmetry in the cosine and
sine equations, which does not occur in the corresponding scalar equations (which do not require
P̂
±
2 (ζ, r, u|`) terms in the Fourier expansion of the phase function). The same sign appears, for ex-

ample, in Eq. (16) of Hovenier (1971) in a decomposition of the continuous-variable (undiscretized)
VRTE.

The linear independence of cos(`φv) and sin(`φv) for different ` values means that this last
equation must separately hold true for each value of ` = 0, ..., N for the Ŝ1 amplitudes, and for
` = 1, ..., N − 1 for the Ŝ2 amplitudes. Collecting together the coefficients of cos(`φv) then gives

∓µu
d

dζ
Ŝ
∓
1 (ζ, u|`) = −Ŝ∓1 (ζ, u|`)

+
M−1∑
r=1

ωo(ζ) ε` P̂
±
1 (ζ, r, u|`)Ŝ−1 (ζ, r|`) + ωo(ζ) δ` P̂

±
1 (ζ,M, u|`)Ŝ−1 (ζ,M |`)

−
M−1∑
r=1

ωo(ζ) γ` P̂
±
2 (ζ, r, u|`)Ŝ−2 (ζ, r|`)

+
M−1∑
r=1

ωo(ζ) ε` P̂
∓
1 (ζ, r, u|`)Ŝ+

1 (ζ, r|`) + ωo(ζ) δ` P̂
∓
1 (ζ,M, u|`)Ŝ+

1 (ζ,M |`)

−
M−1∑
r=1

ωo(ζ) γ` P̂
∓
2 (ζ, r, u|`)Ŝ+

2 (ζ, r|`)

+ Σ̂
∓
1 (ζ, u|`) . (4.8)

The equation obtained from the coefficients of the sin(`φv) terms is

∓µu
d

dζ
Ŝ
∓
2 (ζ, u|`) = −Ŝ∓2 (ζ, u|`)

+
M−1∑
r=1

ωo(ζ) γ` P̂
±
1 (ζ, r, u|`)Ŝ−2 (ζ, r|`) +

M−1∑
r=1

ωo(ζ) ε` P̂
±
2 (ζ, r, u|`)Ŝ−1 (ζ, r|`)

+
M−1∑
r=1

ωo(ζ) γ` P̂
∓
1 (ζ, r, u|`)Ŝ+

2 (ζ, r|`) +
M−1∑
r=1

ωo(ζ) ε` P̂
∓
2 (ζ, r, u|`)Ŝ+

1 (ζ, r|`)

+Σ̂
∓
2 (ζ, u|`) . (4.9)

Since Ŝ2, P̂ 2, and Σ̂2 are all 0 when ` = 0 or ` = N , we can for notational convenience regard this
last equation as holding for ` = 0 and N as well. Thus Eqs. (4.8) and (4.8) can both be regarded
as holding for u = 1, ...,M − 1 and ` = 0, ..., N .

Note in these equations that P̂ 1 scatters Ŝ1 into Ŝ1 and Ŝ2 into Ŝ2, whereas P̂ 2 scatters Ŝ1

into Ŝ2 and Ŝ2 into Ŝ1. That is, P̂ 2 converts Stokes vector cosine amplitudes into sine amplitudes,
and vice versa.

The equation for the polar cap u = M involves only the cosine term for ` = 0 since there is no
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φ dependency. The vector equations are therefore have the same form as the scalar (L&W 8.39):

∓µu
d

dζ
Ŝ
∓
1 (ζ,M |0) = −Ŝ∓1 (ζ,M |0)

+
M−1∑
r=1

ωo(ζ) ε0 P̂
±
1 (ζ, r,M |0)Ŝ

−
1 (ζ, r|0) + ωo(ζ) P̂

±
1 (ζ,M,M |0)Ŝ

−
1 (ζ,M |0)

+
M−1∑
r=1

ωo(ζ) ε0 P̂
∓
1 (ζ, r,M |0)Ŝ

−
1 (ζ, r|0) + ωo(ζ) P̂

∓
1 (ζ,M,M |0)Ŝ

+
1 (ζ,M |0)

+ Σ̂
∓
1 (ζ,M |0) . (4.10)

Taking the lower signs in Eq. (4.8) gives the equation for the downwelling radiance cosine
amplitudes. The “attenuation” term −Ŝ+

1 (ζ, u|`) term can be incorporated into the sum over r by
use of a Kronecker delta function. The result is (L&W 8.40)

d

dζ
Ŝ

+
1 (ζ, u|`) =

M−1∑
r=1

[
ωo(ζ)ε`
µu

P̂
−
1 (ζ, r, u|`)

]
Ŝ
−
1 (ζ, r|`) +

[
ωo(ζ)δ`
µu

P̂
−
1 (ζ,M, u|`)

]
Ŝ
−
1 (ζ,M |`)

−
M−1∑
r=1

[
ωo(ζ)γ`
µu

P̂
−
2 (ζ, r, u|`)

]
Ŝ
−
2 (ζ, r|`)

+
M−1∑
r=1

[
ωo(ζ)ε`
µu

P̂
+
1 (ζ, r, u|`)− δr−u

µu
I4

]
Ŝ

+
1 (ζ, r|`) +

[
ωo(ζ)δ`
µu

P̂
+
1 (ζ,M, u|`)

]
Ŝ

+
1 (ζ,M |`)

−
M−1∑
r=1

[
ωo(ζ)γ`
µu

P̂
+
2 (ζ, r, u|`)

]
Ŝ

+
2 (ζ, r|`) +

1
µu

Σ̂
+
1 (ζ, u|`) . (4.11)

where I4 is the 4×4 identity matrix. The corresponding equation for the upwelling radiance cosine
amplitudes is (L&W 8.41)

− d

dζ
Ŝ
−
1 (ζ, u|`) =

M−1∑
r=1

[
ωo(ζ)ε`
µu

P̂
+
1 (ζ, r, u|`)− δr−u

µu
I4

]
Ŝ
−
1 (ζ, r|`) +

[
ωo(ζ)δ`
µu

P̂
+
1 (ζ,M, u|`)

]
Ŝ
−
1 (ζ,M |`)

−
M−1∑
r=1

[
ωo(ζ)γ`
µu

P̂
+
2 (ζ, r, u|`)

]
Ŝ
−
2 (ζ, r|`)

+
M−1∑
r=1

[
ωo(ζ)ε`
µu

P̂
−
1 (ζ, r, u|`)

]
Ŝ

+
1 (ζ, r|`) +

[
ωo(ζ)δ`
µu

P̂
−
1 (ζ,M, u|`)

]
Ŝ

+
1 (ζ,M |`)

−
M−1∑
r=1

[
ωo(ζ)γ`
µu

P̂
−
2 (ζ, r, u|`)

]
Ŝ

+
2 (ζ, r|`) +

1
µu

Σ̂
−
1 (ζ, u|`) . (4.12)

For these cosine amplitudes, u = 1, ...,M − 1 and ` = 0, ..., N .
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The corresponding equation for the downwelling sine amplitudes is

d

dζ
Ŝ

+
2 (ζ, u|`) =

M−1∑
r=1

[
ωo(ζ)γ`
µu

P̂
−
1 (ζ, r, u|`)

]
Ŝ
−
2 (ζ, r|`)

+
M−1∑
r=1

[
ωo(ζ)ε`
µu

P̂
−
2 (ζ, r, u|`)

]
Ŝ
−
1 (ζ, r|`)

+
M−1∑
r=1

[
ωo(ζ)γ`
µu

P̂
+
1 (ζ, r, u|`)− δr−u

µu
I4

]
Ŝ

+
2 (ζ, r|`)

+
M−1∑
r=1

[
ωo(ζ)ε`
µu

P̂
+
2 (ζ, r, u|`)

]
Ŝ

+
1 (ζ, r|`) +

1
µu

Σ̂
+
2 (ζ, u|`) , (4.13)

and the equation for the upwelling sine amplitudes is

− d

dζ
Ŝ
−
2 (ζ, u|`) =

M−1∑
r=1

[
ωo(ζ)γ`
µu

P̂
+
1 (ζ, r, u|`)− δr−u

µu
I4

]
Ŝ
−
2 (ζ, r|`)

+
M−1∑
r=1

[
ωo(ζ)ε`
µu

P̂
+
2 (ζ, r, u|`)

]
Ŝ
−
1 (ζ, r|`)

+
M−1∑
r=1

[
ωo(ζ)γ`
µu

P̂
−
1 (ζ, r, u|`)

]
Ŝ

+
2 (ζ, r|`)

+
M−1∑
r=1

[
ωo(ζ)ε`
µu

P̂
−
2 (ζ, r, u|`)

]
Ŝ

+
1 (ζ, r|`) +

1
µu

Σ̂
−
2 (ζ, u|`) . (4.14)

For the sine amplitude equations, u = 1, ...,M − 1 and ` = 1, ..., N − 1. Because ε` = γ` = N for
` = 1, ..., N − 1, the sine equations can be written using ε`.

4.3.1 Local Reflectance and Transmittance Matrices

The quantities in brackets in Eqs. (4.11) to (4.14) are the local reflectance and local transmittance
functions for the radiance amplitudes. There are several things to note about these quantities:

• These quantities depend only the IOPs at depth ζ (and wavelength λ) and on the choice of
quad partioning. They are thus “local” IOPs at a particular depth.

• The same quantities appear in both the downward and upward equations.

• The same quantities appear in both cosine and sine equations when ` = 1, ..., N − 1, in which
case ε` = γ`

• The terms involving P̂
+
1,2 “transmit” downwelling radiance into downwelling radiance, and

upwelling into upwelling.

• The terms involving P̂
−
1,2 “reflect” downwelling radiance into upwelling radiance, and up-

welling into downwelling.
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It will prove convenient to cast the preceding equations into matrix form. Recall that the phase
matrix amplitudes are 4 × 4 for a given (r, u) value. Next define M ×M composite matrices ρ̂±

1,2

and τ̂±1,2 whose (row, column) elements (u, r) are obtained from the 4× 4 P̂
±
1,2(ζ, r, u|`) matrices in

the brackets. That is, ρ̂ and τ̂ are M ×M matrices, each of whose elements is a 4 × 4 matrix, so

that the total size of ρ̂ and τ̂ is 4M × 4M when written out in full as real numbers. The double

underline is a reminder that ρ̂ and τ̂ are matrices of matrices. These matrices are defined as follows:

Quad-to-quad case, r, u = 1, ...,M − 1:

[ τ̂1(ζ|`)]u,r ≡
ωo(ζ)ε`
µu

P̂
+
1 (ζ, r, u|`)− δr−u

µu
I4 for ` = 0, ...,N (4.15a)

[ τ̂2(ζ|`)]u,r ≡
ωo(ζ)γ`
µu

P̂
+
2 (ζ, r, u|`) for ` = 1, ...,N− 1 (4.15b)

[ τ̂2(ζ|`)]u,r ≡ 04 for ` = 0 or N (4.15c)

[ ρ̂
1
(ζ|`)]u,r ≡

ωo(ζ)ε`
µu

P̂
−
1 (ζ, r, u|`) for ` = 0, ...,N (4.15d)

[ ρ̂
2
(ζ|`)]u,r ≡

ωo(ζ)γ`
µu

P̂
−
2 (ζ, r, u|`) for ` = 1, ...,N− 1 (4.15e)

[ ρ̂
2
(ζ|`)]u,r ≡ 04 for ` = 0 or N (4.15f)

Polar cap-to-quad case, r = M,u = 1, ...,M − 1:

[ τ̂1(ζ|0)]u,M ≡ ωo(ζ)
µu

P̂
+
1 (ζ,M, u|0) for ` = 0 (4.16a)

[ τ̂1(ζ|`)]u,M ≡ 04 for ` = 1, ...,N (4.16b)

[ τ̂2(ζ|`)]u,M ≡ 04 for for ` = 0, ...,N (4.16c)

[ ρ̂
1
(ζ|0)]u,M ≡ ωo(ζ)

µu
P̂
−
1 (ζ,M, u|0) for ` = 0 (4.16d)

[ ρ̂
1
(ζ|`)]u,M ≡ 04 for ` = 1, ...,N (4.16e)

[ ρ̂
2
(ζ|`)]u,M ≡ 04 for for ` = 0, ...,N (4.16f)

Quad-to-polar cap case, r = 1, ...,M − 1, u = M :

[ τ̂1(ζ|0)]M,r ≡
ωo(ζ)ε0
µu

P̂
+
1 (ζ, r,M |0) (4.17a)

[ τ̂1(ζ|`)]M,r ≡ 04 for ` = 1, ...,N (4.17b)

[ τ̂2(ζ|`)]M,r ≡ 04 for ` = 0, ...,N (4.17c)

[ ρ̂
1
(ζ|0)]M,r ≡

ωo(ζ)ε0
µu

P̂
−
1 (ζ, r,M |0) (4.17d)

[ ρ̂
1
(ζ|`)]M,r ≡ 04 for ` = 1, ...,N (4.17e)

[ ρ̂
2
(ζ|`)]M,r ≡ 04 for ` = 0, ...,N (4.17f)
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Polar cap-to-polar cap case, r = M,u = M :

[ τ̂1(ζ|0)]M,M ≡ ωo(ζ)ε0
µu

P̂
+
1 (ζ,M,M |0)− 1

µM
I4 (4.18a)

[ τ̂1(ζ|`)]M,M ≡ 04 for ` = 1, ...,N (4.18b)

[ τ̂2(ζ|`)]M,M ≡ 04 for ` = 0, ...,N (4.18c)

[ ρ̂
1
(ζ|0)]M,M ≡ ωo(ζ)ε0

µu
P̂
−
1 (ζ,M,M |0) (4.18d)

[ ρ̂
1
(ζ|`)]M,M ≡ 04 for ` = 1, ...,N (4.18e)

[ ρ̂
2
(ζ|`)]M,M ≡ 04 for ` = 0, ...,N (4.18f)

Note that the elements of the M th row and M th column of ρ̂
1

and τ̂1 are 04 except when ` = 0; 04

is the 4× 4 matrix of zeros.
With these definitions, Eqs. (4.11) and (4.12) can be written

d

dζ
Ŝ

+
1 (ζ, u|`) =

M∑
r=1

[ ρ̂
1
(ζ|`)]u,r Ŝ

−
1 (ζ, r|`) +

M∑
r=1

[ τ̂1(ζ|`)]u,r Ŝ
+
1 (ζ, r|`)

−
M∑
r=1

[ ρ̂
2
(ζ|`)]u,r Ŝ

−
2 (ζ, r|`)−

M∑
r=1

[ τ̂2(ζ|`)]u,r Ŝ
+
2 (ζ, r|`) +

1
µu

Σ̂
+
1 (ζ, u|`) (4.19)

and

− d

dζ
Ŝ
−
1 (ζ, u|`) =

M∑
r=1

[ ρ̂
1
(ζ|`)]u,r Ŝ

+
1 (ζ, r|`) +

M∑
r=1

[ τ̂1(ζ|`)]u,r Ŝ
−
1 (ζ, r|`)

−
M∑
r=1

[ ρ̂
2
(ζ|`)]u,r Ŝ

+
2 (ζ, r|`)−

M∑
r=1

[ τ̂2(ζ|`)]u,r Ŝ
−
2 (ζ, r|`) +

1
µu

Σ̂
−
1 (ζ, u|`) (4.20)

These equations are valid for ` = 0, ..., N and u = 1, ...,M − 1. The polar caps Eq. (4.10) results
in a similar pair of equations involving ρ̂

1
(ζ, 0)M,r and τ̂1(ζ, 0)M,r.

The corresponding equations for the sine amplitudes are

d

dζ
Ŝ

+
2 (ζ, u|`) =

M∑
r=1

[ ρ̂
1
(ζ|`)]u,r Ŝ

−
2 (ζ, r|`) +

M∑
r=1

[ τ̂1(ζ|`)]u,r Ŝ
+
2 (ζ, r|`)

+
M∑
r=1

[ ρ̂
2
(ζ|`)]u,r Ŝ

−
1 (ζ, r|`) +

M∑
r=1

[ τ̂2(ζ|`)]u,r Ŝ
+
1 (ζ, r|`) +

1
µu

Σ̂
+
2 (ζ, u|`) (4.21)

and

− d

dζ
Ŝ
−
2 (ζ, u|`) =

M∑
r=1

[ ρ̂
1
(ζ|`)]u,r Ŝ

+
2 (ζ, r|`) +

M∑
r=1

[ τ̂1(ζ|`)]u,r Ŝ
−
2 (ζ, r|`)

+
M∑
r=1

[ ρ̂
2
(ζ|`)]u,r Ŝ

+
1 (ζ, r|`) +

M∑
r=1

[ τ̂2(ζ|`)]u,r Ŝ
−
1 (ζ, r|`) +

1
µu

Σ̂
−
2 (ζ, u|`) (4.22)
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These equations are valid for ` = 1, ..., N − 1 and u = 1, ...,M − 1. The sine amplitudes are zero
for the polar caps u = M .

It can now be seen that the (u, r) = (row, column) order in the definitions of [ ρ̂
1,2

(ζ|`)]u,r and

[ τ̂1,2(ζ|`)]u,r was chosen to facilitate converting the summations over r in Eqs. (4.11) to (4.14) to

matrix multiplications. Continuing in this direction, now “stack up” the Stokes vectors to define
4M × 1 composite column vectors:

Ŝ
±
1,2(ζ|`) =



Ŝ
±
1,2(ζ, 1|`)

Ŝ
±
1,2(ζ, 2|`)

...
Ŝ
±
1,2(ζ,M − 1|`)
Ŝ
±
1,2(ζ,M |`)


. (4.23)

Similarly, arrange the 4 × 4 elements [ ρ̂
1,2

(ζ|`)]u,r of the composite ρ̂
1,2

matrices into 4M × 4M

matrices

ρ̂
1,2

(ζ|`) =


[ ρ̂

1,2
(ζ|`)]1,1 [ ρ̂

1,2
(ζ|`)]1,2 . . . [ ρ̂

1,2
(ζ|`)]1,M

[ ρ̂
1,2

(ζ|`)]2,1 [ ρ̂
1,2

(ζ|`)]2,2 . . . [ ρ̂
1,2

(ζ|`)]2,M
...

...
. . .

...
[ ρ̂

1,2
(ζ|`)]M,1 [ ρ̂

1,2
(ζ|`)]M,2 . . . [ ρ̂

1,2
(ζ|`)]M,M

 . (4.24)

with a similar equation for τ̂1,2(ζ|`).

4.3.2 Matrix Form of the Local Interaction Equations

Definitions (4.23) and (4.24) allow Eqs. (4.19) to (4.22) to be written as matrix equations (L&W
8.43 and 8.44):

d

dζ
Ŝ

+

1 (ζ|`) = ρ̂
1
(ζ|`)Ŝ−1 (ζ|`) + τ̂1(ζ|`)Ŝ

+

1 (ζ|`)− ρ̂
2
(ζ|`)Ŝ−2 (ζ|`)− τ̂2(ζ|`)Ŝ

+

2 (ζ|`) + Σ̂
+

1 (ζ|`)

(4.25)

− d

dζ
Ŝ
−
1 (ζ|`) = ρ̂

1
(ζ|`)Ŝ+

1 (ζ|`) + τ̂1(ζ|`)Ŝ
−
1 (ζ|`)− ρ̂

2
(ζ|`)Ŝ+

2 (ζ|`)− τ̂2(ζ|`)Ŝ
−
2 (ζ|`) + Σ̂

−
1 (ζ|`)

(4.26)
d

dζ
Ŝ

+

2 (ζ|`) = ρ̂
1
(ζ|`)Ŝ−2 (ζ|`) + τ̂1(ζ|`)Ŝ

+

2 (ζ|`) + ρ̂
2
(ζ|`)Ŝ−1 (ζ|`) + τ̂2(ζ|`)Ŝ

+

1 (ζ|`) + Σ̂
+

2 (ζ|`)

(4.27)

− d

dζ
Ŝ
−
2 (ζ|`) = ρ̂

1
(ζ|`)Ŝ+

2 (ζ|`) + τ̂1(ζ|`)Ŝ
−
2 (ζ|`) + ρ̂

2
(ζ|`)Ŝ+

1 (ζ|`) + τ̂2(ζ|`)Ŝ
−
1 (ζ|`) + Σ̂

−
2 (ζ|`)

(4.28)

These equations are the composite matrix form of the local interaction equations for the radiance
amplitudes. The minus signs on the ρ̂

2
Ŝ
±
2 and τ̂2Ŝ

±
2 terms in Eqs. (4.25) and (4.26) trace back
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to the minus sign in Eq. (A.22)2. These equations hold for each value of ` = 0, 1, ..., N , although
some terms may be zero for special cases, e.g., sine terms are zero when ` = 0 or N .

To summarize, the development so far has

1. Written the discretized VRTE as upward and downward sets of equations,

2. Fourier decomposed the upward and downward equations,

3. Written the resulting equations in matrix form.

The local interaction equations are therefore just a rewritten version of the VRTE.

4.4 Global Interaction Equations

The local interaction equations show how radiance is “reflected” and “transmitted” (i.e., scattered)
by an infinitesimally thin later of water at a particular depth ζ. Note that “reflected” is not
synonymous with “backscattered” because downwelling radiance scattered back upward can result
from either forward or backward scattering, even for single scattering. Moreover, the “reflectance”
described here includes all orders of multiple scattering. Likewise, “transmitted” is not the same
as “forward scattered.”

The next step of developing the invariant imbedding solution of the VRTE is to formulate global
interaction equations, which show how light is reflected and transmitted by finitely thick layers of
water. In particular, the global interaction equations show how the unknown response radiances
(radiances leaving the slab) are related to the known incident radiances falling onto the slab from
above and below.

Recall the coordinate system of Fig. 4.1. The water column from just beneath the sea surface
at depth ζ = w = 0 to the bottom at depth ζ = b is conceptually divided into an upper layer from
the surface at ζ = w to an arbitrary depth ζ, and a lower layer from ζ to the bottom at ζ = b.
These layers generally have depth dependent IOPs. The layer from the surface to depth ζ will be
denoted as the slab [w, ζ], and the layer from ζ to b is slab [ζ, b]. The entire water column is the
union of these two slabs: [w, b] = [w, ζ] ∪ [ζ, b].

The linear interaction principle of electromagnetic theory (Preisendorfer, 1976) states that the
response radiances leaving a layer of water are linear functions of the incident radiances impinging
onto the layer from above and below. As shown in Light and Water §8.6, it is possible to develop
the global interaction equations beginning with the local interaction equations and developing
fundamental and transport solutions for the radiance amplitudes. However, it is also possible to
write down the interaction equations by inspection, given the guidance of Eqs. (4.25) to (4.28) and
the corresponding form of the scalar theory seen in Light and Water.

2The minus signs in the ρ̂
2
Ŝ
±
2 and τ̂2Ŝ

±
2 terms in Eqs. (4.25) and (4.25) at first seemed some way philosophically

wrong to me because they mess up the symmetry between the d
dζ

Ŝ
±
1 and the d

dζ
Ŝ
±
2 equations, and because it looks

like there are “negative” contributions by reflectance and transmission of the sine amplitudes. However, up to this

point the derivation is just straightforward algebra, and the signs are what they are. In any case, minus signs

are physically OK because these quantities are all Fourier amplitudes and there is no requirement that a Fourier

amplitude “reflectance” for a Fourier amplitude Stokes vector be non-negative. Had I stayed in physical space, there

would be no Fourier decomposition, hence no minus signs, and reflectances and transmittances would be more easily

interpreted non-negative physical quantities (although the matrices would be much larger).
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Consider first the upper layer or slab of water [w, ζ]. Let R(w, ζ|r, s, u, v) denote the matrix
that “reflects” or converts downwelling Stokes vectors incident onto the upper surface of the slab
at depth w, S+(w, r, s), into upwelling vectors S−(w, u, v) that are leaving the upper surface of the
slab. In physical space, the radiance (first element of the Stokes vector) is non-negative, and the
corresponding reflectance is a non-negative quantity.

Now, however, the formulation is in terms of Fourier amplitudes, which can be positive or nega-
tive even when the physical quantity is positive. Moreover, there are different reflectance operators
for cosine and sine amplitudes, as was seen in the local interaction equations. Let R̂1(w, ζ|`) denote

the matrix that converts downwelling radiance amplitudes incident onto the upper side of the slab,
Ŝ

+

1,2(w|`), into the upwelling radiance amplitudes Ŝ
−
1,2(w|`) that are leaving the upper surface of the

slab, and which leaves radiance cosine (sine) amplitudes as cosine (sine) amplitudes. Let T̂ 1(w, ζ|`)
denote the matrix that transmits or converts downwelling radiance amplitudes incident onto the
upper surface of the slab at depth w into downwelling radiance amplitudes Ŝ

+

1,2(ζ|`) that are leaving

the lower surface of the slab at depth ζ. Likewise, let R̂2(w, ζ|`) and T̂ 2(w, ζ|`) denote matrices

that reflect and transmit radiance amplitudes, but which convert cosine (sine) radiance ampli-
tudes to sine (cosine) amplitudes. Thus R̂1(w, ζ|`) functions like the local reflection matrix ρ̂

1
(ζ|`),

T̂ 2(w, ζ|`) functions like τ̂2(ζ|`), and so on, except that R̂1(w, ζ|`) etc. describe the reflectance and

transmittance properties of the entire slab of water [w, ζ]. Following this notation, R̂1(ζ, w|`) is

the matrix the reflects upwelling radiance amplitudes incident onto the slab from below at depth ζ,
Ŝ
−
1,2(ζ|`), into downwelling radiance amplitudes exiting the slab at ζ; T̂ 2(ζ, w|`) transmits upwelling

radiance amplitudes from depth ζ to w and interchanges cosine and sine amplitudes, etc. These
R̂1, R̂2, T̂ 1 and T̂ 2 matrices are called the (Fourier amplitude versions of the) standard reflectance

and standard transmittance matrices (or operators, or functions) for the slab.
Finally, let Σ̂

−t
1,2(ζ, w|`) be the contribution of internal sources to the upwelling radiance am-

plitudes Ŝ
−
1,2(w|`) exiting the top of the slab. This radiance is built up within the water column

starting at depth ζ and increasing upward. The t in the superscript indicates the transport so-
lution, following the notation of Light and Water. Similarly, Σ̂

+t

1,2(w, ζ|`) is the contribution of

internal sources to the downwelling radiance amplitudes Ŝ
+

1,2(ζ|`) exiting the bottom of the slab.

That radiance is built up within the water column starting at the surface w. Figure 4.3 visually
summarizes all of the reflectance and transmittance operations that convert incident radiances into
response radiances for the slab [w, ζ]. The notation has been simplified for clarity of the figure:
R1(w, ζ) represents the matrix R̂1(w, ζ|`), etc.

Figure 4.3 shows the various reflectance and transmittance operations. The mathematical state-
ment of those operations must be written to conform to the structure of the local interaction Eqs.
(4.25) to (4.28). In particular, terms involving R̂2Ŝ

±
2 and T̂ 2Ŝ

±
2 must be given minus signs, as

seen in Eqs. (4.25) and (4.26)3. With this guidance, the global interaction equations for the cosine
3I first wrote down (4.29) and (4.30) with plus signs. However, that led to inconsistencies in the ODEs derived

below for the standard operators. I then decided–after much frustration–that I have to formulate the global interaction

equations with minus signs on the R̂2Ŝ
±
2 and T̂ 2Ŝ

±
2 terms, just as seen in the ρ̂

2
Ŝ
±
2 and τ̂2Ŝ

±
2 terms in Eqs. (4.25)

and (4.26). I then get consistent ODEs for the standard operators. I have not yet worked out the derivation of the
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radiance amplitudes for slab [w, ζ] (L&W 8.91, 8.92) are

Ŝ
−
1 (w|`) = R̂1(w, ζ|`)Ŝ

+

1 (w|`) + T̂ 1(ζ, w|`)Ŝ
−
1 (ζ|`)

− R̂2(w, ζ|`)Ŝ
+

2 (w|`)− T̂ 2(ζ, w|`)Ŝ
−
2 (ζ|`) + Σ̂

−t
1 (ζ, w|`) (4.29)

Ŝ
+

1 (ζ|`) = R̂1(ζ, w|`)Ŝ
−
1 (ζ|`) + T̂ 1(w, ζ|`)Ŝ

+

1 (w|`)

− R̂2(ζ, w|`)Ŝ
−
2 (ζ|`)− T̂ 2(w, ζ|`)Ŝ

+

2 (w|`) + Σ̂
+t

1 (w, ζ|`) (4.30)

A similar pair of equations can be written for the sine amplitudes:

Ŝ
−
2 (w|`) = R̂1(w, ζ|`)Ŝ

+

2 (w|`) + T̂ 1(ζ, w|`)Ŝ
−
2 (ζ|`)

+ R̂2(w, ζ|`)Ŝ
+

1 (w|`) + T̂ 2(ζ, w|`)Ŝ
−
1 (ζ|`) + Σ̂

−t
2 (ζ, w|`) (4.31)

Ŝ
+

2 (ζ|`) = R̂1(ζ, w|`)Ŝ
−
2 (ζ|`) + T̂ 1(w, ζ|`)Ŝ

+

2 (w|`)

+ R̂2(ζ, w|`)Ŝ
−
1 (ζ|`) + T̂ 2(w, ζ|`)Ŝ

+

1 (w|`) + Σ̂
+t

2 (w, ζ|`) (4.32)

Note that these equations give the response radiances leaving the top and bottom of the slab as
functions of the incident radiances. Just as with ρ̂

1,2
and τ̂1,2 in the local interaction equations,

the global interaction cosine and sine equations share a common set of standard reflectance and
transmittance matrices, but the same matrix operates on difference radiance amplitudes in the
cosine and sine pairs of equations.

A tally of the “information content” of the local and global interaction equations is worthwhile.
The local interaction Eqs. (4.25)-(4.28) involve 4 matrices of size 4M ×4M : ρ̂

1,2
(ζ|`) and τ̂1,2(ζ|`).

However, the corresponding global interaction Eqs. (4.29)-(4.32) involve 8 matrices of size 4M×4M :
R̂1(w, ζ|`),..., T̂ 2(ζ, w|`). Thus it seems that the global equations some way contain twice as much

information as the local equations. This is indeed correct. The local equations contain information
about only one depth, ζ. The global equations on the other hand contain information about two
depths, w and ζ. Another way to view this is that an infinitesimally thin layer of water reflects and
transmits radiance the same for radiance incident from either above or below. However, the IOPs
generally depend on depth, in which case finitely thick layers of water do not reflect downwelling
radiance from above the layer the same as upwelling radiance from below the layer (ditto for
transmission of downwelling vs upwelling radiance). Thus R̂1(w, ζ|`) 6= R̂1(ζ, w|`), and so on. For

finitely thick layers, reflectance and transmittance depend on the direction of the incident light,
and there are thus twice as many reflectance and transmittance functions as for an infinitesimal
layer.

In one viewpoint, Eqs. (4.29) to 4.32) can be regarded as definitions of the standard operators,
although they can be derived from the local interaction equations as is done in Light and Water
§8.6. In any case, the linear interaction principle guarantees the existence of these quantities.
Unfortunately, the interaction principle does not specify how to compute these quantities.

global interaction equations starting with the local interaction equations and working through the fundamental and

transport solutions, as seen in Light and Water, but I assume that this can be done and that the minus signs in the

local interaction equations would carry through to the global equations and give the form seen here.
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Figure 4.3: Global interaction principles for the slab [w, ζ]. The upper figure is for the cosine
amplitudes of the Stokes vector; the lower figure is for the sine amplitudes. Single-width arrows are
incident radiances; double arrows are response radiances. Dotted lines represent transmittances,
solid lines reflectances, and variable-width arrows internal sources. Colors code the different radi-
ances and the associated reflectance and transmittance operators.

The lower slab [ζ,m] has a corresponding set of layer standard reflectances and transmittances.
These matrices convert radiances incident onto the slab from above at depth ζ and below at depth
m into radiances exiting the slab at ζ and m. These operations are illustrated in Fig. 4.4. Note
that Ŝ

+

1 (ζ|`) was a response radiance for slab [w, ζ], but it is an incident radiance for slab [ζ,m],
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etc. The corresponding global interaction equations are

Ŝ
−
1 (ζ|`) = R̂1(ζ,m|`)Ŝ

+

1 (ζ|`) + T̂ 1(m, ζ|`)Ŝ
−
1 (m|`)

− R̂2(ζ,m|`)Ŝ
+

2 (ζ|`)− T̂ 2(m, ζ|`)Ŝ
−
2 (m|`) + Σ̂

−t
1 (m, ζ|`) (4.33)

Ŝ
+

1 (m|`) = R̂1(m, ζ|`)Ŝ
−
1 (m|`) + T̂ 1(ζ,m|`)Ŝ

+

1 (ζ|`)

− R̂2(m, ζ|`)Ŝ
−
2 (m|`)− T̂ 2(ζ,m|`)Ŝ

+

2 (ζ|`) + Σ̂
+t

1 (ζ,m|`) (4.34)

Ŝ
−
2 (ζ|`) = R̂1(ζ,m|`)Ŝ

+

2 (ζ|`) + T̂ 1(m, ζ|`)Ŝ
−
2 (m|`)

+ R̂2(ζ,m|`)Ŝ
+

1 (ζ|`) + T̂ 2(m, ζ|`)Ŝ
−
1 (m|`) + Σ̂

−t
2 (m, ζ|`) (4.35)

Ŝ
+

2 (m|`) = R̂1(m, ζ|`)Ŝ
−
2 (m|`) + T̂ 1(ζ,m|`)Ŝ

+

2 (ζ|`)

+ R̂2(m, ζ|`)Ŝ
−
1 (m|`) + T̂ 2(ζ,m|`)Ŝ

+

1 (ζ|`) + Σ̂
+t

2 (ζ,m|`) (4.36)

Figure 4.4: Global interaction principles for the slab [ζ,m].
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4.5 Differential Equations for the Standard Matrices

The standard matrices describe how radiance is reflected and transmitted by a layer of water, which
in turn is determined by the water absorption and scattering properties. The standard matrices
are therefore spatially integrated inherent optical properties. The interaction principle guarantees
the existence of the standard matrices. Unfortunately, it does not specify how to compute these
quantities. The next step in the solution algorithm development is therefore to develop equations
that can be solved to obtain the standard matrices, given the water-column IOPs. This is done as
follows:

1. The global interaction equations are differentiated with respect to depth.

2. The resulting depth derivatives of the radiance are replaced using the local interaction equa-
tions.

3. The global interaction equations are used to replace response radiances by incident radiances.

4. The terms of the resulting equations are grouped into factors multiplying the incident radi-
ances, and a group of terms involving the internal sources.

5. The arbitrariness of the incident radiances and internal sources is used to obtain sets of
differential equations for the standard matrices.

4.5.1 Downward Sweep Equations

To illustrate this process, consider, for example, R̂1(ζ, w|`). In this development we omit the Fourier

mode index ` for brevity. This matrix occurs in Eq. (4.30). Differentiating that equation with
respect to depth gives

d

dζ
Ŝ

+

1 (ζ) =
[
d

dζ
R̂1(ζ, w)

]
Ŝ
−
1 (ζ) + R̂1(ζ, w)

d

dζ
Ŝ
−
1 (ζ) +

[
d

dζ
T̂ 1(w, ζ)

]
Ŝ

+

1 (w)

−
[
d

dζ
R̂2(ζ, w)

]
Ŝ
−
2 (ζ)− R̂2(ζ, w)

d

dζ
Ŝ
−
2 (ζ)−

[
d

dζ
T̂ 2(w, ζ)

]
Ŝ

+

2 (w) +
d

dζ
Σ̂

+t

1 (w, ζ) .

(4.37)

Note that Ŝ
+

1,2(w) is the incident radiance at a fixed location w; it therefore does not have a depth

derivative. Quantities such as Ŝ
±
1,2(ζ), on the other hand, have depth derivatives because the lower

boundary depth of slab [w, ζ] is allowed to vary.
The local interaction equations (4.25), (4.26), and (4.28) are next used to replace the three
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depth derivatives of the radiances in the preceding equation. The result is

ρ̂
1
Ŝ
−
1 (ζ)+ τ̂1Ŝ

+

1 (ζ)− ρ̂
2
Ŝ
−
2 (ζ)− τ̂2Ŝ

+

2 (ζ) + Σ̂
+

1 (ζ)

=
[
d

dζ
R̂1(ζ, w)

]
Ŝ
−
1 (ζ)

+ R̂1(ζ, w)
{
−ρ̂

1
Ŝ

+

1 (ζ)− τ̂1Ŝ
−
1 (ζ) + ρ̂

2
Ŝ

+

2 (ζ) + τ̂2Ŝ
−
2 (ζ)− Σ̂

−
1 (ζ)

}
+

[
d

dζ
T̂ 1(w, ζ)

]
Ŝ

+

1 (w)−
[
d

dζ
R̂2(ζ, w)

]
Ŝ
−
2 (ζ)

− R̂2(ζ, w)
{
−ρ̂

1
Ŝ

+

2 (ζ)− τ̂1Ŝ
−
2 (ζ)− ρ̂

2
Ŝ

+

1 (ζ)− τ̂2Ŝ
−
1 (ζ)− Σ̂

−
2 (ζ)

}
−

[
d

dζ
T̂ 2(w, ζ)

]
Ŝ

+

2 (w) +
d

dζ
Σ̂

+t

1 (w, ζ) (4.38)

The common (ζ|`) arguments of the ρ̂
1,2

and τ̂1,2 matrices seen in Eqs. (4.25)-(4.28) have been

omitted for brevity. However, the depth argument must be retained on the radiances to identify
which radiances are incident and which are responses.

The response radiances Ŝ
+

1,2(ζ) in this last equation are now replaced with incident radiances

using the global interaction Eqs. (4.30) and (4.32). The terms are then grouped into factors
multiplying the incident radiances Ŝ

+

1,2(w) and Ŝ
−
1,2(ζ), plus the remaining terms involving the
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internal sources. The resulting equation is

0 =

{
d

dζ
R̂1(ζ, w) − ρ̂

1
− R̂1(ζ, w)τ̂1 + R̂2(ζ, w)τ̂2

−
[
τ̂1 + R̂1(ζ, w)ρ̂

1
− R̂2(ζ, w)ρ̂

2

]
R̂1(ζ, w)

+
[
τ̂2 + R̂1(ζ, w)ρ̂

2
+ R̂2(ζ, w)ρ̂

1

]
R̂2(ζ, w)

}
Ŝ
−
1 (ζ)

+

{
− d

dζ
R̂2(ζ, w) + ρ̂

2
+ R̂1(ζ, w)τ̂2 + R̂2(ζ, w)τ̂1

+
[
τ̂1 + R̂1(ζ, w)ρ̂

1
− R̂2(ζ, w)ρ̂

2

]
R̂2(ζ, w)

+
[
τ̂2 + R̂1(ζ, w)ρ̂

2
+ R̂2(ζ, w)ρ̂

1

]
R̂1(ζ, w)

}
Ŝ
−
2 (ζ){

d

dζ
T̂ 1(w, ζ) −

[
τ̂1 + R̂1(ζ, w)ρ̂

1
− R̂2(ζ, w)ρ̂

2

]
T̂ 1(w, ζ)

+
[
τ̂2 + R̂1(ζ, w)ρ̂

2
+ R̂2(ζ, w)ρ̂

1

]
T̂ 2(w, ζ)

}
Ŝ

+

1 (w)

+

{
− d

dζ
T̂ 2(w, ζ) +

[
τ̂1 + R̂1(ζ, w)ρ̂

1
− R̂2(ζ, w)ρ̂

2

]
T̂ 2(w, ζ)

+
[
τ̂2 + R̂1(ζ, w)ρ̂

2
+ R̂2(ζ, w)ρ̂

1

]
T̂ 1(w, ζ)

}
Ŝ

+

2 (w)

+

{
d

dζ
Σ̂

+t

1 (w, ζ) − Σ̂
+

1 (ζ)− R̂1(ζ, w)Σ̂
−
1 (ζ) + R̂2(ζ, w)Σ̂

−
2 (ζ)

−
[
τ̂1 + R̂1(ζ, w)ρ̂

1
− R̂2(ζ, w)ρ̂

2

]
Σ̂

+t

1 (w, ζ)

+
[
τ̂2 + R̂1(ζ, w)ρ̂

2
+ R̂2(ζ, w)ρ̂

1

]
Σ̂

+t

2 (w, ζ)

}
(4.39)

The first four groups of terms in brackets multiply incident radiances. The last group of terms
contains the internal sources.

The four incident radiances and the internal sources have arbitrary values that must be specified
as known inputs to the radiative transfer problem. For example, all of the input radiances except
for Ŝ

+

1 (w) can be zero, and all of the internal sources can be zero. In that case, the terms in

brackets multiplying Ŝ
+

1 (w) must sum to zero. Similarly, all of the incident radiances can be zero,

but there can be internal sources generating the light field within the water. In that case, the last
group of bracketed terms must sum to zero. Arguments of this type show that each group of terms
in brackets must be zero. Setting the individual groups of bracketed terms to zero then gives a set
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of five coupled nonlinear ordinary differential equations (ODEs) (L&W 8.74, 8.75, and 8.78):

d

dζ
R̂1(ζ, w) = ρ̂

1
+ R̂1(ζ, w)τ̂1 − R̂2(ζ, w)τ̂2

+
[
τ̂1 + R̂1(ζ, w)ρ̂

1
− R̂2(ζ, w)ρ̂

2

]
R̂1(ζ, w)

−
[
τ̂2 + R̂1(ζ, w)ρ̂

2
+ R̂2(ζ, w)ρ̂

1

]
R̂2(ζ, w) (4.40)

d

dζ
R̂2(ζ, w) = ρ̂

2
+ R̂1(ζ, w)τ̂2 + R̂2(ζ, w)τ̂1

+
[
τ̂1 + R̂1(ζ, w)ρ̂

1
− R̂2(ζ, w)ρ̂

2

]
R̂2(ζ, w)

+
[
τ̂2 + R̂1(ζ, w)ρ̂

2
+ R̂2(ζ, w)ρ̂

1

]
R̂1(ζ, w) (4.41)

d

dζ
T̂ 1(w, ζ) =

[
τ̂1 + R̂1(ζ, w)ρ̂

1
− R̂2(ζ, w)ρ̂

2

]
T̂ 1(w, ζ)

−
[
τ̂2 + R̂1(ζ, w)ρ̂

2
+ R̂2(ζ, w)ρ̂

1

]
T̂ 2(w, ζ) (4.42)

d

dζ
T̂ 2(w, ζ) =

[
τ̂1 + R̂1(ζ, w)ρ̂

1
− R̂2(ζ, w)ρ̂

2

]
T̂ 2(w, ζ)

+
[
τ̂2 + R̂1(ζ, w)ρ̂

2
+ R̂2(ζ, w)ρ̂

1

]
T̂ 1(w, ζ) (4.43)

d

dζ
Σ̂

+t

1 (w, ζ) = Σ̂
+

1 (ζ) + R̂1(ζ, w)Σ̂
−
1 (ζ)− R̂2(ζ, w)Σ̂

−
2 (ζ)

+
[
τ̂1 + R̂1(ζ, w)ρ̂

1
− R̂2(ζ, w)ρ̂

2

]
Σ̂

+t

1 (w, ζ)

−
[
τ̂2 + R̂1(ζ, w)ρ̂

2
+ R̂2(ζ, w)ρ̂

1

]
Σ̂

+t

2 (w, ζ) (4.44)

This self-contained set of ODEs can be solved given the IOPs ρ̂
1,2

(ζ), τ̂1,2(ζ), and initial condi-

tions. The initial conditions are deduced as follows. If ζ → w = 0, there will be no reflectance by
a slab [w,w] of zero thickness, and all of the radiance will be transmitted. Likewise, there will be
no contribution by internal sources in a slab of zero thickness. Thus the initial conditions at ζ = w

are simply

R̂1(w,w) = R̂2(w,w) = 04M×4M (4.45)

T̂ 1(w,w) = T̂ 2(w,w) = I4M×4M (4.46)

Σ̂
+t

1 (w,w) = 04M×1 (4.47)

where 04M×4M is a 4M × 4M matrix of zeros, I4M×4M is a 4M × 4M identity matrix, and 04M×1

is a 4M × 1 column vector of zeros.
Equations (4.40) to (4.44) can therefore be integrated in a “downward sweep” from depth w = 0

to any depth ζ, starting with the initial conditions of Eqs. (4.45) to (4.47).
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It should be noted that the reflectance and transmittance properties of the slab [w, ζ] can be
computed without explicit consideration of the air-water surface [a,w]. Slab [w, ζ] is therefore
referred to as a “bare” slab, i.e., a water body without an air-water surface. This is physically
equivalent to a water body with the same index of refraction as the air, which would not reflect
or refract light passing though such a surface. The effects of the actual air-sea surface will be
incorporated into the solution in the next chapter.

Differentiating global interaction Eq. (4.29) and repeating this process gives the following set
of equations (L&W 8.76, 8.77, 8.78):

d

dζ
R̂1(w, ζ) =

[
T̂ 1(ζ, w)ρ̂

1
− T̂ 2(ζ, w)ρ̂

2

]
T̂ 1(w, ζ)

−
[
T̂ 1(ζ, w)ρ̂

2
+ T̂ 2(ζ, w)ρ̂

1

]
T̂ 2(w, ζ) (4.48)

d

dζ
R̂2(w, ζ) =

[
T̂ 1(ζ, w)ρ̂

1
− T̂ 2(ζ, w)ρ̂

2

]
T̂ 2(w, ζ)

+
[
T̂ 1(ζ, w)ρ̂

2
+ T̂ 2(ζ, w)ρ̂

1

]
T̂ 1(w, ζ) (4.49)

d

dζ
T̂ 1(ζ, w) = T̂ 1(ζ, w)τ̂1 − T̂ 2(ζ, w)τ̂2

+
[
T̂ 1(ζ, w)ρ̂

1
− T̂ 2(ζ, w)ρ̂

2

]
R̂1(ζ, w)

−
[
T̂ 1(ζ, w)ρ̂

2
+ T̂ 2(ζ, w)ρ̂

1

]
R̂2(ζ, w) (4.50)

d

dζ
T̂ 2(ζ, w) = T̂ 1(ζ, w)τ̂2 + T̂ 2(ζ, w)τ̂1

+
[
T̂ 1(ζ, w)ρ̂

1
− T̂ 2(ζ, w)ρ̂

2

]
R̂2(ζ, w)

+
[
T̂ 1(ζ, w)ρ̂

2
+ T̂ 2(ζ, w)ρ̂

1

]
R̂1(ζ, w) (4.51)

d

dζ
Σ̂
−t
1 (ζ, w) = T̂ 1(ζ, w)Σ̂

−
1 (ζ)− T̂ 2(ζ, w)Σ̂

−
2 (ζ))

+
[
T̂ 1(ζ, w)ρ̂

1
− T̂ 2(ζ, w)ρ̂

2

]
Σ̂

+t

1 (w, ζ)

−
[
T̂ 1(ζ, w)ρ̂

2
+ T̂ 2(ζ, w)ρ̂

1

]
Σ̂

+t

2 (w, ζ) (4.52)
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The preceding development gives ODEs for all of the reflectance and transmittance matrices seen
in Fig. 4.3, and for the cosine amplitudes of the internal source terms. Equations for the remaining
internal source sine amplitudes can be obtained from Eqs. (4.31) and (4.32). Differentiating
Eq. (4.31) and repeating the above process gives the equation for Σ̂

−t
2 (ζ, w); starting with Eq.

(4.32) gives the ODE for Σ̂
+t

2 (ζ, w). Those derivations also re-derive the equations for R1,2(ζ, w),

T 1,2(w, ζ), R1,2(w, ζ) and T 1,2(ζ, w), which serves as a check on those equations4. The results for

the remaining source terms are

d

dζ
Σ̂
−t
2 (ζ, w) = T̂ 1(ζ, w)Σ̂

−
2 (ζ) + T̂ 2(ζ, w)Σ̂

−
1 (ζ)

+
[
T̂ 1(ζ, w)ρ̂

2
+ T̂ 2(ζ, w)ρ̂

1

]
Σ̂

+t

1 (w, ζ)

+
[
T̂ 1(ζ, w)ρ̂

1
− T̂ 2(ζ, w)ρ̂

2

]
Σ̂

+t

2 (w, ζ) (4.53)

d

dζ
Σ̂

+t

2 (ζ, w) = Σ̂
+

2 (ζ) + R̂1(ζ, w)Σ̂
−
2 (ζ) + R̂2(ζ, w)Σ̂

−
1 (ζ))

+
[
τ̂2 + R̂1(ζ, w)ρ̂

2
+ R̂2(ζ, w)ρ̂

1

]
Σ̂

+t

1 (w, ζ)

+
[
τ̂1 + R̂1(ζ, w)ρ̂

1
− R̂2(ζ, w)ρ̂

2

]
Σ̂

+t

1 (w, ζ) (4.54)

These equations can be integrated from ζ = w downward, starting with the initial conditions

R̂1(w,w) = R̂2(w,w) = 04M×4M (4.55)

T̂ 1(w,w) = T̂ 2(w,w) = I4M×4M (4.56)

Σ̂
−t
1 (w,w) = 04M×1 (4.57)

Σ̂
±t
2 (w,w) =04M×1 (4.58)

Note that the set of Eqs. (4.40)-(4.44) is self contained, whereas Eqs. (4.48)-(4.52) contain
terms from the first set. The set (4.40)-(4.44) is therefore called the “major” set, and (4.48)-(4.52)
the “minor” set. Equation (4.54) belongs to the major set, and (4.53) to the minor set. In any
case, these equations must be solved simultaneously.

4Before I inserted the minus signs into the global interaction Eqs. (4.29) and (4.30), the derivation of Eqs. (4.53)

and (4.54) starting with (4.32) and (4.31) led to different equations for R1,2(ζ, w), T 1,2(w, ζ), R1,2(w, ζ) and T 1,2(ζ, w)

than what I got starting with (4.29) and (4.30) (the minus signs appeared in different places than before). This is

what led me to put the minus signs into the global interaction equations. The two paths to the ODEs for R1,2(ζ, w)

etc. then give the same equations regardless of which global interaction equation is used as the starting point.
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4.5.2 Upward Sweep Equations

The slab [ζ,m] illustrated in Fig. 4.4 has a corresponding set of ODEs for the standard matrices
shown in the figure. The derivations follow the same procedure as for slab [w, ζ], so the details do
not need to be presented. The resulting equations are as follows:
The major set, obtained starting with Eq. (4.33) and (4.35):

− d

dζ
R̂1(ζ,m) = ρ̂

1
+ R̂1(ζ,m)τ̂1 − R̂2(ζ,m)τ̂2

+
[
τ̂1 + R̂1(ζ,m)ρ̂

1
− R̂2(ζ,m)ρ̂

2

]
R̂1(ζ,m)

−
[
τ̂2 + R̂1(ζ,m)ρ̂

2
+ R̂2(ζ,m)ρ̂

1

]
R̂2(ζ,m) (4.59)

− d

dζ
R̂2(ζ,m) = ρ̂

2
+ R̂1(ζ,m)τ̂2 + R̂2(ζ,m)τ̂1

+
[
τ̂1 + R̂1(ζ,m)ρ̂

1
− R̂2(ζ,m)ρ̂

2

]
R̂2(ζ,m)

+
[
τ̂2 + R̂1(ζ,m)ρ̂

2
+ R̂2(ζ,m)ρ̂

1

]
R̂1(ζ,m) (4.60)

− d

dζ
T̂ 1(m, ζ) =

[
τ̂1 + R̂1(ζ,m)ρ̂

1
− R̂2(ζ,m)ρ̂

2

]
T̂ 1(m, ζ)

−
[
τ̂2 + R̂1(ζ,m)ρ̂

2
+ R̂2(ζ,m)ρ̂

1

]
T̂ 2(m, ζ) (4.61)

− d

dζ
T̂ 2(m, ζ) =

[
τ̂1 + R̂1(ζ,m)ρ̂

1
− R̂2(ζ,m)ρ̂

2

]
T̂ 2(m, ζ)

+
[
τ̂2 + R̂1(ζ,m)ρ̂

2
+ R̂2(ζ,m)ρ̂

1

]
T̂ 1(m, ζ) (4.62)

− d

dζ
Σ̂
−t
1 (m, ζ) = Σ̂

−
1 (ζ) + R̂1(ζ,m)Σ̂

+

1 (ζ)− R̂2(ζ,m)Σ̂
+

2 (ζ)

+
[
τ̂1 + R̂1(ζ,m)ρ̂

1
− R̂2(ζ,m)ρ̂

2

]
Σ̂
−t
1 (m, ζ)

−
[
τ̂2 + R̂1(ζ,m)ρ̂

2
+ R̂2(ζ,m)ρ̂

1

]
Σ̂
−t
2 (m, ζ) (4.63)

− d

dζ
Σ̂
−t
2 (m, ζ) = Σ̂

−
2 (ζ) + R̂1(ζ,m)Σ̂

+

2 (ζ) + R̂2(ζ,m)Σ̂
+

1 (ζ))

+
[
τ̂1 + R̂1(ζ,m)ρ̂

1
− R̂2(ζ,m)ρ̂

2

]
Σ̂
−t
2 (m, ζ)

+
[
τ̂2 + R̂1(ζ,m)ρ̂

2
+ R̂2(ζ,m)ρ̂

1

]
Σ̂
−t
1 (m, ζ) (4.64)
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The minor set, obtained starting with Eqs. (4.34) and (4.36) :

− d

dζ
R̂1(m, ζ) =

[
T̂ 1(ζ,m)ρ̂

1
− T̂ 2(ζ,m)ρ̂

2

]
T̂ 1(m, ζ)

−
[
T̂ 1(ζ,m)ρ̂

2
+ T̂ 2(ζ,m)ρ̂

1

]
T̂ 2(m, ζ) (4.65)

− d

dζ
R̂2(m, ζ) =

[
T̂ 1(ζ,m)ρ̂

1
− T̂ 2(ζ,m)ρ̂

2

]
T̂ 2(m, ζ)

+
[
T̂ 1(ζ,m)ρ̂

2
+ T̂ 2(ζ,m)ρ̂

1

]
T̂ 1(m, ζ) (4.66)

− d

dζ
T̂ 1(ζ,m) = T̂ 1(ζ,m)τ̂1 − T̂ 2(ζ,m)τ̂2

+
[
T̂ 1(ζ,m)ρ̂

1
− T̂ 2(ζ,m)ρ̂

2

]
R̂1(ζ,m)

−
[
T̂ 1(ζ,m)ρ̂

2
+ T̂ 2(ζ,m)ρ̂

1

]
R̂2(ζ,m) (4.67)

− d

dζ
T̂ 2(ζ,m) = T̂ 1(ζ,m)τ̂2 + T̂ 2(ζ,m)τ̂1

+
[
T̂ 1(ζ,m)ρ̂

1
− T̂ 2(ζ,m)ρ̂

2

]
R̂2(ζ,m)

+
[
T̂ 1(ζ,m)ρ̂

2
+ T̂ 2(ζ,m)ρ̂

1

]
R̂1(ζ,m) (4.68)

− d

dζ
Σ̂

+t

1 (ζ,m) = T̂ 1(ζ,m)Σ̂
+

1 (ζ)− T̂ 2(ζ,m)Σ̂
+

2 (ζ))

+
[
T̂ 1(ζ,m)ρ̂

1
− T̂ 2(ζ,m)ρ̂

2

]
Σ̂
−t
1 (m, ζ)

−
[
T̂ 1(ζ,m)ρ̂

2
+ T̂ 2(ζ,m)ρ̂

1

]
Σ̂
−t
2 (m, ζ) (4.69)

− d

dζ
Σ̂

+t

2 (ζ,m) = T̂ 1(ζ,m)Σ̂
+

2 (ζ) + T̂ 2(ζ,m)Σ̂
+

1 (ζ))

+
[
T̂ 1(ζ, w)ρ̂

2
+ T̂ 2(ζ,m)ρ̂

1

]
Σ̂
−t
2 (m, ζ)

+
[
T̂ 1(ζ, w)ρ̂

1
− T̂ 2(ζ,m)ρ̂

2

]
Σ̂
−t
1 (m, ζ) (4.70)

The initial conditions for the upward sweep are

R̂1(m,m) = R̂2(m,m) = 04M×4M (4.71)

T̂ 1(m,m) = T̂ 2(m,m) = I4M×4M (4.72)

Σ̂
±t
1,2(m,m) = 04M×1 (4.73)

Just as for the “bare” slab surface boundary conditions of Eqs. (4.55–4.57), these initial conditions
are general for a “bare” or fully transparent bottom. However, unlike for the surface boundary,
Eqs. (4.71) and (4.72) will be revised in §5.2 to incorporate the actual bottom reflectance and
transmittance as the initial condition for the upward integration sweep.
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4.5.3 Checks on the ODEs

I am unaware of any papers giving the preceding derivation of the ODEs for the Fourier amplitudes
of the standard reflectances and transmittances for the VRTE. It is therefore desirable to have as
many checks as possible on the correctness of the derivation.

A weak check for typos can be made from the Gestalt of the various equations and the patterns
of subscripts, superscripts, and signs.

If the phase matrix is zero except for the (1,1) element, the VRTE reduces to the SRTE. The
Fourier expansion of the phase function then contains only cosine amplitudes, which means that
all of the ρ̂

2
, τ̂2, R̂2 and T̂ 2 terms are zero. In that case Eqs. (4.40)-(4.69) all reduce to the

corresponding equations (8.74)-(8.85) seen in Light and Water for the case of no polarization.
Those equations have proven to be correct and numerically efficient via their use in HydroLight.
Unfortunately, this comparison does not help to verify the correctness of the newly derived equations
for the various sine amplitudes. (Strictly speaking, the VRTE matrix equations reduce to the
transposes of the matrix equations seen in Light and Water. This is because L&W started by
writing the path function as

∫
L β̃ dΩ, rather than as

∫
β̃ L dΩ corresponding to the vector version∫

P̃ S dΩ as seen in Eq. (1.22). This led to the scalar equivalent of Eq. (4.23) being written as a
row vector, and the scalar versions of ρ̂

1
being the transpose of Eq. (4.24), etc.)

Ultimately, though, the only real check on the correctness of the ODEs for the VRTE standard
operators is whether they give correct predictions of the Stokes vectors when numerically solved as
part of the HydroPol code.

4.5.4 Computational Issues

Recalling that the 8 standard matrices are each 4M × 4M in size, and the 4 internal source vectors
are 4M×1, this gives a set of Neq = 8×4M×4M+4×4M = 128M2 +16M = 12, 960 scalar ODEs
for a quad discretization with M = 10. The unpolarized case has no sine terms, which reduces
the number of standard operators equations from 8 to 4, with 2 source-term equations, and each
standard operator matrix isM×M since there is only a phase function (or (1,1) element of the phase
matrix). The total number of scalar ODEs to be solved is then just Neq = 4×M×M+2×M = 420.
Thus there are roughly 30 times as many scalar ODEs to be solved for the VRTE as for the SRTE,
namely twice as many Fourier coefficients and 4×4 phase matrices matrices rather than scalar phase
functions. In both cases these sets of ODEs must be solved for each Fourier mode, ` = 0, ..., N .

Many types of ODE solution algorithms exist to solve systems of equations of the form

d

dζ
y1(ζ) = f1(ζ, y1, ..., yNeq)

... =
...

d

dζ
yNeq(ζ) = fNeq(ζ, y1, ..., yNeq)

These routines require as input vectors containing the values of the variables yi(ζ) and their deriva-
tives di(ζ) at the current depth ζ. The routine then returns the solution yi(ζout) at the requested
output depth ζout. It is thus necessary to “unstack” the composite matrix equations to make long
vectors of scalar equations.
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The matrix multiplications seen in Eqs. (4.40)-(4.70) are conveniently performed using the
Fortran 95 matrix multiplication intrinsic procedure MATMUL to obtain the the matrices of deriva-
tives D = dY /dζ, where Y is any of R̂1(w, ζ), Σ̂

−t
1 (ζ, w), etc. For a given value of ` and for the

downward integration sweep, the (row, column) = (I, J) elements of the matrix ODEs are then
reformed column by column into a single vector D = [D1, ..., DNeq ] as follows:

Jloop : DO J = 1, 4M

Iloop : DO I = 1, 4M

D(J + (I − 1)4M + 0(4M)2) = [
d

dζ
R̂1(ζ, w, `)]I,J

D(J + (I − 1)4M + 1(4M)2) = [
d

dζ
R̂2(ζ, w, `)]I,J

D(J + (I − 1)4M + 2(4M)2) = [
d

dζ
T̂ 1(w, ζ, `)]I,J

D(J + (I − 1)4M + 3(4M)2) = [
d

dζ
T̂ 2(w, ζ, `)]I,J

D(J + (I − 1)4M = 4(4M)2) = [
d

dζ
R̂1(w, ζ, `)]I,J

D(J + (I − 1)4M + 5(4M)2) = [
d

dζ
R̂2(w, ζ, `)]I,J

D(J + (I − 1)4M + 6(4M)2) = [
d

dζ
T̂ 1(ζ, w, `)]I,J

D(J + (I − 1)4M + 7(4M)2) = [
d

dζ
T̂ 2(ζ, w, `)]I,J

END DO Iloop

D(J + 0M + 8(4M)2) = [Σ̂
+t

1 (w, ζ, `)]J

D(J + 4M + 8(4M)2) = [Σ̂
+t

2 (w, ζ, `)]J

D(J + 8M + 8(4M)2) = [Σ̂
−t
1 (ζ, w, `)]J

D(J + 12M + 8(4M)2) = [Σ̂
−t
2 (ζ, w, `)]J

END DO Jloop (4.74)

The same reordering of R̂1(ζ, w|`) etc. is used to create a vector Y of R, T , and Σ values.

The indexing in Eq. (4.74) is written to emphasize the structure of the 1D vectors. In practice,
many quantities can be pre-computed. In particular, it should be remembered from Fig. 1.5 that
the phase matrix elements have zero sine amplitudes for the upper left and lower right 2×2 blocks,
and zero cosine elements for the upper right and lower left 2× 2 blocks. These zeros carry through
the evaluation of the ρ̂

1,2
and τ̂1,2 matrices, which reduces some of the computations needed to

evaluate the right hand sides of the ODEs for the standard operators. However, the ODEs for R̂1

etc. involve both cosine and sine components of the ρ̂
1,2

and τ̂1,2 matrices, so that all elements of

R̂1 etc. will in general be non-zero.

93



If source terms are not included in the run, then the equations for Σ̂
±t
1,2 can be omitted, resulting

in a slightly smaller set of ODEs to be solved. A similar unwrapping of composite matrices is used
for the upward sweep equations. After returning from the ODE solver, the solution vector Y is
reformed into composite matrices for subsequent matrix calculations.

When running HydroPol, one of the user inputs is a list of physical depths z1 = w = 0, z2, ..., zk,
..., zK = m at which the computed Stokes vectors are to be saved. When the downward and upward
sets of ODEs are solved, the reflectance, transmittance, and source matrices are saved at these
output depths for later use. That is, the arrays R̂1(w, z1=w=0|`) = 0, R̂1(w, z2|`), ..., R̂1(w, zK =

m|`), etc., are saved as outputs from the ODE solutions. Keep in mind that these ODE systems
are solved separately for each Fourier mode ` = 0, 1, ...N .

Now that we have seen the laborious development of the ODEs for the Fourier amplitudes of
the standard matrices, it is worthwhile to consider the corresponding development had we stayed
in physical space. The upward and downward pair of of Eqs. (4.2) would be recast into local
interaction equations of the form (ignoring internal sources)

d

dζ
S+ = τ S+ + ρ S−

− d

dζ
S− = ρ S+ + τ S−

Here S± are each 8MN×1 composite vectors of 4×1 Stokes vectors S±(ζ, u, v) for u = 1, ...,M and
v = 1, ..., 2N . ρ and τ are consequently of size 8MN×8MN . However, recall that the phase matrix

depends on φ − φ′, i.e. on φv − φs, so that we can set φ′ = 0 or s = 1. This reduces the number
of unique elements of the ρ and τ matrices by a factor of N . Thus the two ρ and τ matrices each

have an “information content” of 64M2N independent numbers. The local interaction equations
would lead to global interaction equations with four standard matrices: R(w, ζ), R(ζ, w), T (w, ζ),

and T (ζ, w), with a total information content of 128M2N . It would be necessary to solve for the

elements of these standard matrices via a coupled system of 128M2N ODEs. For the HydroPol
quad partioning with M = 10, N = 12 (again ignoring the internal source terms), this is a system
of 153,600 equations.

Taking the Fourier-space route, we obtained global interaction equations with 4 matrices for
Fourier amplitudes, R̂1(w, ζ|`), R̂1(ζ, w|`), T̂ 1(w, ζ|`), and T̂ 1(ζ, w|`), with each matrix being 4M ×
4M and ` = 0, ..., N . The information content of these cosine-amplitude equations is thus 64M2(N+
1). There are 4 matrices for sine amplitudes, R̂2(w, ζ|`), R̂2(ζ, w|`), T̂ 2(w, ζ|`), and T̂ 2(ζ, w|`), with

each matrix being 4M × 4M and ` = 1, ..., N − 1. The information content of these sine-amplitude
equations is thus 64M2(N − 1). The total number of unique matrix elements being computed is
then 128M2N , the same as for the physical-space formulation. However, the Fourier approach
allows this total to be obtained by a sequence of solutions of much smaller sets of ODEs5.

5Even with the Fourier decomposition, the ODE sets are still about 13,000 equations vs 420 for the SRTE. I

don’t know how much of a numerical problem that will be. The physical reflectance and transmittance matrices are

well behaved and bounded by 0 and 1, so presumably their Fourier amplitudes are also well behaved and smoothly

varying with depth. In HydroLight I use a public (from the US National Institute of Standards and Technology)

Adams-Moulton predictor-corrector ODE solver, which seems to work quite well. I have no idea how well it will work
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for a set of equations 30 times larger. However, a numerical analyst tells me that the run time for ODE solvers is

usually directly proportional to the number of equations being solved. Thus the run time for the vector code should

be roughly 30 times that for the scalar (HydroLight) code, which is acceptable. Any recommendations on what ODE

solver would be best for my system of equations are greatly appreciated.
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CHAPTER 5

Incorporation of the Boundary Conditions

The matrices R̂1(w, zk|`) etc. computed from the ODE solutions give the reflectances and trans-

mittances for subslabs [w, zk] and [zk,m] of the “bare-slab” water column [w,m]. These will be
used to compute the Stokes vectors at the user-defined output depths zk. However, to obtain the
Stokes vectors, it is necessary to incorporate the surface and bottom boundary conditions for the
particular incident lighting, surface wave conditions, and bottom reflectance of interest. Thus we
must now merge the air-water surface [a,w] with the water body [w,m].

5.1 Fourier Decomposition of the Surface Boundary Conditions

Recall the discretized surface boundary conditions of Eqs. (2.21) and(2.22). Using the ± su-
perscripts to denote downwelling and upwelling directions as in Eq. (4.2), the surface boundary
conditions can be written

S−(a, u, v) =
∑
r

∑
s

raw(r, s→ u, v)S+(a, r, s) +
∑
r

∑
s

twa(r, s→ u, v)S−(w, r, s) (5.1)

S+(w, u, v) =
∑
r

∑
s

rwa(r, s→ u, v)S−(w, r, s) +
∑
r

∑
s

taw(r, s→ u, v)S+(a, r, s) (5.2)

where the wavelength index has been omitted for brevity. The superscripts on S± indicate whether
u, v and r, s are in the upward or downward hemispheres. The 4× 4 matrices raw(r, s→ u, v) etc.
play the same role for surface scattering as does the phase matrix for scattering in the interior of
the water body. In particular, raw(r, s → u, v) etc. include the effects of the rotation matrices as
was seen in §3.2.

As with the VRTE, the boundary conditions are Fourier decomposed. However, the surface
transfer functions raw(r, s→ u, v) etc. do not in general have the φ− φ′ = φv − φs dependence on
azimuthal angle that the phase matrix has. It is therefore necessary to do a full Fourier decom-
position in φs and φv as shown in Eq. (A.15). Thus, for given r and u values, raw(r, s → u, v)
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becomes

raw(r, s→ u, v) =
N∑
k=0

N∑
`=0

r̂11(a,w|r, u|k, `) cos(kφs) cos(`φv)

+
N∑
k=0

N∑
`=0

r̂12(a,w|r, u|k, `) cos(kφs) sin(`φv)

+
N∑
k=0

N∑
`=0

r̂21(a,w|r, u|k, `) sin(kφs) cos(`φv)

+
N∑
k=0

N∑
`=0

r̂22(a,w|r, u|k, `) sin(kφs) sin(`φv) . (5.3)

To find r̂11, multiple Eq. (5.3) by cos(k′φs) cos(`′φv), sum over s and v, and apply the orthogonality
relations. The other three amplitudes are found in an analogous manner. The results are as shown
in Eq. (A.16):

r̂11(a,w|r, u|k, `) =
1
εkε`

2N∑
s=1

2N∑
v=1

raw(r, s→ u, v) cos(kφs) cos(`φv) , (5.4a)

r̂12(a,w|r, u|k, `) =
1
εkγ`

2N∑
s=1

2N∑
v=1

raw(r, s→ u, v) cos(kφs) sin(`φv) , (5.4b)

r̂21(a,w|r, u|k, `) =
1
γkε`

2N∑
s=1

2N∑
v=1

raw(r, s→ u, v) sin(kφs) cos(`φv) , (5.4c)

r̂22(a,w|r, u|k, `) =
1

γkγ`

2N∑
s=1

2N∑
v=1

raw(r, s→ u, v) sin(kφs) sin(`φv) . (5.4d)

The sine amplitudes are zero for various special cases:

r̂12(a,w|r, u|k, 0) = r̂12(a,w|k,N) = 0 for k = 0, ...,N ,

r̂21(a,w|r, u|0, `) = r̂21(a,w|N, `) = 0 for ` = 0, ...,N ,

r̂22(a,w|r, u|0, 0) = r̂22(a,w|r, u|0, N) = r̂22(a,w|r, u|N, 0) = r̂22(a,w|r, u|N,N) = 0 . (5.5)

These special cases allow the exclusion of any k or ` values in Eqs. (5.4b)-(5.4d) that would result
in division by zero resulting from the γk and γ` factors.

This expansion allows for the modeling of any sea surface. However, wave spectra generally
have symmetry about the upwind-downwind direction. That is, waves may be propagating in all
directions, but with equal probability to the left and right of the wind direction. Such wave spectra
generally have elliptical symmetry, with the major axis of the ellipse in the along-wind direction,
and the minor axis in the cross-wind direction. Thus the surface transfer functions from, say,
φ′ = φs = 30deg to φ = φv = 110 would be the same as for φ′ = 330 to φ = 250, but not the same
as from φ′ = 70 to φ = 150.

If the azimuthal coordinate system is chosen so that an azimuthal direction of zero is in the
downwind direction, as in HydroPol (and also in HydroLight), then the statistics of the sea surface
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waves propagating in some direction φ are the same as for direction 2π − φ. In the HydroPol
quad indexing scheme of Fig. 2.1, direction φw is symmetric about the downwind direction with
φ2N+2−w. Now consider r̂12(a,w|r, u|k, `), which with these symmetries can be written

r̂12(a,w|r, u|k, `) =
1
εkγ`

2N∑
s=1

2N∑
v=1

raw(r, 2N + 2− s→ u, 2N + 2− v) cos(kφs) sin(`φv) .

Changing the summation indices to s′ = 2N + 2− s and v′ = 2N + 2− v gives

r̂12(a,w|r, u|k, `) =
1
εkγ`

2∑
s′=2N+1

2∑
v′=2N+1

raw(r, s′ → u, v′) cos(kφ2N+2−s′) sin(`φ2N+2−v′) .

Noting once again that φ2M+2−w = 2π − φw, using the evenness of the cosine and oddness of the
sine, remembering that quad w = 2N +1 is the same as quad w = 1, and reordering the sums gives

r̂12(a,w|r, u|k, `) = − 1
εkγ`

2N∑
s′=1

2N∑
v′=1

raw(r, s′ → u, v′) cos(kφs′) sin(`φv′)

= − r̂12(a,w|r, u|k, `) .

It therefore follows that

r̂12(a,w|r, u|k, `) = 0 for r, u = 1, ...,M and k, ` = 0, ..., N .

The same analysis gives r̂21(a,w|r, u|k, `) = 0, with the same result for the other three surface
transfer functions. Thus elliptical symmetry of the surface about the wind direction eliminates two
of the four terms in Eq. (5.3). This is the reason for choosing a wind-centered azimuthal coordinate
system.

A similar analysis based on the elliptical symmetry between φ and π − φ gives

r̂11(a,w|r, u|k, `) = (−1)k+`
1
εkε`

2N∑
s′=1

2N∑
v′=1

raw(r, s′ → u, v′) cos(kφs′) sin(`φv′)

= (−1)k+` r̂11(a,w|k, `) .

Therefor it follows that
r̂11(a,w|r, u|k, `) = 0 if k + ` is odd,

for r, u = 1, ...,M and k, ` = 0, ..., N . Corresponding results are obtained for r̂22(a,w|r, u|k, `) and
the other three surface transfer functions.

We can therefor simplify the notation to one subscript for the r̂ and t̂ terms:

r̂1(a,w|r, u|k, `) = r̂11(a,w|r, u|k, `)
r̂2(a,w|r, u|k, `) = r̂22(a,w|r, u|k, `)
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since the r̂12 and r̂21 terms are always zero. The surface transfer functions for elliptically symmetric
sea surfaces thus can be decomposed as

raw(r, s→ u, v) =
N∑
k=0

N∑
`=0

(k+` even)

r̂1(a,w|r, u|k, `) cos(kφs) cos(`φv)

+
N∑
k=0

N∑
`=0

(k+` even)

r̂2(a,w|r, u|k, `) sin(kφs) sin(`φv) . (5.6)

where

r̂1(a,w|r, u|k, `) =


1
εkε`

∑2N
s=1

∑2N
v=1 raw(r, s→ u, v) cos(kφs) cos(`φv)

for k, ` = 0, ..., N and k + ` even

04×4 if k + ` is odd

(5.7)

and

r̂2(a,w|r, u|k, `) =



1
γkγ`

∑2N
s=1

∑2N
v=1 raw(r, s→ u, v) cos(kφs) cos(`φv)

for k, ` = 1, ..., N − 1 and k + ` even

04×4 if k = 0 and ` = 0, ..., N

04×4 if ` = 0 and k = 0, ..., N

04×4 if k + ` is odd

(5.8)

Equations (4.3) and (5.6) can now be used to Fourier decompose the surface boundary condi-
tions. The process is the same as before, using orthogonality relations to reduce double sums to
single, and noting the linear independence of sines and cosines. The result for the cosine amplitudes
of Eq. (5.1) is

S−1 (a, u|`) =
N∑
k=0

(k+` even)

[
M−1∑
r=1

εk r̂1(a,w|r, u|k, `)S+
1 (a, r|k) + δk r̂1(a,w|M,u|k, `)S+

1 (a,M |k)

]

+
N∑
k=0

(k+` even)

[
M−1∑
r=1

εk t̂1(w, a|r, u|k, `)S−1 (w, r|k) + δk t̂1(w, a|M,u|k, `)S−1 (w,M |k)

]

(5.9)

which holds for u = 1, ...,M and ` = 0, ..., N . As always, the polar cap r = M is a special case
with no φ dependence, so that only the k = 0 cosine amplitude is nonzero. However, the polar cap
terms can be incorporated into the sum over k by use of a Kronecker δk factor, as shown here. The
sine amplitudes are given by

S−2 (a, u|`) =
N∑
k=0

(k+` even)

[
M−1∑
r=1

γk r̂2(a,w|r, u|k, `)S+
2 (a, r|k)

]

+
N∑
k=0

(k+` even)

[
M−1∑
r=1

γk t̂2(w, a|r, u|k, `)S−2 (w, r|k)

]
(5.10)
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where now ` = 1, ..., N . As always, sine amplitudes are zero for polar caps. A similar result holds
for Eq. (5.2).

It is important to note that the Fourier modes do not decouple for the surface transfer functions.
That is, the equations for S−1,2(a, u|`) involve sums over k. This is the reason that the surface
boundary conditions were not used as the initial conditions for mode-by-mode integration of the
ODEs to obtain the standard reflection and transmission matrices for the interior of the water
body.

These equations can be placed in a more compact form by defining 4M×4M composite matrices
r̂1,2 and t̂1,2 with (row, column) = u, r elements as follows:

[ r̂1(a,w|k, `)]u,r =

{
εk r̂1(a,w|r, u|k, `) for r = 1, ...,M− 1

δk r̂1(a,w|M,u|k, `) for r = M
(5.11)

which holds for u = 1, ...,M and k, ` = 0, ..., N . The corresponding definition for the sine term is

[ r̂2(a,w|k, `)]u,r =

{
γk r̂2(a,w|r, u|k, `) for r = 1, ...,M − 1 and ` = 1, ..., N − 1

04×4 for r = M or ` = 0 or N
(5.12)

which holds for which holds for u = 1, ...,M and k = 0, ..., N . The t̂1 and t̂2 functions have
corresponding definitions.

Recalling the composite matrix form (4.23) for Stokes vectors, Eqs. (5.9) and (5.10) can now
be combined and written as

Ŝ
−
p (a|`) =

N∑
k=0

(k+` even)

r̂p(a,w|k, `) Ŝ
+

p (a|`) +
N∑
k=0

(k+` even)

t̂p(w, a|k, `) Ŝ
−
p (w|`) . (5.13)

Equation (5.2) similarly becomes

Ŝ
+

p (w|`) =
N∑
k=0

(k+` even)

r̂p(w, a|k, `) Ŝ
−
p (w|`) +

N∑
k=0

(k+` even)

t̂p(a,w|k, `) Ŝ
+

p (a|`) , (5.14)

where p = 1 or 2 and ` = 0, ..., N .
Equations (5.13) and (5.14) are the desired Fourier-amplitude forms of the surface boundary

conditions. These equations are at a notational level equivalent to the local interaction equations
(4.25) to (4.28).

Equations (5.13) and (5.14) can be notationally simplified still further by defining 4M(N +1)×
4M(N + 1) composite matrices that contain all Fourier modes. The 4M × 4M cosine amplitude
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matrices r̂1(a,w|k, `) for k, ` = 0, 1, ..., N can be combined into one matrix as follows (L&W 8.86):

r̂1(a,w) =



r̂1(a,w|0, 0) 0 r̂1(a,w|2, 0) 0 . . . r̂1(a,w|N, 0)

0 r̂1(a,w|1, 1) 0 r̂1(a,w|3, 1) . . . 0

r̂1(a,w|0, 2) 0 r̂1(a,w|2, 2) 0 . . . r̂1(a,w|N, 2)
...

...
...

...
. . .

...
0 r̂1(a,w|1, N − 1) 0 r̂1(a,w|3, N − 1) . . . 0

r̂1(a,w|0, N) 0 r̂1(a,w|2, N) 0 . . . r̂1(a,w|N,N)


(5.15)

The checkerboard structure of this matrix incorporates the previous result that r̂1(a,w|k, `) 6= 0

only when k + ` is even. Recall than N is always even. The 0 submatrices are all 4M × 4M .

Similarly, the sine amplitude matrices r̂2(a,w|k, `) can be combined as

r̂2(a,w) =



0 0 0 0 . . . 0

0 r̂2(a,w|1, 1) 0 r̂2(a,w|3, 1) . . . 0

0 0 r̂2(a,w|2, 2) 0 . . . 0)
...

...
...

...
. . .

...
0 r̂2(a,w|1, N − 1) 0 r̂2(a,w|3, N − 1) . . . 0

0 0 0 0 . . . 0

.


(5.16)

The 0 first and last row and column show that sine amplitudes are zero for k, ` = 0 or N . The

t̂1,2 matrices have corresponding definitions. The Stokes vector amplitudes Ŝ
±
1,2(ζ|`) are likewise

combined into one 4M(N + 1)× 1 column vector containing all Fourier modes (L&W 8.87):

Ŝ
±
1,2(ζ) =


Ŝ
±
1,2(ζ|0)

Ŝ
±
1,2(ζ|1)

...
Ŝ
±
1,2(ζ|N)

 . (5.17)

It is worth pausing to note that the Ŝ
±
1,2(ζ) are matrices whose elements Ŝ

±
1,2(ζ|`) are by Eq. (4.23)

4M × 1 matrices, whose elements in turn are 4 × 1 Stokes vectors. In other words, we are now
dealing with matrices whose elements are matrices whose elements are matrices.

Equations (5.15) - (5.17) allow the surface boundary conditions (5.13) and (5.14) to be written
as matrix equations:

Ŝ
−
p (a) = r̂p(a,w)Ŝ

+

p (a) + t̂p(w, a)Ŝ
−
p (w) (5.18)

and
Ŝ

+

p (w) = r̂p(w, a)Ŝ
−
p (w) + t̂p(a,w)Ŝ

+

p (a) (5.19)

It should be noted that r̂1,2 and t̂1,2 are in effect the standard reflection and transmission

matrices for the air-water surface. Unlike the standard matrices for the interior of the water body
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[w, ζ] , which must be found by depth integrations of the ODEs derived in the preceding chapter,
the surface [a,w] has no thickness and standard matrices are determined from the reflection and
transmission matrices for the sea surface, as seen in Chapter 3.

Finally, the standard reflectance and transmittance matrices for the water body [w, ζ], which
were computed ` mode by ` mode when solving the ODE systems, can be combined into matrices
containing all Fourier modes, e.g.:

R̂1(ζ, w) =


R̂1(ζ, w|0) 0 0 . . . 0

0 R̂1(ζ, w|1)) 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . R̂1(ζ, w|N)

 (5.20)

with corresponding definitions for the other standard matrices.
These definitions allow the global interaction equations (4.29)-(4.32) for slab [w, ζ] to be written

in a form that contains all Fourier modes:

Ŝ
−
1 (w) = R̂1(w, ζ)Ŝ

+

1 (w) + T̂ 1(ζ, w)Ŝ
−
1 (ζ)− R̂2(w, ζ)Ŝ

+

2 (w)− T̂ 2(ζ, w)Ŝ
−
2 (ζ) + Σ̂

−t
1 (ζ, w) (5.21)

Ŝ
+

1 (ζ) = R̂1(ζ, w)Ŝ
−
1 (ζ) + T̂ 1(w, ζ)Ŝ

+

1 (w)− R̂2(ζ, w)Ŝ
−
2 (ζ)− T̂ 2(w, ζ)Ŝ

+

2 (w) + Σ̂
+t

1 (w, ζ) (5.22)

Ŝ
−
2 (w) = R̂1(w, ζ)Ŝ

+

2 (w) + T̂ 1(ζ, w)Ŝ
−
2 (ζ) + R̂2(w, ζ)Ŝ

+

1 (w) + T̂ 2(ζ, w)Ŝ
−
1 (ζ) + Σ̂

−t
2 (ζ, w) (5.23)

Ŝ
+

2 (ζ) = R̂1(ζ, w)Ŝ
−
2 (ζ) + T̂ 1(w, ζ)Ŝ

+

2 (w) + R̂2(ζ, w)Ŝ
−
1 (ζ) + T̂ 2(w, ζ)Ŝ

+

1 (w) + Σ̂
+t

2 (w, ζ) (5.24)

Here the internal source terms for each Fourier mode have been combined as in Eq. (5.17).

5.2 Fourier Decomposition of the Bottom Boundary Conditions

As noted in §1.6, the bottom boundary condition has the form (dropping the wavelength dependence
for brevity)

S(m, θ, φ) =
∫∫

2πd

V BRDF (θ′, θ, φ− φ′) cos θ′ S(m, θ′, φ′) dΩ(θ′, φ′)

=
∫∫

2πd

rmb(θ
′, θ, φ− φ′)S(m, θ′, φ′) dΩ(θ′, φ′) for (θ, φ) ∈ 2πu .

A VBRDF or rmb of this form can be expanded as Fourier cosine series. As was seen in Eq. (2.23),
the corresponding quad-averaged bottom boundary condition is

S(m,u, v) =
∑
r

∑
s

r,s∈Ξd

rmb(r, s→ u, v)S(m, r, s) for (u, v) ∈ Ξu . (5.25)

The Fourier decomposition of the bottom boundary condition conceptually follows in parallel to
the decomposition of the surface boundary condition, but the equations are much simpler because
of the φ − φ′ symmetry and the absence of transmission terms as discussed in §1.6. The Stokes
vectors are expanded as in Eq. (4.3):

S±(m,u, v) =
N∑
`=0

[
Ŝ
±
1 (m,u|`) cos(`φv) + Ŝ

±
2 (m,u|`) sin(`φv)

]
, (5.26)
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where as always u = 1, 2, ...,M and v = 1, 2, ..., 2N . rmb(r, s→ u, v) = rmb(r, u, |v−s|) is expanded
as a cosine series (L&W 8.54):

rmb(r, u, |v − s|) =
N∑
k=0

r̂1(m, b|r, u|k) cos[k(φv − φs)] , (5.27)

where (L&W 8.55)

r̂1(m, b|r, u|k) =
1

εk cos(kφs)

2N∑
v=1

rmb(r, u, |v − s|) cos(kφv) .

We are again free to choose s = 1, or φs = 0, which gives

r̂1(m, b|r, u|k) =
1
εk

2N∑
v=1

rmb(r, u, |v − 1|) cos(kφv) . (5.28)

Substituting these expansions into Eq. (5.25) gives

N∑
`=0

[
Ŝ
−
1 (m,u|`) cos(`φv) + Ŝ

−
2 (m,u|`) sin(`φv)

]
=

∑
r

∑
s

N∑
k=0

r̂1(m, b|r, u|k) cos[k(φv − φs)]

{
N∑
`=0

[
Ŝ

+
1 (m, r|`) cos(`φs) + Ŝ

+
2 (m, r|`) sin(`φs)

]}
(5.29)

Expanding cos[k(φv − φs)] and grouping terms gives

N∑
`=0

[
Ŝ
−
1 (m,u|`) cos(`φv) + Ŝ

−
2 (m,u|`) sin(`φv)

]
=

N∑
`=0

∑
r

N∑
k=1

r̂1(m, b|r, u|k) cos(kφv) Ŝ
+
1 (m, r|`)

∑
s

cos(kφs) cos(`φs)

=
N∑
`=0

∑
r

N∑
k=1

r̂1(m, b|r, u|k) cos(kφv) Ŝ
+
2 (m, r|`)

∑
s

cos(kφs) sin(`φs)

=
N∑
`=0

∑
r

N∑
k=1

r̂1(m, b|r, u|k) sin(kφv) Ŝ
+
1 (m, r|`)

∑
s

sin(kφs) cos(`φs)

=
N∑
`=0

∑
r

N∑
k=1

r̂1(m, b|r, u|k) sin(kφv) Ŝ
+
2 (m, r|`)

∑
s

sin(kφs) sin(`φs) (5.30)

Applying the orthogonality relations (A.3–A.5) to the sums over s and then observing as before
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that k = ` follows, this reduces to
N∑
`=0

[
Ŝ
−
1 (m,u|`) cos(`φv) + Ŝ

−
2 (m,u|`) sin(`φv)

]
=

N∑
`=0

∑
r

r̂1(m, b|r, u|k) Ŝ
+
1 (m, r|`) ε` cos(`φv)

+
N∑
`=0

∑
r

r̂1(m, b|r, u|k) Ŝ
+
2 (m, r|`) γ` sin(`φv) (5.31)

where ε` and γ` are given by Eqs. (A.8) and (A.10, respectively. As always, the polar caps u, r = M

are special cases with no φ dependence.
Invoking the linear independence of sin(`φv) and cos(`φv) gives two separate equations relating

Ŝ
±
1 (m,u|`) and Ŝ

±
2 (m,u|`). These can be put into matrix form by defining 4M × 4M composite

matrices with 4× 4 elements (L&W 8.57):

[ r̂1(m, b|`)]u,r =

{
ε` r̂1(m, b|r, u|`) if r = 1, ...,M − 1

δ` r̂1(m, b|r, u|`) if r = M
(5.32)

for u = 1, ...,M and ` = 0, ..., N ; and

[ r̂2(m, b|`)]u,r =

{
γ` r̂2(m, b|r, u|`) if r = 1, ...,M − 1 and ` = 1, ...N − 1

0 if r = M or ` = 0 or ` = N
(5.33)

Equation (5.31) thus becomes

Ŝ
−
1 (m,u|`) =

∑
r

[ r̂1(m, b|`)]u,r Ŝ
+
1 (m, r|`)

Ŝ
−
2 (m,u|`) =

∑
r

[ r̂2(m, b|`)]u,r Ŝ
+
2 (m, r|`)

In composite matrix form these equations are (L&W 8.56)

Ŝ
−
1 (m|`) = r̂1(m, b|`)Ŝ

+

1 (m|`)

Ŝ
−
2 (m|`) = r̂2(m, b|`)Ŝ

+

2 (m|`) (5.34)

where Ŝ
±
1,2 are 4M × 1 composite column vectors defined in Eq. (4.23).

Note that, unlike for the surface boundary conditions, the ` modes decouple for the bottom
boundary condition because of the restriction to a bottom VBRDF dependence on cos(φ−φ′). This
allows the initial condition (4.71) for the upward sweep of ODEs to be revised to incorporate the
bottom boundary reflectance as the initial condition for integration of the upward set of equations.
Thus Eq. (4.71),

R̂1(m,m) = R̂2(m,m) = 04M×4M ,

is replaced by (L&W 8.94)

R̂1(m,m) = r̂1(m, b|`)

R̂2(m,m) = r̂2(m, b|`) (5.35)
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for each ` value of the upward sweep integrations. Similarly, the bottom boundary is assumed
to be opaque, so that no light is transmitted upward through the bottom boundary. The initial
conditions for the upward sweep integration for a reflecting, opaque, source-free lower boundary
are then

R̂1(m, b) = r̂1(m, b|`) (5.36)

R̂2(m, b) = r̂2(m, b|`) (5.37)

T̂ 1(m, b) = T̂ 2(m, b) = 04M×4M (5.38)

Σ̂
±t
1,2(m, b) = 04M×1 (5.39)

Finally, recall from Eq. (1.45) that for a Lambertian depolarizing bottom

rmb ≡ rLamb =
R(λ) cos θ′

π


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

This implies that only the (1,1), ` = 0 element of r̂1(m, b|`) is nonzero, and that r̂2(m, b|`) = 0 for

all ` values. In particular,

[ r̂1(m, b|0)]1,1 =
R(λ)
π

µrΩr1 = rmb(r, 1 → u, v) . (5.40)

5.3 Combining the Sea Surface with the Water Body

We now have the Fourier amplitude forms of the standard reflectance and transmittance ma-
trices for the air-water surface [a,w], r̂1(a,w), t̂1(a,w), etc., from §5.1. The standard matrices

R̂1(w, ζ), T̂ 1(w, ζ), etc. for the “bare slab” water body [w, ζ] are known from the solutions of the

ODEs in §4.5. The next step is to combine these two slabs to obtain matrices for the air-water
surface plus the water body. That is, we need to add the “real” sea surface to the top of the bare
slab water body.

The goal is to obtain the response radiances at the sea surface, Ŝ
−
1,2(a), and at depth ζ, Ŝ

+

1,2(ζ),

in terms of the known incident radiance at the surface, Ŝ
+

1,2(a), and at the bottom, Ŝ
−
1,2(ζ). This

is a two-stop process:

1. The first step is to obtain the internal radiances Ŝ
±
1,2(w) at depth w within the combined slab

[a, ζ] = [a,w] ∪ [w, ζ] as functions of the incident radiances at a and ζ.

2. Those results will then be used to eliminate Ŝ
±
1,2(w) in the surface boundary condition (5.18)

and the global interaction Eqs. (5.22) and (5.24).

To obtain a general result for the union of any two slabs, we include the possibility of internal
sources within [a,w]. When [a,w] is just a discontinuity in optical properties, as for an air-water
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surface, those sources are zero. However, the surface [a,w] also could represent a very thin layer of
oil, which can fluoresce. In that case, the surface slab [a,w] would include an internal source.

Surface boundary condition (5.19) for [a,w] becomes, for p = 1, 2 and with internal source terms
added for complete generality (consider, for example, a thin surface film of fluorescing oil),

Ŝ
+

1 (w) = r̂1(w, a)Ŝ
−
1 (w) + t̂1(a,w)Ŝ

+

1 (a) + σ̂+t
1 (a,w)

Ŝ
+

2 (w) = r̂2(w, a)Ŝ
−
2 (w) + t̂2(a,w)Ŝ

+

2 (a) + σ̂+t
2 (a,w)

The global interaction equations (5.21) and (5.23) for [w, ζ] are

Ŝ
−
1 (w) = R̂1(w, ζ)Ŝ

+

1 (w) + T̂ 1(ζ, w)Ŝ
−
1 (ζ)− R̂2(w, ζ)Ŝ

+

2 (w)− T̂ 2(ζ, w)Ŝ
−
2 (ζ) + Σ̂

−t
1 (ζ, w)

Ŝ
−
2 (w) = R̂1(w, ζ)Ŝ

+

2 (w) + T̂ 1(ζ, w)Ŝ
−
2 (ζ) + R̂2(w, ζ)Ŝ

+

1 (w) + T̂ 2(ζ, w)Ŝ
−
1 (ζ) + Σ̂

−t
2 (ζ, w)

These four equations can be solved for the four internal radiances Ŝ
±
1,2(w) in terms of the four

incident radiances Ŝ
+

1,2(a) and Ŝ
−
1,2(ζ) and the given internal sources. For simplicity of notation

in obtaining this solution, let rp = r̂p(w, a), tp = t̂p(a,w), R1 = R̂1(w, ζ),..., T2 = T̂ 2(ζ, w),

σp = σ̂+t
p (a,w) and Σp = Σ̂

−t
p (ζ, w). Keep in mind that r1 etc. are all 4M(N + 1) × 4M(N + 1)

composite matrices, and that σp and Σp are 4M(N + 1)× 1. These equations then can be placed
in matrix form as

Ŝ
+

1 (w)

Ŝ
+

2 (w)

Ŝ
−
1 (w)

Ŝ
−
2 (w)

 =


0 0 r1 0
0 0 0 r2
R1 −R2 0 0
R2 R1 0 0



Ŝ

+

1 (w)

Ŝ
+

2 (w)

Ŝ
−
1 (w)

Ŝ
−
2 (w)

 +


t1 0 0 0
0 t2 0 0
0 0 T1 −T2

0 0 T2 T1



Ŝ

+

1 (a)

Ŝ
+

2 (a)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)

 +


σ1

σ2

Σ1

Σ2

 .

The solution is then
Ŝ

+

1 (w)

Ŝ
+

2 (w)

Ŝ
−
1 (w)

Ŝ
−
2 (w)

 =


I 0 −r1 0
0 I 0 −r2

−R1 R2 I 0
−R2 −R1 0 I


−1




t1 0 0 0
0 t2 0 0
0 0 T1 −T2

0 0 T2 T1



Ŝ

+

1 (a)

Ŝ
+

2 (a)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)

 +


σ1

σ2

Σ1

Σ2



. (5.41)

The needed inverse matrix can be obtained using the block matrix inversion formula[
A B

C D

]−1

=

[
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

]
(5.42)

where

A = D =

[
I 0
0 I

]
, B =

[
−r1 0
0 −r2

]
, and C =

[
−R1 R2

−R2 −R1

]
.
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The result is [
I B

C I

]−1

=

[
(I −BC)−1 −B(I − CB)−1

−C(I −BC)−1 (I − CB)−1

]
(5.43)

To return to the 4× 4 form of Eq. (5.41), we apply Eq. (5.42) to each of the blocks of the inverse:

(I −BC)−1 =

[
I − r1R1 r1R2

−r2R2 I − r2R1

]−1

=

[
[I − r1R1 + r1R2(I − r2R1)−1r2R2]−1

(I − r2R1)−1r2R2[I − r1R1 + r1R2(I − r2R1)−1r2R2]−1

−(I − r1R1)−1r1R2[I − r2R1 + r2R2(I − r1R1)−1r1R2]−1

[I − r2R1 + r2R2(I − r1R1)−1r1R2]−1

]
≡

[
m11 m12

m21 m22

]
(5.44)

−C(I −BC)−1 =

[
R1 −R2

R2 R1

] [
m11 m12

m21 m22

]
=

[
R1m11 −R2m21 R1m12 −R2m22

R2m11 +R1m21 R2m12 +R1m22

]

(I − CB)−1 =

[
I −R1r1 R2r2
−R2r1 I −R1r2

]−1

=

[
[I −R1r1 +R2r2(I −R1r2)−1R2r1]−1

(I −R1r2)−1R2r1[I −R1r1 +R2r2(I −R1r2)−1R2r1]−1

−(I −R1r1)−1R2r2[I −R1r2 +R2r1(I −R1r1)−1R2r2]−1

[I −R1r2 +R2r1(I −R1r1)−1R2r2]−1

]
≡

[
m33 m34

m43 m44

]
(5.45)

and

−B(I − CB)−1 =

[
r1 0
0 r2

] [
m33 m34

m43 m44

]
=

[
r1m33 r1m34

r2m43 r2m44

]
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Equation (5.41) now becomes
Ŝ

+

1 (w)

Ŝ
+

2 (w)

Ŝ
−
1 (w)

Ŝ
−
2 (w)

 =


m11t1 m12t2
m21t1 m22t2

(R1m11 −R2m21)t1 (R1m12 −R2m22)t2
(R2m11 +R1m21)t1 (R2m12 +R1m22)t2

r1m33T1 + r1m34T2 −r1m33T2 + r1m34T1

r2m43T1 + r2m44T2 −r2m43T2 + r2m44T1

m33T1 +m34T2 −m33T2 +m34T1

m43T1 +m44T2 −m43T2 +m44T1



Ŝ

+

1 (a)

Ŝ
+

2 (a)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)



+


m11σ1 +m12σ2 + r1m33Σ1 + r1m34Σ2

m21σ1 +m22σ2 + r2m43Σ1 + r2m44Σ2

(R1m11 −R2m21)σ1 + (R1m12 −R2m22)σ2 +m33Σ1 +m34Σ2

(R2m11 +R1m21)σ1 + (R2m12 +R1m22)σ2 +m43Σ1 +m44Σ2

 (5.46)

5.3.1 Invariant Imbedding Relations and Imbed Rules for the Surface Plus the

Water Body

Following the notation of Light and Water (L&W 7.65-7.72 and 8.95-8.97), the matrix elements of
the preceding equation are rewritten as (L&W 7.65-7.66)

Ŝ
+

1 (w)

Ŝ
+

2 (w)

Ŝ
−
1 (w)

Ŝ
−
2 (w)

 ≡


T11(a,w, ζ) T12(a,w, ζ) R11(ζ, w, a) R12(ζ, w, a)
T21(a,w, ζ) T22(a,w, ζ) R21(ζ, w, a) R22(ζ, w, a)
R11(a,w, ζ) R12(a,w, ζ) T11(ζ, w, a) T12(ζ, w, a)
R21(a,w, ζ) R22(a,w, ζ) T21(ζ, w, a) T22(ζ, w, a)



Ŝ

+

1 (a)

Ŝ
+

2 (a)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)

 +


s1(a,w, ζ)
s2(a,w, ζ)
S1(ζ, w, a)
S2(ζ, w, a)


(5.47)

The equations contained in 5.47 are the invariant imbedding relations for [a, ζ]. These relations
hold for any internal depth w, a ≤ w ≤ ζ. As a mnemonic aid, note that depth w, which appears
on the left side of the equation, in imbedded within (lies between) the boundary depths a and ζ.
Invariant imbedding relations show how to compute the radiances at any internal depth, given the
radiances incident onto a slab from above and below.

The Tij(a,w, ζ) are known as the complete transmittances for downwelling radiance for the
combined slab [a, ζ]. (This report follows the notation of Hydrologic Optics, which used script
letters for complete operators; Light and Water used bold face only because a script font was not
available.) Note that these matrices transmit downwelling radiances from the surface at depth
a to depth w, accounting for the infinite series of internal reflections within the combined slabs.
Rij(a,w, ζ) are the complete reflectances for downwelling radiance incident onto the sea surface.
Likewise, Tij(ζ, w, a) are the complete transmittances for upwelling radiance incident onto the
bottom of the combined slab, and Rij(ζ, w, a) are the corresponding complete reflectances for
upwelling radiance. The s1,2(a,w, ζ) are the complete source-induced downwelling radiances, and
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S1,2(ζ, w, a) are the complete source-induced upwelling radiances. The order of (a,w, ζ) or (ζ, w, a)
shows the direction of the incident or internal-source radiance. The subscripts tell how cosine and
sine amplitudes are transformed as they are transmitted or reflected. Thus T11(a,w, ζ) transmits
cosine amplitudes from a to w, T12(a,w, ζ) transmits from a to w and turns sine amplitudes into
cosine amplitudes in the process, T21(ζ, w, a) transmits from ζ to w and converts cosine amplitudes
to sine amplitudes, and so on.

Writing out the complete reflectances, transmittances, and source matrices in terms of the
standard matrices gives (L&W 7.67-7.69)

T11(ζ, w, a) = [I −R1r1 +R2r2(I −R1r2)−1R2r1]−1T1

− (I −R1r1)−1R2r2[I −R1r2 +R2r1(I −R1r1)−1R2r2]−1T2 (5.48a)

T12(ζ, w, a) = − [I −R1r1 +R2r2(I −R1r2)−1R2r1]−1T2

− (I −R1r1)−1R2r2[I −R1r2 +R2r1(I −R1r1)−1R2r2]−1T1 (5.48b)

T21(ζ, w, a) = (I −R1r2)−1R2r1[I −R1r1 +R2r2(I −R1r2)−1R2r1]−1T1

+ [I −R1r2 +R2r1(I −R1r1)−1R2r2]−1T2 (5.48c)

T22(ζ, w, a) = − (I −R1r2)−1R2r1[I −R1r1 +R2r2(I −R1r2)−1R2r1]−1T2

+ [I −R1r2 +R2r1(I −R1r1)−1R2r2]−1T1 (5.48d)

R11(ζ, w, a) = r1T11(ζ, w, a) (5.48e)

R12(ζ, w, a) = r1T12(ζ, w, a) (5.48f)

R21(ζ, w, a) = r2T21(ζ, w, a) (5.48g)

R22(ζ, w, a) = r2T22(ζ, w, a) (5.48h)

S1(ζ, w, a) = (R1m11 −R2m21)σ1 + (R1m12 −R2m22)σ2 +m33Σ1 +m34Σ2 (5.48i)

S2(ζ, w, a) = (R2m11 +R1m21)σ1 + (R2m12 +R1m22)σ2 +m43Σ1 +m44Σ2 (5.48j)

and (L&W 7.70-7.72):

T11(a,w, ζ) = [I − r1R1 + r1R2(I − r2R1)−1r2R2]−1t1 (5.49a)

T12(a,w, ζ) = − (I − r1R1)−1r1R2[I − r2R2 + r2R2(I − r1R1)−1r1R2]−1t2 (5.49b)

T21(a,w, ζ) = [(I − r2R1)−1r2R2[I − r1R1 + r1R2(I − r2R1)−1r2R2]t1 (5.49c)

T22(a,w, ζ) = [I − r2R1 + r2R2(I − r1R1)−1r1R2]−1t2 (5.49d)

R11(a,w, ζ) = R1T11(a,w, ζ)−R2T21(a,w, ζ) (5.49e)

R12(a,w, ζ) = R1T12(a,w, ζ)−R2T22(a,w, ζ) (5.49f)

R21(a,w, ζ) = R2T11(a,w, ζ) +R1T21(a,w, ζ) (5.49g)

R22(a,w, ζ) = R2T12(a,w, ζ) +R1T22(a,w, ζ) (5.49h)

s1(a,w, ζ) = m11σ1 +m12σ2 + r1m33Σ1 + r1m34Σ2 (5.49i)

s2(a,w, ζ) = m21σ1 +m22σ2 + r2m43Σ1 + r2m44Σ2 (5.49j)

The source terms are left in terms of the mij matrices simply because these equations are too
lengthy to write out in full.

These equations are the imbed rules for the combined slabs [a,w] and [w, ζ]. Imbed rules show
how standard operators for two slabs are combined to generate complete operators for the composite
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slab.
A check on these equations can be obtained, as always, by considering the case of no polarization.

Then R2 and T2 are zero within the water body (because the scalar phase functions has only cosine
amplitudes), but r2 and t2 for the surface are not generally zero (because the surface has both sine
and cosine amplitudes). For no polarization, T11(ζ, w, a) = [I −R1r1]−1T1, which is (the transpose
of) L&W Eq. (7.67). T11(a,w, ζ) reduces to [I − r1R1]−1t1, which corresponds to L&W (7.70).
The “cross terms”, T12(a,w, ζ),T21(a,w, ζ),R12(a,w, ζ),R21(a,w, ζ) all reduce to zero and have
no equivalent in the unpolarized case. However, T22(ζ, w, a) = [I − R1r2]−1T1, which is almost,
but not quite, the transpose of L&W (7.67); and T22(a,w, ζ) = [I − r2R1]−1t2, which is almost
equivalent to L&W (8.96). I am therefore not sure if the T22 terms are correct; further checking is
needed.

5.3.2 Interpretation of the Complete Operators

It is worthwhile to consider the physical interpretation of the complete operators defined in Eqs.
(5.48) and (5.49). Consider, for example, T11(a,w, ζ), which according to Eq. (5.47) converts Ŝ

+

1 (a)

into Ŝ
+

1 (w).

T11(a,w, ζ) =
(
I − r1R1︸ ︷︷ ︸

A

+ r1R2(I − r2R1)−1r2R2︸ ︷︷ ︸
B

)−1
t1 (5.50)

This inverse can be expanded using the formula

(A+B)−1 = A−1 −A−1B(I +A−1B)−1A−1

for the inverse of the sum of two matrices. Applying this expansion to T11(a,w, ζ) with A and B
as identified in Eq. (5.50) gives

T11(a,w, ζ) = (I − r1R1)−1t1

− (I − r1R1)−1r1R2(I − r2R1)−1r2R2

(
I + (I − r1R1)−1r1R2(I − r2R1)−1r2R2

)
(I − r1R1)−1t1

(5.51)

Now consider the first term on the right hand side of this equation. Expanding the inverse of
(I − r1R1) using the formula

(I −A)−1 = I +A+AA+AAA+ · · ·

for the inverse of the identity minus a matrix, and reinserting the depth arguments, gives(
I − r1(a,w)R1(w, ζ)

)−1
t1(a,w) = t1(a,w) + r1(a,w)R1(w, ζ)t1(a,w)

+ r1(a,w)R1(w, ζ)r1(a,w)R1(w, ζ)t1(a,w) + · · · (5.52)

The upper panel of Fig. 5.1 shows the meaning of these terms when T11(a,w, ζ) operates on the
incident radiance Ŝ

+

1 (a). (This figure is similar to L&W Fig. 7.1, which includes the bottom

boundary.) The first term of the expansion, t1(a,w) simply transmits Ŝ
+

1 (a) from above the sea
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surface at depth a to just below the surface at depth w. The second term describes radiance that
is transmitted through the surface by t1(a,w), then reflected upward by the water between w and
depth ζ by the operation of R1(w, ζ). This upward reflection creates upwelling radiance Ŝ

−
1 (w) at

depth w. That radiance is then reflected back downward by the air-water surface via the operation
of r1(w, a). The end result is another contribution to Ŝ

+

1 (w). The next term of the expansion

represents another cycle of upward reflection by the water body followed by downward reflection
by the sea surface.

Now consider the expansion of the second term on the right hand side of Eq. (5.51). Expanding
the (I − riRj)−1 terms leads to the sequence of terms

rhs second term = − r1(w, a)R2(w, ζ)r2(w, a)R2(w, ζ)t1(a,w)

− r1(w, a)R2(w, ζ)r2(w, a)R1(w, ζ)r1(w, a)R2(w, ζ)r2(w, a)R1(w, ζ)t1(a,w) + · · ·

The bottom panel of Fig. 5.1 shows the meaning of the first group of these terms. First t1(a,w)
transmits Ŝ

+

1 (a) through the sea surface as before. Then reflection by R2(w, ζ) converts the down-

welling cosine amplitude Ŝ
+

1 (w) into an upwelling sine amplitude Ŝ
−
2 (w); recall that the standard

operators for the water body R2 and T2 convert cosine amplitudes to sine amplitudes and vice
versa. Ŝ

−
2 (w) is then reflected back downward by the water surface by r2(w, a) to create Ŝ

+

2 (w).

That downwelling sine amplitude is then reflected back upward by the water body via R2(w, ζ),
which converts the sine back to a cosine amplitude Ŝ

−
1 (w), which is reflected back downward by

r1(w, a). The end result is another contribution to Ŝ
+

1 (w). These terms do not occur is the SRTE

because R2 = 0, but in the VRTE they describe conversions between various components of the
Stokes vectors by the elements of the phase matrix.

As another example, consider R11(ζ, w, a), which according to Eq. (5.47) converts Ŝ
−
1 (ζ) into

Ŝ
+

1 (w). Performing a similar expansion of terms gives

R11(ζ, w, a) = r1[I −R1r1 +R2r2(I −R1r2)−1R2r1]−1T1

= r1(w, a)T1(ζ, w) + r1(w, a)R1(w, ζ)r1(w, a)T1(ζ, w) + · · ·
− r1(w, a)R2(ζ, w)r2(w, a)T2(ζ, w)

− r1(w, a)R2(w, ζ)r2(w, a)R1(w, ζ)r2(w, a)T2(ζ, w) + · · ·

The first series of terms is equivalent to the corresponding terms in the SRTE: T1(ζ, w) transmits
upwelling radiance Ŝ

−
1 (ζ) from ζ to the bottom of the sea surface, where it is reflected back down

by r1(w, a) to create Ŝ
+

1 (w), and so on. Figure 5.2 shows the effect of the second group of terms

involving T2(ζ, w). Now T2(ζ, w) transmits radiance from ζ to w, but converts cosine amplitudes
to sine amplitudes. These are then reflected back down by r2(w, a). R1(ζ, w) then reflects the
downwelling Ŝ

+

2 (w) back upward, leaving it as a sine amplitude. Another reflection by r2(w, a)

gives a downwelling sign amplitude, which is the reflected back upward by the water body and
converted back to a cosine amplitude in the process. A final reflection by the sea surface gives
another contribution to Ŝ

+

1 (w). This process does not occur in the SRTE because T2 = 0.
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Figure 5.1: Graphical interpretation of the leading terms in the expansion of T11(a,w, ζ).
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Figure 5.2: Graphical interpretation of one group of terms in the expansion of R11(ζ, w, a).
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The other complete operators has similar interpretations. These infinite series of inter-reflections
by the water body and the sea surface shows how invariant imbedding theory automatically accounts
for all orders of multiple scattering within a water body and between the water and the surface
(or bottom) boundary. This result can be contrasted with the successive-order-scattering solution
method. That method solves first for terms that represent unscattered radiance, then radiance
scattered once, then radiance scattered twice, and so on. The solution process is then terminated
after some number n of scatterings (often n is just 2 or 3). This gives an approximate solution of
the RTE that represents the radiance due to a finite number of scatterings. That is, the successive-
order-of-scattering solution approximates an infinite series of scatterings by adding up the first n
terms. Invariant imbedding, on the other hand, solves directly for the analytical sum of the infinite
series of scatterings.

5.3.3 Global Interaction Equations and Union Rules for the Surface Plus Water

Body

We can now take the second step of the present derivation by using Eq. (5.47) to replace the
internal radiances in Eqs. (5.18) with p = 1, 2, (5.22), and (5.24), which are (including for complete
generality the possibility of internal sources in [a,w])

Ŝ
−
1 (a) = r̂1(a,w)Ŝ

+

1 (a) + t̂1(w, a)Ŝ
−
1 (w) + σ̂−t1 (w, a)

Ŝ
−
2 (a) = r̂2(a,w)Ŝ

+

2 (a) + t̂2(w, a)Ŝ
−
2 (w) + σ̂−t2 (w, a)

Ŝ
+

1 (ζ) = R̂1(ζ, w)Ŝ
−
1 (ζ) + T̂ 1(w, ζ)Ŝ

+

1 (w)− R̂2(ζ, w)Ŝ
−
2 (ζ)− T̂ 2(w, ζ)Ŝ

+

2 (w) + Σ̂
+t

1 (w, ζ)

Ŝ
+

2 (ζ) = R̂1(ζ, w)Ŝ
−
2 (ζ) + T̂ 1(w, ζ)Ŝ

+

2 (w) + R̂2(ζ, w)Ŝ
−
1 (ζ) + T̂ 2(w, ζ)Ŝ

+

1 (w) + Σ̂
+t

2 (w, ζ)

Placing these equations in matrix form (again omitting the full matrix amplitude notation for
brevity, so that t1(w, a) here represents t̂1(w, a), etc.) gives


Ŝ
−
1 (a)

Ŝ
−
2 (a)

Ŝ
+

1 (ζ)

Ŝ
+

2 (ζ)

 =


0 0 t1(w, a) 0
0 0 0 t2(w, a)

T1(w, ζ) −T2(w, ζ) 0 0
T2(w, ζ) T1(w, ζ) 0 0



Ŝ

+

1 (w)

Ŝ
+

2 (w)

Ŝ
−
1 (w)

Ŝ
−
2 (w)



+


r1(a,w) 0 0 0

0 r2(a,w) 0 0
0 0 R1(ζ, w) −R2(ζ, w)
0 0 R2(ζ, w) R1(ζ, w)



Ŝ

+

1 (a)

Ŝ
+

2 (a)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)

 +


σ̂−t1 (w, a)

σ̂−t2 (w, a)

Σ̂
+t

1 (w, ζ)

Σ̂
+t

2 (w, ζ)
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The invariant imbedding Eq. (5.47) is now used to replace the column vector of internal radiances
at depth w in this equation. Carrying out the matrix multiplications gives (L&W 7.73, 7.74)
Ŝ
−
1 (a)

Ŝ
−
2 (a)

Ŝ
+

1 (ζ)

Ŝ
+

2 (ζ)

 =


t1(w, a)R11(a,w, ζ) + r1(a,w) t1(w, a)R12(a,w, ζ)

t2(w, a)R21(a,w, ζ) t2(w, a)R22(a,w, ζ) + r2(a,w)
T1(w, ζ)T11(a,w, ζ)− T2(w, ζ)T21(a,w, ζ) T1(w, ζ)T12(a,w, ζ)− T2(w, ζ)T22(a,w, ζ)
T2(w, ζ)T11(a,w, ζ) + T1(w, ζ)T21(a,w, ζ) T2(w, ζ)T12(a,w, ζ) + T1(w, ζ)T22(a,w, ζ)

t1(w, a)T11(ζ, w, a)
t2(w, a)T21(ζ, w, a)

T1(w, ζ)R11(ζ, w, a)− T2(w, ζ)R21(ζ, w, a) +R1(ζ, w)
T2(w, ζ)R11(ζ, w, a) + T1(w, ζ)R21(ζ, w, a) +R2(ζ, w)

t1(w, a)T12(ζ, w, a)
t2(w, a)T22(ζ, w, a)

T1(w, ζ)R12(ζ, w, a)− T2(w, ζ)R22(ζ, w, a)−R2(ζ, w)
T2(w, ζ)R12(a,w, ζ) + T1(w, ζ)R22(a,w, ζ) +R1(ζ, w)



Ŝ

+

1 (a)

Ŝ
+

2 (a)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)



+


t1(w, a)S1(ζ, w, a) + σ̂−t1 (w, a)

t2(w, a)S2(ζ, w, a) + σ̂−t2 (w, a)

T1(w, ζ)s1(a,w, ζ)− T2(w, ζ)s2(a,w, ζ) + Σ̂
+t

1 (w, ζ)

T2(w, ζ)s1(a,w, ζ) + T1(w, ζ)s2(a,w, ζ) + Σ̂
+t

2 (w, ζ)

 (5.53)

These equations show how the composite slab [a, ζ] responds to incident radiances; they are
therefore the global interaction equations for the composite slab. Global interaction equations are
written in terms of standard operators, e.g. as in Eqs. (5.21)-(5.24). We therefore rewrite the last
equation as

Ŝ
−
1 (a)

Ŝ
−
2 (a)

Ŝ
+

1 (ζ)

Ŝ
+

2 (ζ)

 ≡


R11(a, ζ) R12(a, ζ) T11(ζ, a) T12(ζ, a)
R21(a, ζ) R22(a, ζ) T21(ζ, a) T22(ζ, a)
T11(a, ζ) T12(a, ζ) R11(ζ, a) R12(ζ, a)
T21(a, ζ) T22(a, ζ) R21(ζ, a) R22(ζ, a)



Ŝ

+

1 (a)

Ŝ
+

2 (a)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)

 +


σ̂−t1 (ζ, a)

σ̂−t2 (ζ, a)

Σ̂
+t

1 (a, ζ)

Σ̂
+t

2 (a, ζ)

 (5.54)
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The equations defining the standard operators for the combined slab are (L&W 7.75-7.77),

R11(a, ζ) = t1(w, a)R11(a,w, ζ) + r1(a,w) (5.55)

R12(a, ζ) = t1(w, a)R12(a,w, ζ) (5.56)

R21(a, ζ) = t2(w, a)R21(a,w, ζ) (5.57)

R22(a, ζ) = t2(w, a)R22(a,w, ζ) + r2(a,w) (5.58)

T11(ζ, a) = t1(w, a)T11(ζ, w, a) (5.59)

T12(ζ, a) = t1(w, a)T12(ζ, w, a) (5.60)

T21(ζ, a) = t2(w, a)T21(ζ, w, a) (5.61)

T22(ζ, a) = t2(w, a)T22(ζ, w, a) (5.62)

σ̂−t1 (ζ, a) = t1(w, a)S1(ζ, w, a) + σ̂−t1 (w, a) (5.63)

σ̂−t2 (ζ, a) = t2(w, a)S2(ζ, w, a) + σ̂−t2 (w, a) (5.64)

and (L&W 7.78-7.80)

R11(ζ, a) = T1(w, ζ)R11(ζ, w, a)− T2(w, ζ)R21(ζ, w, a) +R1(ζ, w) (5.65)

R12(ζ, a) = T1(w, ζ)R12(ζ, w, a)− T2(w, ζ)R22(ζ, w, a)−R2(ζ, w) (5.66)

R21(ζ, a) = T2(w, ζ)R11(ζ, w, a) + T1(w, ζ)R21(ζ, w, a) +R2(ζ, w) (5.67)

R22(ζ, a) = T2(w, ζ)R12(ζ, w, a) + T1(w, ζ)R22(ζ, w, a) +R1(ζ, w) (5.68)

T11(a, ζ) = T1(w, ζ)T11(a,w, ζ)− T2(w, ζ)T21(a,w, ζ) (5.69)

T12(a, ζ) = T1(w, ζ)T12(a,w, ζ)− T2(w, ζ)T22(a,w, ζ) (5.70)

T21(a, ζ) = T2(w, ζ)T11(a,w, ζ) + T1(w, ζ)T21(a,w, ζ) (5.71)

T22(a, ζ) = T2(w, ζ)T12(a,w, ζ) + T1(w, ζ)T22(a,w, ζ) (5.72)

Σ̂
+t

1 (a, ζ) = T1(w, ζ)s1(a,w, ζ)− T2(w, ζ)s2(a,w, ζ) + Σ̂
+t

1 (w, ζ) (5.73)

Σ̂
+t

2 (a, ζ) = T2(w, ζ)s1(a,w, ζ) + T1(w, ζ)s2(a,w, ζ) + Σ̂
+t

2 (w, ζ) (5.74)

Recalling that the imbed rules (5.48) and (5.48) define the complete operators in terms of
standard operators, these equations show how the standard operators for two slabs are combined
to obtain the standard operators for a composite slab. We can imagine holding a and w fixed and
“constructing” the water body by letting ζ increase downward starting at ζ = w. These relations
are therefore known as the downward union rules for the composite slab.

As always, we can check that the VRTE equations reduce to their SRTE equivalents. Thus
T11(ζ, a) reduces to (the transpose of) L&W (7.75), R11(a, ζ) is the equivalent of L&W (7.76),
R12(a, ζ) = R21(a, ζ) = 0 and have no scalar equivalents, and σ̂−t1 (ζ, a) reduces to L&W(7.77).

Likewise, R11(ζ, a) reduces to L&W(7.79), T11(a, ζ) is equivalent to L&W(7.78), and so on1.

1As was the case for the T22 complete transmittances, the reductions of the T22 standard matrices to the unpo-

larized case are not obvious; need to check further.
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A review the preceding developments is warranted.

• The transfer functions (standard operators) for the air-water surface, r1,2(a,w), r1,2(w, a),
t1,2(a,w), and t1,2(w, a), are known from the surface boundary conditions.

• The standard operators for the bare slab [w, ζ], R1(w, ζ), etc. are known from the downward
sweep integrations of the ODEs (4.48-4.54) beginning with initial conditions (4.55-4.58)

• These two sets of standard operators were combined via the imbed rules (5.47) and (5.48-5.49).
Those equations give the radiances at depth w, S±1,2(w), in terms of the incident radiances at
depths a and ζ. However, the radiances at ζ are not yet known.

• The global interaction equations (5.53, 5.54) and union rules (5.64, 5.74) give the standard
operators R11(a, ζ) etc. for the combined slabs [a,w] ∪ [w, ζ].

• In general the above process would be repeated to combine the bare slab [ζ,m] with the lower
boundary [m, b]. However, the lower boundary was assumed to be an azimuthally isotropic
reflecting layer, in which case the Fourier modes decoupled ` value by ` value. This allowed
the standard operators R1,2(ζ, b) etc. for the slab [ζ,m]∪ [m, b] to be obtained by the upward
sweep integrations of the ODEs (4.59-4.70) with initial conditions (5.36-5.39) for each ` value.
Thus the standard operators R1(ζ, b) etc. are known from the upward sweep ODE solutions
and the known bottom reflectance.

5.4 Computing the Radiances at Depth w

The next step is to combine slabs [a, ζ], and [ζ, b], both of whose properties are now known and
incorporate the surface and bottom boundary conditions. It will be convenient first to let ζ = w so
as to obtain the upward and downward radiances at depth w. We will then use those values and
the standard operators for slabs [w, ζ] and [ζ, b] to obtain the radiances at any depth ζ within the
water body. It will then be possible to obtain the water-leaving radiances. The final step of the
solution is then to compute the physical-space Stokes vectors from the Fourier amplitudes.

The invariant imbedding equation for the depth triplet (a,w, b) can be written with the same
form as Eq. (5.47):

Ŝ
+

1 (w)

Ŝ
+

2 (w)

Ŝ
−
1 (w)

Ŝ
−
2 (w)

 ≡


T11(a,w, b) T12(a,w, b) R11(b, w, a) R12(b, w, a)
T21(a,w, b) T22(a,w, b) R21(b, w, a) R22(b, w, a)
R11(a,w, b) R12(a,w, b) T11(b, w, a) T12(b, w, a)
R21(a,w, b) R22(a,w, b) T21(b, w, a) T22(b, w, a)



Ŝ

+

1 (a)

Ŝ
+

2 (a)

Ŝ
−
1 (b)

Ŝ
−
2 (b)

 +


s1(a,w, b)
s2(a,w, b)
S1(b, w, a)
S2(b, w, a)


(5.75)

Now, however, the upwelling radiance at depth b is zero because no light enters the water from
below the bottom boundary. Thus Ŝ

−
1,2(b) = 0, and these equations reduce to (L&W 8.95 and 8.99
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with p = 1 and 2)

Ŝ
+

1 (w) =T11(a,w, b)Ŝ
+

1 (a) + T12(a,w, b)Ŝ
+

2 (a) + s1(a,w, b) (5.76)

Ŝ
+

2 (w) =T21(a,w, b)Ŝ
+

1 (a) + T22(a,w, b)Ŝ
+

2 (a) + s2(a,w, b) (5.77)

Ŝ
−
1 (w) =R11(a,w, b)Ŝ

+

1 (a) + R12(a,w, b)Ŝ
+

2 (a) + S1(b, w, a) (5.78)

Ŝ
−
2 (w) =R21(a,w, b)Ŝ

+

1 (a) + R22(a,w, b)Ŝ
+

2 (a) + S2(b, w, a) (5.79)

The complete operators T11(a,w, b) etc. are given by equations of the same form as Eqs. (5.44-5.46).
Thus in analogy to Eq. (5.49a) we have

T11(a,w, b) = [I − r1(w, a)R1(w, b)

+ r1(w, a)R2(w, b)(I − r2(w, a)R1(w, b))−1r2(w, a)R2(w, b)]−1t1(a,w) (5.80)

and so on.
For the case of no polarization, R2(w, b) = 0 and Eq. (5.76) reduces to (L&W 8.95-8.97 for

p = 1)

Ŝ
+

1 (w) = [I − r1(w, a)R1(w, b)]−1t1(a,w)Ŝ
+

1 (a)

+ [I − r1(w, a)R1(w, b)]−1σ(a,w) + r1(w, a)[I −R1(w, b)r1(w, a)]−1Σ(b, w)

Moreover, in this equation σ(a,w) = 0 because we are assuming that the air-water surface itself is
source free.

Equations (5.76-5.79) give the radiances at depth w, Ŝ
±
1,2(w), in terms of the known incident

radiances onto the sea surface, Ŝ
+

1,2(a), and the internal sources in the water body, S1,2(b, w, a).

5.5 Computing the Radiances at Depth ζ

Now that the radiances at depth w are known, they can be used along with the known standard
operators for slab [w, ζ] and for slab [ζ, b] to write down global interaction equations for the com-
bined slab [w, ζ] ∪ [ζ, b]. These equations have the same form as the global interaction equations
seen before in Eqs. (4.30, 4.32, 4.33, and 4.35), with the exception that depth m is replaced by b.
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The result is

Ŝ
+

1 (ζ|`) = R̂1(ζ, w|`)Ŝ
−
1 (ζ|`) + T̂ 1(w, ζ|`)Ŝ

+

1 (w|`)

− R̂2(ζ, w|`)Ŝ
−
2 (ζ|`)− T̂ 2(w, ζ|`)Ŝ

+

2 (w|`) + Σ̂
+t

1 (w, ζ|`) (5.81)

Ŝ
+

2 (ζ|`) = R̂1(ζ, w|`)Ŝ
−
2 (ζ|`) + T̂ 1(w, ζ|`)Ŝ

+

2 (w|`)

+ R̂2(ζ, w|`)Ŝ
−
1 (ζ|`) + T̂ 2(w, ζ|`)Ŝ

+

1 (w|`) + Σ̂
+t

2 (w, ζ|`) (5.82)

Ŝ
−
1 (ζ|`) = R̂1(ζ, b|`)Ŝ

+

1 (ζ|`) + T̂ 1(b, ζ|`)Ŝ
−
1 (b|`)

− R̂2(ζ, b|`)Ŝ
+

2 (ζ|`)− T̂ 2(b, ζ|`)Ŝ
−
2 (b|`) + Σ̂

−t
1 (b, ζ|`) (5.83)

Ŝ
−
2 (ζ|`) = R̂1(ζ,m|`)Ŝ

+

2 (ζ|`) + T̂ 1(m, ζ|`)Ŝ
−
2 (m|`)

+ R̂2(ζ, b|`)Ŝ
+

1 (ζ|`) + T̂ 2(b, ζ|`)Ŝ
−
1 (b|`) + Σ̂

−t
2 (b, ζ|`) (5.84)

These four equations can be solved for each ` value for the internal radiances at any depth ζ

in terms of the known incident radiances at depths w and b. For this development, we drop the
` argument and simplify the notation as before, so that R1(ζ, w) = R̂1(ζ, w|`), etc. Placing these

equations in matrix form then gives the solution, which is similar in form to Eq. (5.41):
Ŝ

+

1 (ζ)

Ŝ
+

2 (ζ)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)

 =


I 0 −R1(ζ, w) R2(ζ, w)
0 I −R2(ζ, w) −R1(ζ, w)

−R1(ζ, b) R2(ζ, b) I 0
−R2(ζ, b) −R1(ζ, b) 0 I


−1

×




T1(w, ζ) −T2(w, ζ) 0 0
T2(w, ζ) T1(w, ζ) 0 0

0 0 T1(b, ζ) −T2(b, ζ)
0 0 T2(b, ζ) T1(b, ζ)



Ŝ

+

1 (w)

Ŝ
+

2 (w)

Ŝ
−
1 (b)

Ŝ
−
2 (b)

 +


Σ+t

1 (w, ζ)
Σ+t

2 (w, ζ)
Σ−t

1 (b, ζ)
Σ−t

2 (b, ζ)




(5.85)

Repeated application of the block matrix inversion formulas (5.42) and (5.43) can again be used
to obtain the inverse of the 4× 4 block matrix. Letting B and C be the upper right and lower left
2× 2 blocks respectively, we now have

(I −BC)−1 =

[
I −R1(ζ, w)R1(ζ, b) +R2(ζ, w)R2(ζ, b) R1(ζ, w)R2(ζ, b) +R2(ζ, w)R1(ζ, b)
−R2(ζ, w)R1(ζ, b)−R1(ζ, w)R2(ζ, b) I +R2(ζ, w)R2(ζ, b)−R1(ζ, w)R1(ζ, b)

]−1

≡

[
α β

γ δ

]−1

=

[
(α− βδ−1γ)−1 −α−1β(δ − γα−1β)−1

δ−1γ(α− βδ−1γ)−1 (δ − γα−1β)−1

]
≡

[
n11 n12

n21 n22

]
(5.86)

−C(I −BC)−1 =

[
−R1(ζ, b)n11 +R2(ζ, b)n21 −R1(ζ, b)n12 +R2(ζ, b)n22

−R2(ζ, b)n11 −R2(ζ, b)n21 −R2(ζ, b)n12 +R1(ζ, b)n22

]
(5.87)
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(I − CB)−1 =

[
I −R1(ζ, b)R1(ζ, w) +R2(ζ, b)R2(ζ, w) R1(ζ, b)R2(ζ, w) +R2(ζ, b)R1(ζ, 2)
−R2(ζ, b)R1(ζ, w)−R1(ζ, b)R2(ζ, w) I +R2(ζ, b)R2(ζ, w)−R1(ζ, b)R1(ζ, w)

]−1

≡

[
a b

c d

]−1

=

[
(a− bd−1c)−1 −a−1b(d− ca−1b)−1

d−1c(a− bd−1c)−1 (d− ca−1b)−1

]
≡

[
p11 p12

p21 p22

]
(5.88)

−B(I − CB)−1 =

[
−R1(ζ, w)p11 +R2(ζ, w)p21 −R1(ζ, w)p12 +R2(ζ, w)p22

−R2(ζ, w)p11 −R2(ζ, w)p21 −R2(ζ, w)p12 +R1(ζ, w)p22

]
(5.89)

Equation (5.43) now gives the inverse in Eq. (5.85) as
I 0 −R1(ζ, w) R2(ζ, w)
0 I −R2(ζ, w) −R1(ζ, w)

−R1(ζ, b) R2(ζ, b) I 0
−R2(ζ, b) −R1(ζ, b) 0 I


−1

=


n11 n12

n21 n22

−R1(ζ, b)n11 +R2(ζ, b)n21 −R1(ζ, b)n12 +R2(ζ, b)n22

−R2(ζ, b)n11 −R2(ζ, b)n21 −R2(ζ, b)n12 −R1(ζ, b)n22

−R1(ζ, w)p11 +R2(ζ, w)p21 −R1(ζ, w)p12 +R2(ζ, w)p22

−R2(ζ, w)p11 −R2(ζ, w)p21 −R2(ζ, w)p12 +R1(ζ, w)p22

p11 p12

p21 p22

 (5.90)
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Equation (5.85) now becomes
Ŝ

+

1 (ζ)

Ŝ
+

2 (ζ)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)

 =


n11T1(w, ζ) + n12T2(w, ζ)
n12T1(w, ζ) + n22T2(w, ζ)

[−R1(ζ, b)n11 +R2(ζ, b)n21]T1(w, ζ) + [−R1(ζ, b)n12 +R2(ζ, b)n22]T2(w, ζ)
[−R2(ζ, b)n11 −R1(ζ, b)n21]T1(w, ζ) + [−R2(ζ, b)n12 −R2(ζ, b)n22]T2(w, ζ)

n11T2(w, ζ) + n12T1(w, ζ)
−n12T2(w, ζ) + n22T1(w, ζ)

[−R1(ζ, b)n11 +R2(ζ, b)n21][−T2(w, ζ)] + [−R1(ζ, b)p12 +R2(ζ, b)p22]T2(w, ζ)
[−R2(ζ, b)n11 −R1(ζ, b)n21][−T2(w, ζ)] + [−R1(ζ, b)p12 +R2(ζ, b)p22]T2(w, ζ)

[−R1(ζ, w)p11 +R2(ζ, w)p21]T1(b, ζ) + [−R1(ζ, w)p12 +R2(ζ, w)p22]T2(b, ζ)
[−R2(ζ, w)p11 −R1(ζ, w)p21]T1(b, ζ) + ([−R2(ζ, w)p12 −R2(ζ, w)p22]T2(b, ζ)

p11T1(b, ζ) + p12T2(b, ζ)
p21T1(b, ζ) + p22T2(b, ζ)

[−R1(ζ, w)p11 +R2(ζ, w)p21][−T2(b, ζ)] + [−R1(ζ, w)p12 +R2(ζ, w)p22]T1(b, ζ)
[−R2(ζ, w)p11 −R1(ζ, w)p21][−T2(b, ζ)] + [−R2(ζ, w)p12 −R2(ζ, w)p22]T1(b, ζ)

−p11T2(b, ζ) + p12T1(b, ζ)
−p21T2(b, ζ) + p22T1(b, ζ)



Ŝ

+

1 (w)

Ŝ
+

2 (w)

Ŝ
−
1 (b)

Ŝ
−
2 (b)



+


n11Σ+t

1 (w, ζ) + n12Σ+t
2 (w, ζ)

n12Σ+t
1 (w, ζ) + n22Σ+t

2 (w, ζ)
[−R1(ζ, b)n11 +R2(ζ, b)n21]Σ+t

1 (w, ζ) + [−R2(ζ, b)n11 −R1(ζ, b)n21]Σ+t
1 (w, ζ)

[−R2(ζ, b)n11 −R1(ζ, b)n21]Σ+t
1 (w, ζ) + [−R2(ζ, b)n12 −R1(ζ, b)n22]Σ+t

1 (w, ζ)

[−R1(ζ, w)p11 +R2(ζ, w)p21]Σ−t
1 (b, ζ) + [−R1(ζ, w)p12 +R2(ζ, w)p22]Σ−t

2 (b, ζ)
[−R2(ζ, w)p11 −R1(ζ, w)p21]Σ−t

1 (b, ζ) + [−R2(ζ, w)p12 −R1(ζ, w)p22]Σ−t
2 (b, ζ)

p11Σ−t
1 (b, ζ) + p12Σ−t

2 (b, ζ)
p21Σ−t

1 (b, ζ) + p22Σ−t
2 (b, ζ)


(5.91)

Writing this in terms of complete operators gives
Ŝ

+

1 (ζ)

Ŝ
+

2 (ζ)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)

 ≡


T11(w, ζ, b) T12(w, ζ, b) R11(b, ζ, w) R12(b, ζ, w)
T21(w, ζ, b) T22(w, ζ, b) R21(b, ζ, w) R22(b, ζ, w)
R11(w, ζ, b) R12(w, ζ, b) T11(b, ζ, w) T12(b, ζ, w)
R21(w, ζ, b) R22(w, ζ, b) T21(b, ζ, w) T22(b, ζ, w)



Ŝ

+

1 (w)

Ŝ
+

2 (w)

Ŝ
−
1 (b)

Ŝ
−
2 (b)

 +


S1(w, ζ, b)
S2(w, ζ, b)
S1(b, ζ, w)
S2(b, ζ, w)


(5.92)

These equations are the invariant imbedding relationships for depths (w, ζ, b). The incident
radiances at depth w and b are now known, so these equations allow the radiances at any depth ζ
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in the water body [w,m] to be computed, including all effects of the air-water surface, the bottom
reflectance, and the internal sources. These equations are evaluated for each Fourier ` mode. It
should be noted that the incident radiance at b is zero for an opaque reflecting bottom, so in practice
only the Tij(w, ζ, b) and Rij(w, ζ, b) terms need to be computed. In this case we have, for example,

Ŝ
+

1 (ζ) = T11(w, ζ, b)Ŝ
+

1 (w) + T12(w, ζ, b)Ŝ
+

1 (w) + S1(w, ζ, b) (5.93)

For the case of no polarization, T12(w, ζ, b) = 0, and this equation reduces to (the transpose of)
L&W (8.103) with p = 1.

5.6 Computing the Water-leaving Radiances

The only radiances still unknown are the water-leaving radiances Ŝ
−
1,2(a). Now that the upwelling

radiances at depth w are known, the water-leaving radiances can be obtained from the surface
boundary condition (5.18) (L&W 8.107):

Ŝ
−
p (a) = r̂p(a,w)Ŝ

+

p (a) + t̂p(w, a)Ŝ
−
p (w) (5.94)

with p = 1, 2. Because the surface-bounday Fourier modes do not decouple, this equation must be
evaluated simultaneously for all ` modes via the 4M(N + 1) × 4M(N + 1) composite matrices as
seen in Eqs. (5.15) and (5.16), and the 4M(N + 1)× 1 vectors of Eq. (5.17).

5.7 Synthesis of the Physical-space Stokes Vectors

We have now obtained the Fourier amplitudes of the Stokes vectors at all depths. The final step
of the solution of the VRTE is to reconstitute the quad averaged Stokes vectors in physical space.
The 4M ×1 column vectors Ŝ

−±
1,2 are “unstacked” as in Eq. (4.23) to obtain the 4×1 Stokes vector

amplitudes Ŝ
±
1,2(ζ, u|`) for each u and ` value. The physical Stokes vectors are then obtained via

Eq. (4.3) (L&W 8.108):

S±(ζ, u, v) =
N∑
`=0

[
Ŝ
±
1 (ζ, u|`) cos(`φv) + Ŝ

±
2 (ζ, u|`) sin(`φv)

]
. (5.95)

Evaluation of this equation at each depth a,w = ζ1, ζ2, ..., ζK = m, for each value of u = 1, ...,M
and v = 1, 2, ..., 2N , gives the desired quad-averaged Stokes vectors.

This completes the solution of the vector radiative transfer equation.
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CHAPTER 6

Flow Chart of the Computations

The preceding development of invariant imbedding theory for the VRTE has been, to put it mildly,
rather complicated. The relevant equations are spread over almost 100 pages. It is therefore
worthwhile to explicitly lay out the exact steps needed to implement the solution in the HydroPol
software.

There are several distinct steps to the solution:

• Set default values to be used for all subsequent VRTE solutions. Certain quantities
can be set to recommended default values. The main one of these is the quad partition.

• The air-water transfer functions r̂1,2(a,w), r̂1,2(w, a), t̂1,2(a,w), and t̂1,2(w, a) must

be computed. These depend only on the quad partitioning, the water index of refraction,
and the wind speed. For a given quad partition and index of refraction, they can therefore
be computed as a function of the wind speed and stored in a library of surface functions for
different wind speeds. The functions for the user requested wind speed can then be read and
used in the solution for that particular problem.

• The discretized phase matrices P̂
±
1,2(ζ, r, u|k) must be computed. These depend only

on the quad partition and the form of the phase matrix. A library of pre-computed phase
matrices can be created so that the phase matrices requested by the user for different IOP
components can be read and used for the particular problem at hand.

• The user must specify the physical problem to be solved. This includes defining the
water-column IOPs, the depths and wavelengths where output is to be computed and saved,
the incident sun and sky radiance distribution, the wind speed, and the water column bottom
depth and reflectance.

• The VRTE must be solved for the requested physical problem. This requires carrying
out all of the computations shown in Chapters 4 and 5 .

The fundamental output of the HydroPol software is a file of quad-averaged Stokes vector com-
ponents S = [I,Q,U, V ]T as functions of depth zk, direction (u, v) = (θ, φ), and wavelength λj .
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Derived quantities such as irradiances, reflectances, diffuse attenuation functions, and degree of
polarization are computed from their definitions using the Stokes vector components. The user can
then examine these outputs graphically or analytically outside of the HydroPol software.

The next sections lay out the needed computations step by step.

6.1 Specification of Default Values

These choices affect all subsequent calculations.

I The quad partition. The default quad partition shown in Fig. 2.1 has proven adequate
for almost all problems in HydroLight, and should work equally well in HydroPol. This partition
is set as the default.

I The water index of refraction. This is set to nwater = 1.34 for debugging. (HydroLight
includes the option to have nwater depend on the user-selected salinity and temperature, but his
requires a much larger table of surface transfer functions. That option can be added to HydroPol
later if desired.)

I Inelastic scatter functions. The excitation-emission spectra (wavelength redistribution
functions) for chlorophyll and CDOM fluorescence are set to the same values used in HydroLight.
Likewise, the scattering cross section and phase matrix for Raman scatter by water are set to
standard values. The details of the source terms have not been included in this report. In the first
version of the code, inelastic scatter can be set to zero to simplify debugging.

These defaults can be changed by the user, but note that changing the quad resolution requires
re-computation of the surface transfer function and phase matrix libraries, and changing the index
of refraction requires re-computation of the surface transfer function library.

6.2 Computation of the Air-water Radiance Transfer Functions

The default quad partition and water index of refraction allow the air-water surface transfer func-
tions to be computed for various wind speeds. These are one-time calculations for a given wind
speed and index of refraction and are carried out by code that is separate from the main HydroPol
code that solves the VRTE for a specific set of user inputs. For a level sea surface (a wind speed of
0), there are unique reflected and transmitted directions for a each incident direction, and the cal-
culations can be based on the analytic Fresnel reflectance and transmittance functions of §3.1. For
a rough sea surface (wind speed > 0), a given incident direction can be reflected and refracted by
surface waves into any direction, and Monte Carlo calculations must be used to compute ensemble
averages over many wave realizations.

6.2.1 Analytic Computation of Air-water Transfer Functions for a Level Surface

There are four transfer functions, raw, rwa, taw, and rwa, that must first be quad-averaged, and then
Fourier analyzed. Each of these is a 4×4 matrix for each combination of incident (r, s) and reflected
or refracted (u, v) quad directions. The process is the same for each element of each matrix. Let
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t(θi, φi, θr, φr) represent the i, j element of any of the four transfer matrices, with (θi, φi) being the
incident direction and (θr, φr) being the reflected or refracted direction. For a level surface, the
rotation matrices reduce to I4×4 and thus do not need to be explicitly considered. The calculations
proceed as follows.

. Begin loop over all incident quads Q(r, s).

I For each Q(r, s), the quad-averaged t(r, s, u, v) defined by Eq. (2.11) is computed as a
quadruple sum over subquads as shown in Eq. (2.15).

. Begin loop over subquads of Q(r, s).

I For each subquad of Q(r, s) in Eq. (2.15), compute the reflected or refracted direction using
either the law of reflection (θr = θi) or Snel’s law (3.1). This gives the angles needed to (1)
determine which quad Q(u, v) receives the reflected or transmitted light and (2) evaluate whichever
matrix element is being computed, using Eqs. (3.2) to (3.23) as needed. Note that φr = φi for a
level surface. Note also that for reflection, each Q(r, s) reflects light into exactly one Q(u, v), with
all other reflected quads having a value of zero. However, for transmission, Q(r, s) can transmit
light into more than one Q(u, v). In either case, most of the matrix elements will be zero for a level
surface because the quads are not connected by reflection or transmission.

I Compute the contribution to the summation of Eq. (2.15) using whichever of Eqs. (3.2) to
(3.23) corresponds to the matrix element being computed.

/ End of loop over subquads.
/ End of loop over incident quads.

At the end of these computations, the quad-averaged t(r, s→ u, v) are known for all quad pairs.
These arrays are quad-averaged reflectances and transmittances in physical space, so they can be
plotted or otherwise compared with the analytical functions as a check on the computer code.

I Compute the Fourier amplitudes t̂1(r, u|k, `) and t̂2(r, u|k, `) of each matrix element using Eqs.
(5.7) and (5.8) and the special cases shown therein. The elements of the 4 × 4 Fourier amplitude
matrices t̂1,2(r, u|k, `) are now known.

I Assemble the 4×4 t̂1,2(r, u|k, `) matrices into 4M×4M composite matrices t̂1,2(k, `) as shown

in Eqs. (5.11) and (5.12).

I Assemble the 4M ×4M composite matrices t̂1,2(k, `) into 4M(N +1)×4M(N +1) composite
matrices t̂1,2 as shown in Eqs. (5.15) and (5.16).

These calculations give the composite matrices r̂1,2(a,w), r̂1,2(w, a), t̂1,2(a,w), and t̂1,2(w, a),

which appear in the surface boundary conditions (5.18) and (5.19).

I Store these matrices in a file identified by the wind speed and water index of refraction, e.g.
with a file name like SurfrtU0n134.txt.

This completes the computation of the surface transfer functions for a level sea surface.
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6.2.2 Monte Carlo Computation of Air-water Transfer Functions for a Wind-

blown Surface

When the sea surface is not level, Monte Carlo simulation for an ensemble of randomly generated
surface waves is the only way to compute surface transfer functions that include multiple scattering
effects for arbitrary wave surfaces. The details of those ray tracing calculations are described in
§3.2 and in Appendix B, and need not be repeated here. The essence of these calculations can be
summarized as follows:

. Begin loop over all surface realizations.

. Begin loop over all incident quads Q(r, s).

I For each Q(r, s), choose an initial ray direction at random from within the solid angle sub-
tended by the quad.

I Trace the initial ray and all of its daughter rays to completion. Whenever a ray leaves the
hexagonal domain, tally the ray’s final weight array W to one of the four accumulating weight
arrays, as determined by the ray’s initial and final quads.

/ End of loop over incident quads.
/ End of loop over surface realizations.

I Divide the accumulating weight arrays by the number of surface realizations to obtain the
ensemble averages of Eq. (3.56). Convert the ensemble averages to the four physical space, quad-
averaged transfer functions t(r, s→ u, v) via Eq. (3.67).

At the end of these ray-tracing calculations, the four transfer functions t(r, s→ u, v) correspond
to those obtained for the level surface case (but of course have different numerical values). The
Fourier decomposition then proceeds in exactly the manner described above for the level surface
transfer functions.

6.3 Computation of the Normalized Phase Matrices

Continuous-variable phase matrices must be directionally discretized and converted to Fourier am-
plitude form. This is most conveniently done by factoring out the scattering coefficient as shown in
Eq. (1.27) and working with the normalized phase matrices P̃ . The normalized phase matrices are
in turn most conveniently (for the user) defined by separately selecting a scattering phase function
β̃ (the 1,1 element of the normalized phase matrix) and a reduced scattering matrix M̃ , as shown
in Eq. (1.25): P̃ = β̃ R M̃ R, where R is a rotation matrix as seen in Eq.(1.31). Unfortunately it
is not possible to separately discretize phase functions and reduced scattering matrices or reduced
phase matrices (as seen in Eq. 1.26), building up a library of each, and then to combine them
at run time according to a user’s choices for a particular problem. The reason is simply that the
discretization process involves integrals, and the integral of a product is not the product of the
integrals. Thus each combination of a P̃ and an M̃ (including the rotation matrices) must be
discretized separately. However, in practice this should not a great inconvenience. Although a wide
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range of phase functions β̃ is needed for ocean applications, these can be paired with relatively few
M̃ matrices. As noted in §1.4.1, only a Rayleigh reduced scattering matrix, M̃Ray, and perhaps one
or two more based on measurements, need to be considered. Thus we can create a library of many
phase functions paired with just one or a few reduced phase matrices, e.g. as seen in Eq. (1.34).
In principle, both β̃ and M̃ are functions of depth and wavelength, but in practice the depth and
wavelength dependence can to a reasonable approximation be placed in the scattering coefficient
b(z, λ) (as is done in HydroLight for for volume scttering functions). β̃ and M̃ are then functions
only of the scattering angle ψ.

These are one-time calculations for a phase function and reduced phase matrix and are carried
out by code that is separate from the main HydroPol code that solves the VRTE for a specific set of
user inputs. The calculations for discretizing and Fourier decomposing normalized phase matrices
are as follows.

I Select a scattering phase function β̃(ψ) and a reduced scattering matrix M̃(ψ).

. Begin loop over all pairs of incident Q(r, s) and scattered Q(u, v) quads.
Separate calculations are done for the P̃

+
and P̃

−
matrices as seen in Eq. (4.2).

For a given pair of Q(r, s) and Q(u, v), the quad-averaged normalized phase matrix is computed
as a quadruple sum as in Eq. (2.15), where F in that equation is now β̃ R M̃ R.

. Begin loop over all pairs of subquads in Q(r, s) and Q(u, v), as described in §2.2.1.

I For each subquad of Q(r, s) and subquad of Q(u, v) in Eq. (2.15), compute the scattering
angle ψ by Eq. (2.16).

I For each subquad of Q(r, s) and subquad of Q(u, v), compute the rotation angles α and α′ by
Eqs. (1.5-1.12), using the (θ′, φ′) of the Q(r, s) subquad and the (θ, φ) of the Q(u, v) subquad and
the ψ value just computed. Note that the scattering and rotation angles are different for the same
(r, s, u, v) values, depending on whether (r, s) and (u, v) are in the same or different hemispheres,
as shown in Fig. 4.2.

I Compute the 16 elements of the normalized phase matrix P̃ for this pair of subquads as
shown in Eq. (1.32).

I Compute the contribution of the this pair of subquads to the summations in Eq. (2.15) for
the given Q(r, s) and Q(u, v).

/ End loop over subquad pairs.
/ End loop over quad pairs.

I After computing all of the quad averages, use Eq. (2.19) to recompute the forward-scatter
quads P̃

±
1,1 to correct for any numerical error in those calculations.

The quad-averaged normalized phase matrix P̃
±
(r, s → u, v) is now known for all pairs of

incident and scattered quads.
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I Compute the Fourier amplitudes P̂
±
1,2(r, u|k) of the P̃

±
(r, s → u, v) using Eqs. (A.12) and

(A.14). Note that, as explained in §1.4.2 and illustrated in Fig. 1.5, the upper-left and lower-right
2 × 2 blocks of the phase matrix can be expanded as a cosine series; the P̂

±
2 sine amplitudes for

those elements can be set to 0. Similarly, the upper-right and lower-left 2 × 2 blocks of the phase
matrix can be expanded as a sine series; the P̂

±
1 cosine amplitudes for those elements can be set to

0.

The 4× 4 amplitude matrices P̂
±
1,2 are now known.

I Store these matrices in a file identified by the phase function and reduced scattering matrix,
e.g. with a file name like FFpf02pmRay.txt for a Fournier-Forand phase function with a backscatter
fraction of 0.02 and a Rayleigh reduced phase matrix.

This completes the computation of the normalized phase matrix Fourier amplitudes for the
chosen β̃ and M̃ .

6.4 User Specification of the Physical Problem

It is emphasized that HydroPol (like HydroLight) simply solves the radiative transfer equation for
whatever conditions the user requests. The solution equations per se are valid for any medium and
problem for which radiative transfer theory is valid, and the software does not inherently know
anything about the ocean. It is therefore up to the user to supply all of the information needed to
define the oceanic (or other) problem of interest. In HydroLight, the information needed to solve
the SRTE is solicited and organized via a graphical user interface, and there are many options
for how the inputs can be defined (e.g., via bio-geo-optical models that convert concentrations to
absorption and scattering properties). However, use of that interface is not required: all it does is
create a file with the values of various inputs, flags, file names, and the like, which are then read by
HydroLight. The same scheme is used by HydroPol. The only requirement is that the user must
define, one way or another, the following inputs:

I The depths where the solution is to be saved. The user inputs a list of depths
zi, i = 1, ...,K, with z1 = w = 0 being depth 0 just below the mean air-water surface, and with
zK = m being the greatest depth where output is to be saved. Output is also saved at “depth” a,
in the air just above the water surface.

I The wavelengths where the solution is to be saved. The user inputs either a single
wavelength or a list of wavelength band boundaries, λj , j = 1, ..., J . In the latter case, the IOPs are
evaluated and the output will be saved at the centers of the bands. Thus if J > 1, the first nominal
output wavelength is (λ1 + λ2)/2, and so on.

I The albedo of single scattering ωo(ζ, λ). In the oceanographic setting, it is usually
convenient for the user to specify the total absorption coefficient a(z, λ) and the total scattering
coefficient b(z, λ). IOPs are additive, so these are in turn usually computed as sums of contribu-
tions by pure water and whatever particles (phytoplankton, minerals, bubbles, etc.) and dissolved
substances (colored dissolved organic matter, pollutants, etc.) are in the water column. HydroPol
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then internally computes the beam attenuation, c(z, λ) = a(z, λ) + b(z, λ); uses c(z, λ) in Eq.
(1.20) to compute the correspondence between optical depth ζ and physical depth z; and computes
ωo(ζ, λ) = b(z, λ)/c(z, λ). However, in idealized simulations such as homogeneous water, it is often
convenient to specify ωo directly.

I The normalized phase matrix P̃ . As with absorption and scattering coefficients, the
total phase matrix P is the sum of the phase matrices for whatever scattering particles are in
the water. As shown in Eq. (1.27), it is common to factor P into the product of the scattering
coefficient and the normalized phase matrix, P = b P̃ . The total normalized phase matrix can
therefore be computed as a scattering-weighted sum of normalized phase matrices for the various
water components:

P̃ =
∑
i

(
bi
b

)
P̃ i , (6.1)

where the sum is over all of the scattering components in the water. The user can specify the total
P̃ , or can select phase matrices P̃ i for each water component (phytoplankton, mineral, etc.), in
which case HydroPol will compute the needed total using Eq. (6.1). Phase matrices are functions
of incident and scattered directions, including the effects of the rotation matrices. In practice, the
phase matrices are usually specified via the choice of a scattering phase function β̃(ψ) and a reduced
scattering matrix M̃(ψ), as shown in Eq. (1.25) and discussed in §6.3. The effects of the rotation
angles are then incorporated by HydroPol during quad discretiation to create the quad-averaged
phase matrices for the chosen quad partition.

For initial debugging, the user can select one of the previously processed normalized phase
matrices from the library of such files for the P̃ i. Later on, as in HydroLight, the user can request
values with a particular backscatter fraction, in which case the needed P̃ i can be obtained by
interpolation between the available values.

The IOPs must be defined at all wavelengths λ1 ≤ λ ≤ λJ and all depths z1 = 0 ≤ z ≤ zk = m,
not just at the discrete values where output is requested. This is because the ODE solver takes
very small and variable-sized steps in optical depth and may thus request IOP values at any
depth between 0 and m. However, it is common to define the IOPs only at discrete depths and
wavelengths, in which case HydroPol will interpolate between the given values as needed to obtain
values at other depths and wavelengths. The discrete depths and wavelengths where the IOPs are
defined do not need to be the same discrete values where output is to be saved.

I The wind speed. The wind speed is needed to model the surface roughness. The reflectance
and transmission properties of both level and wind-blown surfaces are pre-computed as described
in Chapter 3, Fourier analyzed, and stored in a library. At run time, the surface transfer function
Fourier amplitudes for the requested wind speed are read from the library of surface transfer
functions.

I The incident sky radiance. The Stokes vector S+(a, θ, φ, λ) just above the sea surface
must be defined for all downwelling directions and all wavelengths λ1 ≤ λ ≤ λJ . This vector is the
total radiance of the sun’s direct beam and the background sky. S+(a, θ, φ, λ) can be obtained from
measurements read from a datafile, or from ancillary models. Because HydroPol does not (yet, at
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least) have an associated atmospheric vector radiative transfer model, the default is to use the same
atmospheric sky radiance models as in HydroLight. These provide only unpolarized sun and sky
radiance. The actual sky radiance is partially polarized, so an unpolarized input sky radiance is
not correct. However, an unpolarized sky radiance will be adequate for initial debugging.

The unpolarized HydroLight sky radiance models require various kinds of atmospheric inputs
including aerosol type, water vapor, sea-level pressure, cloud fraction, wind speed, etc., as well
as the zolar zenith angle. These inputs can be given in various ways, including specification of
latitude, longitude, day of year, and universal time, from which the solar zenith angle is computed
by HydroPol.

I The bottom reflectance. As was seen in Eq. (5.2), the opaque bottom boundary at
depth zK = m is assumed to azimuthally isotropic with a known vector bidirectional reflectance
distribution function of the form V BRDF (θ′, θ, φ − φ′, λ). This function must be defined for any
incident and reflected directions, and for all wavelength in the requested range. As noted, for initial
debugging, and often in practice, it will be sufficient to assume that the bottom is a Lambertain
reflector. In that case, only the irradiance reflectance of the bottom, R(λ) needs to be specified by
the user.

I The internal sources. If there are internal sources of bioluminescence, chlorophyll or
CDOM fluorescence, or Raman scatter by the water, these must be specified via appropriate source
terms Σ(ζ, µ, φ, λ) as seen in Eq. (1.22). Bioluminescence is assumed to emit unpolarized light, as do
chlorophyll and CDOM fluorescence. In practice, default functions are used to convert chlorophyll
or CDOM concentrations into the appropriate source terms. Raman scatter by water does depend
on polarization, but this has a fixed mathematical form. Thus all the user needs to do is decided
whether or not to include Raman scatter in the run. For initial debugging, internal sources will be
omitted. Details of the mathematical formulations of the various kinds of source terms Σ(ζ, µ, φ, λ)
will be added after the code is fully debugged for inelastic scatter.

I Set various flags. These flags can specify what output files are to be created, e.g., full
output of all Stokes vector components, selected output for opening as Excel R© spreadsheets, or
output files formatted for reading by IDL R©, MATLAB R© or other graphics routines.

6.5 Solution of the VRTE

The information needed to solve the VRTE for a specific problem is now available. These calcula-
tions are carried out by the main HydroPol code.

I Initialize the run. This includes reading in the user’s inputs, which define the particular
problem to be solved, as well as reading in the pre-computed files of surface transfer functions and
phase matrices that will be needed.

. Begin loop over wavelength.

I Read in or compute the incident sky radiance distribution S+(a, θ, φ) for the current wave-
length.
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I Compute the quad-average sky radiances S+(a, r, s) as a double summation using Eq. (2.14).
This calculation is done independently for each component [I,Q,U, V ]T of the 4× 1 Stokes vector
S+(a, r, s).

I Compute the Fourier cosine Ŝ
+
1 (a, u|`) and sine Ŝ

+
2 (a, u|`) amplitudes of the discretized sky

radiances using Eqs. (A.7) and (A.9).

I Store the 4 × 1 amplitude vectors as 4M × 1 composite column vectors Ŝ
+

1,2
(a|`) as in Eq.

(4.23).

I If internal sources are included, quad average and Fourier decompose each of the needed
source terms Σ(θ, φ) in the same manner as was just shown for the sky radiance. The end result
will be both upward and downward composite vectors Σ̂

±
(`) as seen in Eqs. (4.25) to (4.28).

IQuad average and Fourier decompose the bottom boundary reflectance rmb(θ′, φ′ → θ, φ),
which is seen in Eq. (1.43). In general, this is done the same as for any function of two directions.
However, for azimuthally isotropic bottom boundaries, rmb(θ′, θ, φ− φ′), as assumed in HydroPol,
the quad discretization can proceed as before, but only a Fourier cosine expansion is needed.
Compute the cosine amplitudes r̂1(m, b|r, u|k) using Eq. (5.28).

For the case of a Lambertian depolarizing bottom as defined in Eq. (1.45), the results are
particularly simple and are given by Eq. (5.40).

Everything is now ready for the solution of the ODEs (4.40) to (4.70) for the standard matrices
in the interior of the “bare slab” water body [w,m]. This solution is performed independently for
each Fourier mode, ` = 0, 1, ..., N . In HydroLight the ODE solutions typically take about 90% of
the total run time, and the same will surely be true in HydroPol. Therefore care must be used to
make this part of the code as efficient as possible.

. Begin loop over Fourier modes, ` = 0, 1, ..., N .

I Begin simultaneous integration of the downward sweep equations (4.40)-(4.44) starting with
initial conditions (4.45)-(4.47) and of Eqns. (4.48)-(4.54) starting with (4.55)-(4.58). These com-
pute R̂1(ζ, w), ..., T̂ 1(ζ, w) and Σ̂

+t

1,2(w, ζ).

I During the ODE integrations, define the 4 × 4 elements of the 4M × 4M local reflectance
ρ̂
1
(ζ|`) and transmittance τ̂1(ζ|`) matrices using Eqs. (4.15a) to (4.18f). The quantities depend on

the IOPs at the current depth and wavelength via ωo and P̂
±
1,2. The composite matrices ρ̂

1
(ζ|`)

and τ̂1(ζ|`) are ordered as in Eq. (4.24).

During the ODE integration, save the results at each user-requested output depth. That is,
save the matrices R̂1(ζ1 = w = 0, w|`) = 04M×4M , R̂1(ζ2, w|`), ..., R̂1(ζK = m,w|`), and so on for

all of the standard operators.

I Begin simultaneous integration of the upward sweep Eqns. (4.59)-(4.70) starting with initial
conditions (5.36)-(5.39) for the user-selected bottom boundary. This integration gives R̂1(ζ,m),
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..., T̂ 2(ζ,m) and Σ̂
+t

1,2(ζ,m). As for the downward sweep, save the matrices at each user-requested

depth.

Note that although the ODEs are most conveniently written as matrix equations, the ODE
solver requires one long vector of equations, rather than several individual matrix equations. The
matrix equations therefore need to be “unpacked” into a single vector as shown in Eq. (4.74) before
passing to the ODE solver.

Note also that the upward and downward sweep integrations are independent and time con-
suming (in HydroLight, solving the scalar versions of these equations accounts for about 90% of
the run time). Integration of these equations is thus a good place to parallelize the code, which
potentially could cut the wall-clock run time in half.

/ End loop over ` for the ODE integrations. The standard operators for the “bare-surface”
water body plus the bottom, [w, b], are now known.

I Combine the 4M × 4M composite matrices for the standard operators for each ` mode into
4M(N + 1)× 4M(N + 1) composite block-diagonal matrices R̂1(ζ, w) etc. as shown in Eq. (5.20).

The next calculations incorporate the air-water surface [a,w] with the water body [w, ζ]. These
calculations must be done for all ` modes simultaneously.

I Compute the 4M(N + 1) × 4M(N + 1) complete operators T11(a,w, b) to R22(a,w, b) seen
in Eq. (5.75). Note that only the 8 (a,w, b) matrices in the left two columns of Eq. (5.75) are
needed because the upward radiance at the bottom is 0. The (b, w, a) matrices do not need to be
computed.

T11(a,w, b) etc. are computed by equations of the form of equation set (5.49), with rp = r̂p(w, a),

tp = t̂p(a,w) as before, but now with R1 = R̂1(w, b),..., T2 = T̂ 2(b, w), and Σp = Σ̂
−t
p (b, w). This

substitution is illustrated in Eq. (5.80). We can now set σp = σ̂+t
p (a,w) = 0 because the air-water

surface is now taken to be source free.

I Compute the radiances at depth w using Eqs. (5.76)-(5.79).

The next calculations compute the radiances at all user requested depths ζ using the radiances
at depth w. These calculations are done ` mode by ` mode.

. Begin loop over Fourier modes, ` = 0, 1, ..., N .

. Begin loop over depths, ζ = ζ1 = 0, ζ2, ..., ζK = m.

I Compute the 4M(N + 1) × 4M(N + 1) complete operators T11(w, ζ, b) to R22(w, ζ, b) seen
in Eq. (5.92). Note that only the 8 (w, ζ, b) matrices in the left two columns of Eq. (5.92) are
needed because the upward radiance at the bottom is 0. The (b, ζ, a) matrices do not need to be
computed.

The T11(w, ζ, b) are computed as shown in Eq. (5.91) using the nij and pij defined in Eqs.
(5.86) and (5.88), respectively.
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I Compute the radiances at each depth ζ and ` value using Eq. (5.92), as illustrated in Eq.
(5.93).

/ End loop over depths.

/ End loop over Fourier modes.

I Compute the water-leaving radiances using Eq. (5.94). This calculation must be done for
all ` modes at once using the 4M(N + 1) × 4M(N + 1) composite matrices and 4M(N + 1) × 1
composite Stokes vector amplitudes.

The amplitudes of the Stokes vectors are now known at all depths a, ζ1 = w, ζ2, ..., ζK = m.
The final step is to reconstitute the physical Stokes vectors from their Fourier amplitudes.

I Compute the physical Stokes vectors using Eq. (5.95).

This completes the solution of the VRTE for the Stokes vectors at all depths and directions, at
the current wavelength.

I Compute derived quantities as desired, e.g. irradiances and remote-sensing reflectance.

I Write output files for the current wavelength as desired. Note that if fluorescence is included
in the run, the scalar irradiance must be saved at each wavelength for use in generating (isotropic,
unpolarized) the internal sources at subsequent wavelengths. If Raman scatter is included, the full
radiance distribution must be saved for generation of the (non-isotropic, polarization-dependent)
Raman source term at subsequent wavelengths.

/ End loop over wavelengths.

I Compute quantities that depend on all wavelengths, e.g., Secchi depth and chromaticity
coordinates.

I Finalize the run: e.g., close output files and report the total run time.
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APPENDIX A

Fourier Analysis of Discrete Functions

The invariant imbedding solution algorithm for the directionally discretized VRTE employs a
Fourier decomposition of the equations in azimuthal direction. This appendix collects for ref-
erence various results for the Fourier decomposition of discrete functions of azimuthal angle, as
needed in Chapter 4. Most of this material comes from Light and Water, §8.3.

A.1 Functions of one azimuthal angle

Let fv ≡ f(φv) be any discrete function of the azimuthal angle φ, i.e., fv is defined only at the
discrete values φv = (v − 1)∆φ, for v = 1, 2, ..., 2N . Here ∆φ = 2π/2N is the angular width of a
quad as shown in Fig. 2.1; ∆φ is the same for each quad. Let δk be the Kronecker delta function
defined by

δk ≡

{
1 if k = 0

0 if k 6= 0
(A.1)

or equivalently

δk−` ≡

{
1 if k = `

0 if k 6= `
(A.2)

where k and ` are integers.
The discrete orthogonality relations for sines and cosines can then be written

2N∑
s=1

cos(kφs) cos(`φs) =


0 if k 6= `

N if k = ` and ` = 1, 2, ..., N − 1

2N if k = ` and ` = 0 or ` = N

= N(δk+` + δk−` + δk+`−2N ) (A.3)
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2N∑
s=1

sin(kφs) sin(`φs) =


0 if k 6= `

N if k = ` and ` = 1, 2, ..., N − 1

0 if k = ` and ` = 0 or ` = N

= N(δk−` − δk+` − δk+`−2N ) (A.4)

and
2N∑
s=1

cos(kφs) sin(`φs) = 0 for all k and ` . (A.5)

A discrete function of one azimuthal angle (e.g., a discretized Stokes vector S(ζ, u, v, j) with the
depth ζ, polar angle u, and wavelength j being held constant) has the Fourier spectral decomposition

f(v) =
N∑
`=0

[
f̂1(`) cos(`φv) + f̂2(`) sin(`φv)

]
(A.6)

where v = 1, 2, ..., 2N . The notation f̂ denotes a Fourier amplitude of the corresponding physical
variable f ; subscript 1 denotes cosine amplitudes and subscript 2 denotes sine amplitudes. The
cosine amplitudes f̂1(`) are obtained by multiplying Eq. (A.6) by cos(kφv), summing over v, and
applying the orthogonality relations to get

f̂1(`) =
1
εl

2N∑
v=1

f(v) cos(`φv) for ` = 0, 1, ..., N (A.7)

where

ε` = N(1 + δ2` + δ2`−2N ) =

{
2N if ` = 0 or ` = N

N if ` = 1, 2, ..., N − 1
(A.8)

Note that the f̂1(0) amplitude is just the average value of f(v). The sine amplitudes f̂2(`) are
obtained in a similar way by multiplying (A.6) by sin(kφv):

f̂2(`) =
1
γl

2N∑
v=1

f(v) cos(`φv) for ` = 1, ..., N − 1 (A.9)

where

γ` = N(1− δ2` − δ2`−2N ) =

{
0 if ` = 0 or ` = N

N if ` = 1, 2, ..., N − 1
(A.10)

Note that values of γ0 = γN = 0 do not occur in Eq. (A.9) for the sine amplitudes.
If f(v) is a constant f then f̂1(0) = f and all other cosine and sine components are zero. This

is the case for a polar cap radiance, which has no azimuthal dependence. In general, the 2N values
of f(v) are determined exactly by the N + 1 cosine amplitudes and the N − 1 sine amplitudes;
the information content of the physical and Fourier representations is the same. In the Fourier
decomposition of discrete functions all terms must be included; there can be no truncation of these
summations.
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A.2 Functions of the difference of two azimuthal angles

Let gcos(v, s) = g[cos(φv − φs)] be a discrete cosine function of φv − φs, where φv and φs are two
azimuthal angles and v, s = 1, ..., 2N . Then gcos(v, s) has the Fourier expansion (L&W 8.24)

gcos(v, s) =
N∑
k=0

ĝ1(k) cos[k(φv − φs)] . (A.11)

Multiplying this equation by cos(`φv), summing over v, expanding the cosine, and using the or-
thogonality relations gives (L&W 8.25)

ĝ1(`) =
1

ε` cos(`φs)

2N∑
v=1

gcos(v, s) cos `φv) for ` = 0, ..., N . (A.12)

Similarly, let gsin(v, s) = g[sin(φv − φs)] be a discrete sine function of φv − φs. Then gsin(v, s) has
the Fourier expansion

gsin(v, s) =
N−1∑
k=1

ĝ2(k) sin[k(φv − φs)] . (A.13)

Multiplying this equation by sin(`φv), summing over v, expanding the sine, and using the orthog-
onality relations gives

ĝ2(`) =
1

γ` cos(`φs)

2N∑
v=1

gsin(v, s) sin `φv) for ` = 1, ..., N − 1 . (A.14)

These expansions will be used for the elements of the phase matrix, which depend on either
the cosine or the sine of φv − φs. Note that in Eqs. (A.12) and (A.14) we can without loss of
generality set φs = φ1 = 0. This merely anchors the difference φv − φs to φ1 = 0. The computer
code then needs to compute and store phase function elements only for the range of v = 1, ..., N+1,
which generates all discretized scattering angles ψ as φv = 0 to 180 deg. The phase matrix element
P (r, s→ u, v) is then obtained from the stored value of P (r, 1 → u, v− s+ 1), which can be stored
as a three-index array P (r, u, v).

A.3 Functions of two azimuthal angles

Finally, let h(s, v) = h(φs, φv) be an arbitrary function of two azimuthal angles. Then h(s, v) can
be represented as

h(s, v) =
N∑
k=0

N∑
`=0

ĥ11(k, `) cos(kφs) cos(`φv)

+
N∑
k=0

N∑
`=0

ĥ12(k, `) cos(kφs) sin(`φv)

+
N∑
k=0

N∑
`=0

ĥ21(k, `) sin(kφs) cos(`φv)

+
N∑
k=0

N∑
`=0

ĥ22(k, `) sin(kφs) sin(`φv) . (A.15)
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To find ĥ11, multiply Eq. (A.15) by cos(k′φs) cos(`′φv), sum over s and v, and apply the orthog-
onality relations. The other three amplitudes are found in an analogous manner. The results
are

ĥ11(k, `) =
1
εkε`

2N∑
s=1

2N∑
v=1

h(s, v) cos(kφs) cos(`φv) ,

ĥ12(k, `) =
1
εkγ`

2N∑
s=1

2N∑
v=1

h(s, v) cos(kφs) sin(`φv) ,

ĥ21(k, `) =
1
γkε`

2N∑
s=1

2N∑
v=1

h(s, v) sin(kφs) cos(`φv) ,

ĥ22(k, `) =
1

γkγ`

2N∑
s=1

2N∑
v=1

h(s, v) sin(kφs) sin(`φv) . (A.16)

The arbitrary zero sine amplitudes f̂2(0) and f̂2(N) have their counterparts here:

ĥ12(k, 0) = ĥ12(k,N) = 0 for k = 0, ...,N ,

ĥ21(0, `) = ĥ21(N, `) = 0 for ` = 0, ...,N ,

ĥ22(0, 0) = ĥ22(0, N) = ĥ22(N, 0) = ĥ22(N,N) = 0 . (A.17)

These special cases allow the exclusion of any k or ` values in Eq. (A.16) that would result in
division by zero resulting from the γk and γ` factors.

Equations (A.15) to (A.17) will be applied to the air-water surface transfer functions. How-
ever, the symmetries of those functions will result in considerable simplification. In particular, all
ĥ12(k, `) and ĥ21(k, `) will turn out to be zero.

The equations of Chapter 3 contain sums over k and ` having the form

S1 =
N∑
l=0

N∑
k=0

f(k)g(`)

[
2N∑
s=1

cos[k(φv − φs)] cos(`φs)

]
(A.18)

where f(k) and g(`) are discrete functions of k and ` for k, ` = 0, ..., N . Application of the the
trigonometric formula for the cosine of the difference of two angles and the previous equations
reduces this to

S1 =
N∑
l=0

N∑
k=0

f(k)g(`)

{[
2N∑
s=1

cos(kφs) cos(`φs)

]
cos(kφv) +

[
2N∑
s=1

sin(kφs) cos(`φs)

]
sin(kφv)

}

=
N∑
l=0

N∑
k=0

f(k)g(`) N(δk+` + δk−` + δk+`−2N ) cos(kφv)

=
N∑
l=0

f(`)g(`) N(1 + δ2` + δ2`−2N ) cos(`φv)

=
N∑
l=0

ε`f(`)g(`) cos(`φv) (A.19)
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The same process gives

S2 =
N∑
l=0

N∑
k=0

f(k)g(`)

[
2N∑
s=1

cos[k(φv − φs)] sin(`φs)

]

=
N∑
l=0

N∑
k=0

f(k)g(`) N(δk−` − δk+` − δk+`−2N ) sin(kφv)

=
N∑
l=0

f(`)g(`) N(1− δ2` − δ2`−2N ) sin(`φv)

=
N∑
l=0

γ`f(`)g(`) sin(`φv) (A.20)

Likewise

S3 =
N∑
l=0

N∑
k=0

f(k)g(`)

[
2N∑
s=1

sin[k(φv − φs)] cos(`φs)

]

=
N∑
l=0

ε`f(`)g(`) sin(`φv) (A.21)

and

S4 =
N∑
l=0

N∑
k=0

f(k)g(`)

[
2N∑
s=1

sin[k(φv − φs)] sin(`φs)

]

=−
N∑
l=0

γ`f(`)g(`) cos(`φv) (A.22)

Note the minus sign in the last equation.
These results for the Fourier decomposition of discrete functions of one or two azimuthal angles

provide all of the tools necessary for converting the discretized physical-space VRTE into discretized
equations in Fourier space.
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APPENDIX B

Ray Tracing in a Hexagonal Sea Surface Grid

This appendix gives the detailed algorithm for tracing rays through 3D space as they interact with
random sea surfaces.

Section §3.2.1 showed how to model a wind-blown sea surface as a grid of triangular wave facets,
each of which is locally plane but tilted with respect to the normal to the mean sea surface. Once
such a sea-surface grid is generated, we must be able to follow a photon ray path as the ray first
approaches the sea surface from above or below, intersects a sea-surface wave facet, and is then
reflected and refracted to generate daughter rays. A ray incident onto the surface from the air
side always generates two daughter rays, one reflected back to the air and one refracted through
the surface into the water. A ray incident from the water side may generate both reflected and
refracted rays, or it may generate only a reflected ray back into the water if the angle of incidence
onto the underside of the surface facet is greater than the critical angle for total internal reflection.
As explained in §3.2.2, these daughter rays are pushed into a stack array as they are generated,
and the rays in the stack are processed until the stack is empty. The daughter rays that leave the
hexagonal domain are tallied and contribute to the estimate of a surface reflectance or transmission
function.

The points of ray-surface intersections and the ray paths through 3D space depend on the exact
shape of the random sea surface and on the incident ray direction. The mathematics of following
ray paths through 3D space in the region of the sea surface is in principle no more complicated than
determining where a straight line intersects a plane. However, the application of the basic geometric
concepts to the irregular geometry of the wave facets comprising a random realization of the sea
surface is quite tedious and requires careful attention to detail. A ray-tracing algorithm should
should be applicable to any sea surface shape and should allow for multiple ray interactions with
the surface. Such an algorithm was first worked out by Preisendorfer and Mobley (1985) and has
been in use for almost three decades for the surface calculations in the HydroLight software (which
uses Cox-Munk sea surfaces, generated as described in §3.2.1). The same algorithm is adopted in
HydroPol. However, the algorithm was documented in a technical report that is long-since out of
print. It is therefore necessary for completeness of the HydroPol documentation to describe again
the ray-tracing algorithm. The figures in this appendix are taken (with minor modification) from
the Preisendorfer and Mobley (1985) report.
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The directions of an incident ray and the normal to an intersected ray facet determine a scatter-
ing plane that contains the incident, reflected, and refracted directions and the normal to the facet,
as is seen in Fig. 3.13. Those calculations are purely geometric and do not depend on polarization.
However, when the ray paths are used to compute the reflection and refraction of polarized light
by the sea surface, the rotations of Stokes vectors from one facet scattering plane to the next must
be included. How that is done, given the ray paths as determined here, is explained in §3.2.2. This
appendix considers only the geometric calculations needed to trace rays through 3D space as they
interact with a random sea surface.

The coordinate system is the same as in Fig. 1.1. The origin of the x-y-z system is placed at
mean sea level in the center of the hexagonal grid of surface triads as in Fig. B.1. Let ξ′ be the
direction of a light ray incident onto the sea surface from above or below. This parent ray ξ′ has
components as shown in Eq. (1.3). Likewise, n is the outward normal to a wave facet, as seen in
Fig. 3.13 (outward normal means the orientation of n for which n · z > 0).

Figure B.1 illustrates a hexagonal grid with Nhex = 2 concentric rings or layers of triads encir-
cling the origin. As seen in the inset at the lower right, each triad has a base length of δ in the x
(alongwind) direction and a height of ε in the y (crosswind) direction. Triad side γ = [(δ/2)2+ε2]1/2

is also defined in the inset. These dimensions are determined by the spatial dimensions of the patch
of sea surface being simulated and the number of grid points covering that area. The lines forming
the sides of the triads have unit vector directions given by

r0 = (1, 0, 0) = x

r1 = (r11, r21, 0) =
δ

2γ
x +

ε

γ
y

r2 = (r12, r22, 0) = − δ

2γ
x +

ε

γ
y

Note that
r̃k = (−r2k, r1k, 0) (B.1)

is a vector orthogonal to rk for k = 1 or 2.
A hexagonal grid with Nhex layers of triads has 3Nhex(Nhex + 1) triad vertices or nodes where

the elevations of the facet are defined. These nodes are located at ±bδx + cεy when c is even, for
b = 0, 1, ..., Nhex − c/2; and at ±(b+ 1/2)δx + cεy when c is odd, for b = 0, 1, ..., Nhex − (c+ 1)/2,
where in either the even or odd case, c = 0,±1,±2, ...,±Nhex.

The lines forming the sides of the triads are specified in terms of r0, r1, and r2 as follows. The
“r0” family of horizontal lines in Fig. B.1 is a family of lines, each of which is a set of points of the
form

λ0x + cεy

where λ0 is a real number. That is, the line is generated as λ0 ranges over the set of real numbers
for some fixed value of c. For example, c = 0 gives for the horizontal line through the origin,
c = Nhex gives the line forming the top boundary of the hexagon, and c = −Nhex gives the line
along the lower boundary of the hexagon. The members of the “r1” and “r2” families of lines are
given in the same fashion by

λ1r1+ 2cεy

λ2r2+ 2cεy .
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Figure B.1: The wind-based hexagonal grid for Nhex = 2. Example ray tracks are shows as dashed
lines AE, BC, BD. The triad intercept points (TIPs) are show by open circles; the TIPs along track
AE are labeled π0 to π8. The inset at the lower right shows the triad dimensions.

for λ1 and λ2 real and some fixed value of c as before.
A ray path is the set of points in 3D space taken by a photon as it travels through space. A

ray path is specified by a ray direction unit vector ξ = (sin θ cosφ, sin θ sinφ, cos θ). A ray track
is the projection of a ray path onto the 2D hexagonal grid. Thus a ray track is a horizontal
(θ = 90 deg) line segment lying in the hexagonal grid and is given by ξh = (cosφ, sinφ, 0). The
dashed lines in Fig. B.1 show several ray tracks. Track AE represents a ray whose projection enters
the hexagonal grid a boundary point A. The ray is traveling in space toward a target point in the
grid at t = (−δ/2,−ε/3, 0). If this ray never intersected the surface it would leave the grid at point
E. Suppose the ray intersects the wave surface at a point below or above point B before reaching
the target point t. The ray then generates reflected and refracted daughter rays that have tracks
BC and BD.

The points where a track crosses the sides of the triads are called triad intercept points or TIPs.
For trace AE these points are labeled π0,π1, ...,π8. If a ray track crosses a triad, there are usually
two triad intercept points, and we can characterize the crossing by specifying which sides of the
triad have the TIPs. Thus triad I in B.1 is said to be of type “r0r2” because on triad intercept
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point, π1, lies on a side that is a member of the r0 family of lines, and the other TIP, π0, lies on a
side that is a member of the r2 family of lines. Triad II is said to be of type “r1r2,”, and triad III
is an example of type “r0r1”.

In analyzing the interactions between a ray and the wave facets, two problems must be solved.
First, in the case of an incoming ray, we must determine where the ray first enters the hexagonal
domain (e.g., point p′ in Fig. B.2, corresponding to point A in Fig. 3.6). In the case of a daughter
ray, we must determine where the ray leaves the hexagonal domain (e.g., points D, E, and G in
Fig. 3.6 or points C and D in Fig. B.1). Second, we must determine where, if anywhere, the
ray intercepts a wave facet (e.g., points B, C, and F of Fig. 3.6). The next two sections give the
solutions to these two problems.

B.1 Determination of the Initial Ray Point

A ray is defined by an initial point p = (px, py, pz) and a direction ξ. An initial point can be
either on the boundary of the hexagonal domain (the case of an incoming ray), or in the interior
of the domain (the case of a reflected or refracted daughter ray emanating from the water surface).
When initializing a new ray with direction ξ′ in the Monte Carlo calculations, it is convenient to
select a target point t near the center of the hexagonal grid, toward which the ray ξ′ is directed.
Therefore, for a given initial direction ξ′ and target point t, we must first locate the point p′ where
the incoming ray ξ′ enters the hexagonal domain on its way to t. The ray ξ′ can then be traced in
the normal fashion starting at initial point p′ until it intersects the surface somewhere on its way
to t.

Consider now an incoming ray at p′ traveling in direction ξ′ toward target point t, as shown
in Fig. B.2. The track of ray ξ′ is the straight line containing points of the form t + sξ′h, where
ξ′h = (cosφ′, sinφ′, 0) is the projection of ξ′ onto the hexagonal grid, and p′h = (p′x, p

′
y, 0), the

projection of p′ onto the grid. s is a real number representing the distance traveled in the grid
away from the target point t. As s varies, the point moves along the track. By choice, s is measured
as positive from 0 at t when moving along the track in the −ξ′ direction. This track is illustrated
as the infinite extension of the dashed line segment AE in Figs. B.1 and B.2.

Note in Fig. B.1 that the track first enters the hexagonal grid at A, where the track crosses
a boundary line of the r2 family. The track has previously crossed an r0 family boundary line at
point G, and the r1 family boundary line was first crossed at a point outside the figure. The track
also crosses an r0 family boundary line at point F, an r2 family boundary line at E, and an r1
family boundary line at a point not shown.

In general a track t + sξh intersects the r0 family of lines at a set of points whose distances s
from t can be found by setting

t + sξh = λ0x + cεy

and solving for s. Taking the dot product with y gives

t · y + sξh · y = cε ,

so that the s values are given by

s0(c, t, ξh) =
cε− t · y

ξh · y
, (B.2)
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Figure B.2: Geometry for determination of the initial point p′ at which an incident ray ξ′ enters
the hexagonal domain. ξ′h is the projection of ξ′ onto the hexagonal grid of triads; likewise,
p′ = (p′x, p

′
y, 0). The hexagonal domain is the cylindrical region in 3D space formed by a vertical

line tracing the perimeter of the hexagonal grid.

with c = 0,±1,±2, ...,±Nhex and ξh ·y 6= 0. Likewise the intersections of the track with the r1 and
r2 families of lines are found by setting

t + sξh = λkrk + 2cεy, k = 1, 2

and taking the dot product with the r̃k of Eq. (B.1) to get

sk(c, t, ξh) =
2cεy · r̃k − t · r̃k

ξh · r̃k
, (B.3)

for k = 1, 2; c = 0,±1,±2, ...,±Nhex and ξh · r̃k 6= 0. These sk are the distances from r at which
the track crosses the rk families of lines. As above, sk is measured positive from t along −ξh.

If a ray is started from t in a direction −ξh, then its track crosses the boundary lines of the rk
family at sk(±Nhex, t,−ξh). In the example of Fig. B.1, such a track proceeds from t towards A
(i.e., in the −ξh direction), building up positive s values until the r2 boundary line is crossed at
point A a distance s2(Nhex, t,−ξh) from t. The r0 boundary line is then crossed at point G a greater
distance s0(Nhex, t,−ξh), and finally the r1 boundary line is crossed at some still greater distance
s1(Nhex, t,−ξh) from t. In this example, we decide that the distance from t to the hexagonal grid
boundary is the positive number s2(Nhex, t,−ξh). We do not choose points at E and F of Fig. B.1
to define the distance because they have negative values s2(−Nhex, t,−ξh) and s0(−Nhex, t,−ξh),
respectively, measured from t. In general, the six values sk(±Nhex, t,−ξh), k = 0, 1, 2, define points
at which a track from t crosses the hexagonal grid boundary lines. Following the idea in the example
just cited, we define the distance from t to the boundary of the hexagonal grid as

smin(t,−ξh) = minimum of the positive values of sk(±Nhex, t,−ξh), k = 0, 1, 2 .

Then the initial point p′ at which the ray ξ′ enters the hexagonal domain on its way to t is given
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by

p′ = t−
[
smin(t,−ξh)

ξ′ · ξh

]
ξ′, ξ′ · ξh 6= 0 (B.4)

as can be seen geometrically from Fig. B.2.
Using the initial point p′ from Eq. (B.4), we can now proceed with the ray tracing calculations

for initial ray ξ′.

B.2 Determination of Triad Intersection Points

Let p = (px, py, pz) be any point in the hexagonal grid or on its boundary, and let ξ be an arbitrary
direction at p. In the following development, it is assumed that p and ξ are held fixed. The
projection of p onto the hexagonal grid is ph = (px, py, 0), and ξh is the unit vector determined as
before from the projection of ξ. Then ph + sξh, as s varies from ph to the intercepts of the track
with the families of the lines defining the triads are then given by equations analogous to (B.2) and
(B.3):

s0(c,ph, ξh) =
cε− ph · y

ξh · y
(B.5a)

sk(c,ph, ξh) =
2cεy · r̃k − ph · r̃k

ξh · r̃k
, k = 1, 2 (B.5b)

where c = 0,±1,±2, ...,±Nhex. Following the pattern of definition of smin(t,−ξh), the distance
from ph to the boundary of the hexagon is now defined as

smin(ph, ξh) = minimum of the positive values of sk(±Nhex,ph, ξh), k = 0, 1, 2 . (B.6)

Equations (B.5) define the distances (positive along ξh) from ph to all possible intersections of
the track with the lines that define the triad boundaries. However, only those sk(c,ph, ξh) values
between 0 and smin(ph, ξh) are within the hexagon. For track AE of Fig. B.1, the triad intercept
point (TIP) π0 is at a distance s2(2,ph, ξh) = 0 from A, and so on until π8 at E is reached at a
distance smin(ph, ξh) = s2(−2,ph, ξh) from A. Note that as we proceed from ph to the boundary
of the hexagon, the sk(c,ph, ξh) values can occur in any order of k = 0, 1 or 2 in the encountered
sequence of triad intercept points πj , j = 0, 1, ...,m. Thus in Fig. B.1, π0 is associated with an s

value from the k = 2 family, π1 with k = 0, π2 with k = 2, π3 with k = 1, and so on. It will be
necessary to know which k family of distances sk(c,ph, ξh) is associated with each TIP πj . Toward
this end, let s(j) denote the sk(c,ph, ξh) value associated with TIP πj , and let κ(j) denote the k
family of s(j). Thus κ(j) = 0, 1, or 2, depending on whether k = 0, 1, or 2 for the sk(c,ph, ξh)
value belonging to πj . With this notation, the triad intercept points are given by

πj = ph + s(j)ξh, j = 0, 1, ...,m . (B.7)

The maximum possible value of m is 4Nhex, an example of which is track AE in Fig. B.1 (track
BC has m = 3 and track BD has m = 4).

In practice the TIPs are found by the following steps:

1. Generate all possible sk(c,ph, ξh) values by Eq. (B.5).
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2. Find smin(ph, ξh) by Eq. (B.6).

3. Record all sk distances, as c varies, such that 0 ≤ sk(c,ph, ξh) ≤ smin(ph, ξh).

4. Order the values of sk from Step (3) from smallest to largest.

5. Relabel these ordered sk values as s(j), with j = 0 for the smallest value from Step (4),
namely s(0) for the smallest sk(c,ph, ξh), to s(m) = smin(ph, ξh) for the largest value.

6. Record the κ(j) value associated with each j value of Step (5).

7. Generate the ordered TIP values πj using Eq. (B.7).

B.3 Determination of the Triad Vertices

We now show how to recover the locations of the triad vertices from the triad intercept points just
computed. This capability enables us to identify those facets that are candidates for interaction with
the ray, since triads (and their associated wave facets) are uniquely determined by the coordinates
of the vertices.

Consider a triad that is crossed by a track of type r1r2. Triad II of Fig. B.1 is an example.
Figure B.3 illustrates in greater detail the geometry of an r1r2 triad. The triad intercept points
πj1 = π1 and πj2 = π2 locate an arbitrary pair of type r1r2 TIPs (i.e., either j2 = j1 + 1 or
j1 = j2 + 1). The notation π1,π2 is used only for convenience to label which TIP πk lies on
which side rk of the triad. The TIPs π1 and π2 have the associated distances s(1) = s(j1) and
s(2) = s(j2), respectively, (as in Eq. (B.7). Clearly, κ(j1) + κ(j2) = κ(1) + κ(2) = 3 if and only if
the triad crossing is of type r1r2.

Since TIP πk lies on a line of the rk family, k = 1 or 2, we can write, with the help of Fig. B.3:

πk = ph + s(k)ξh = λkrk + dky (r1r2 case) .

The rightmost of these equations is illustrated in Fig. B.3 for k = 1. d1 and d2 are defined in the
figure. Taking the dot product with the r̃k of Eq. (B.1) yields dk:

dk =
[ph + s(k)ξh] · r̃k

y · r̃k
=

πk · r̃k
y · r̃k

, k = 1, 2 (r1r2 case) . (B.8)

Since vertex a, as shown in Fig. B.3, lies on the rk lines, we have for some λk = λk(a),

λk(a)rk + dky = a , k = 1, 2 (r1r2 case)

From this we find
λk(a) = [a− dky] · rk , k = 1, 2 (r1r2 case) (B.9)

Since πk lies on an rk line, we find in the same way that

λk = [πk − dky] · rk , k = 1, 2 (r1r2 case) (B.10)
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Figure B.3: Geometric relations for determination of the triad vertices a, b, and c from triad
intercept points π1 and π2 that are of type r1r2.

Note that dk, λk, and λk(a) can be positive or negative, depending on the location of the triad in
the hexagonal grid. The quantities dk, for k = 1, 2, along with λ1 and λ1(a) are explicitly shown
in Fig. B.3. From similar triangles, shown shaded in Fig. B.3, we have

h
1
2(d2 − d1)

=
1
2δ

ε

or
h =

(d2 − d1)δ
4ε

, (B.11)

where h is defined geometrically in Fig. B.3, and the triad dimensions δ, ε are shown in Fig. B.1.
We can now write a in terms of quantities computed from the TIPs:

a = hx +
1
2
(d1 + d2)y .

Defining

sign[x] ≡

{
+ 1 if x > 0

− 1 if x < 0
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we can write b and c as

b = a + sign[λ1 − λ1(a)]γr1

c = a + sign[λ2 − λ2(a)]γr2

where γ is shown in Figs. B.1 and B.3. Recalling the definitions of

r1 =
δ

2γ
x +

ε

γ
y

r2 = − δ

2γ
x +

ε

γ
y

we can write points a, b, and c in terms of the x,y axis unit vectors and the quantities computed
from the TIPs:

a = hx +
1
2
(d1 + d2)y ≡ (a1, a2, 0) (r1r2 case) (B.12a)

b =
(
a1 + sign[λ1 − λ1(a)]

δ

2

)
x + (a2 + sign[λ1 − λ1(a)]ε)y (B.12b)

c =
(
a1 − sign[λ2 − λ2(a)]

δ

2

)
x + (a2 + sign[λ2 − λ2(a)]ε)y (B.12c)

Observe that these equations hold for both possible triad orientations of the r1r2 case shown in
Fig. B.3, as well as for the instances where the triad is to the left of the origin (in which case h is
negative). Therefore, given a pair of TIPs πj1 and πj2 , we need only check the sum κ(j1) + κ(j2).
If this sum is 3, then Eqs. (B.8) to (B.12) give the vertices of the triad.

Figure B.4 shows the geometries of the remaining two types of triad intercepts, namely r0r1
and r0r2. Labeling the TIP that is on the r0 side of the triad as π0, with πk denoting as above the
TIP on the rk side (k = 1 or 2), the analysis proceeds just in the r1r2 case. The relevant equations
are as follows.

For triad intercept type r0r1, for which κ(j0) + κ(j1) = 1, we have (since π0 lies on an x line)

π0 = ph + s(0)ξh = λ0x + d0y ,

whence
d0 = π0 · y .

Moreover, since a, as shown in Fig. 63-8, also lies on an x line, we can write

a = λ0(a)x + d0y ,

whence
λ0(a) = a · x .

Similarly,
λ0 = π0 · x .

Since π1 lies on an r1 line, we have d1 given by Eq. (B.8), λ1(a) by (B.9), and λ1 by (B.10). As
before, similar triangles give

h

d0 − d1
=

1
2δ

ε
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Figure B.4: Geometric relations as in Fig. B.3 for triad intercept types r0r1 (top) and r0r2 (bottom).

or
h =

(d0 − d1)δ
2ε
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The final equations for the triad vertices of type r0r1 or κ(j0) + κ(j1) = 1 are then

a = hx + d0y ≡ (a1, a2, 0) (r0r1 case) (B.13a)

b = a + sign[λ1 − λ1(a)]γr1

=
(
a1 + sign[λ1 − λ1(a)]

δ

2

)
x + (a2 + sign[λ1 − λ1(a)]ε)y (B.13b)

c = a + sign[λ0 − λ0(a)]δx

= (a1 + sign[λ0 − λ0(a)]δ)x + a2y . (B.13c)

For triad intercept type r0r2, for which for which κ(j0) + κ(j2) = 2, an identical analysis leads
to the final equations

a = hx + d0y ≡ (a1, a2, 0) (r0r2 case) (B.14a)

b = a + sign[λ2 − λ2(a)]γr2

=
(
a1 − sign[λ2 − λ2(a)]

δ

2

)
x + (a2 + sign[λ2 − λ2(a)]ε)y (B.14b)

c = a + sign[λ0 − λ0(a)]δx

= (a1 + sign[λ0 − λ0(a)]δ)x + a2y . (B.14c)

Here, as before, d2 is given by Eq. (B.8), λ2(a) by (B.9), and λ2 by (B.10).
Given any possible geometry for a track crossing a triad, we can now immediately obtain the

vertices of the triad by either Eqs. (B.12), (B.13), or (B.14).

B.4 Determination of the Facet Intersection Point

The elevations of the random sea surface are defined at the nodes of the hexagonal grid, i.e., at the
triad vertices. Given the triad vertices a, b, and c, we can immediately obtain the corresponding
vertices v1, v2, and v3 (in 3D space) of the associated wave facet:

v1 = a + zaz (B.15a)

v2 = b + zbz (B.15b)

v3 = c + zcz , (B.15c)

where za, zb, and zc are the elevations of the sea surface at triad nodes a, b, and c. These z values
are determined as described in §3.2.1. As always, z = (0, 0, 1) is the unit vector normal to the mean
sea surface.

Let F (v1,v2,v3) denote the wave facet defined by Eq. (B.15). A unit normal to this facet is
given by

n1 =
(v3 − v1)× (v2 − v1)
‖(v3 − v1)× (v2 − v1)‖

,

where × denotes the vector cross product and ‖v‖ is the magnitude of v. The unit outward normal
to the facet is such that n · z > 0, and is obtained by

n = sign[n1 · z]n1 . (B.16)
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Consider a plane in space with unit outward normal n and let v be any point in the plane. A
necessary and sufficient for another point q to be in the plane is

(q− v) · n = 0 .

The condition that the same point q lies on the ray p + sξ is

q = p + s(q)ξ ,

where s(q) is the distance along the ray from p to q in the plane. We can solve for s(q) from

(q− v1) · n = (p + s(q)ξ) · n

whence
s(q) =

(v1 − p) · n
ξ · n

,

where we have arbitrarily chosen vertex v1 of the facet F (v1,v2,v3) for the point v.
We are therefore guaranteed, by construction of s(q), that a point q on a ray ξ lies somewhere

in the plane determined by the three vertices of wave facet F (v1,v2,v3). Point q in particular lies
in the subset of the plane bounded by the facet itself if and only if

s(j1) < s(q)ξ · n < s(j2) , (B.17)

where j1 and j2 label the two triad intercept points associated with the wave facet, and where s(j)
is defined as in Eq. (B.7).

We interpret and use Eq. (B.17) as follows. Given a ray emanating from point p in direction
ξ, the track ph + sξh across the hexagonal grid produces the triad intercept points π0,π1, ...,πm.
Each pair of intercepts (πj ,πj+1), j = 0, 1, ...m − 1, determines the vertices a, b, and c of the
associated triad, and thus the wave facet F (v1,v2,v3). The TIPs πj and πj+1 are at distance
s(j) and s(j + 1), respectively, from ph along direction ξh. If the ray p + sξ intercepts the facet
F (v1,v2,v3) at q, a distance s(q) from p along ξ, then the horizontal projection in the plane of
the hexagonal grid of the distance s(q) from p to q, s(q)ξ ·n, must lie between the limits indicated
in Eq. (B.17). If (B.17) is not satisfied, then the ray p + sξ does not intercept the facet.

Whether or not a ray intercepts a sea surface facet within the hexagonal domain can be deter-
mined by systematically checking, in the above manner, each pair of triad intercept points, namely
(π0,π1), (π1,π2), ..., (πm−1,πm). Either the ray will intercept one of the facets at a point q,
or the sequence of triad intercept pairs (πj ,πj+1) will be exhausted without ever satisfying Eq.
(B.17), in which case the ray leaves the hexagonal domain without intersecting the sea surface.

If the ray ξ does intersect a facet, then the incident direction ξ and the facet normal n are
used to compute the incident, reflected, and refracted directions for use in the Fresnel equations as
described in §3.2.2. If ray ξ does not intersect a facet, then the ray information is tallied to the
appropriate quad.
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