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The shading error associated with the water-leaving radiance (L
w
) measured via the Skylight 

Blocked Approach (SBA, Lee et al. 2013) is characterized by Monte Carlo simulations, and it is 

found this error is in a range of ~1-20% under most water properties and solar positions. A 

model for estimating this shading error is further developed, and eventually a scheme to correct 

this error based on the shaded measurements is proposed and evaluated. It is found that the 

shade-corrected value in the visible domain is within 3% of the true value, which thus indicates 

that with the SBA scheme, we can obtain not only high precision, but also high accuracy L
w
 in the 

field. 

OCIS codes: (280.0280) Remote sensing and sensors; (280.1350) Backscattering; (280.4788) Optical sensing and 
sensors;  

 

  



1.  Introduction 

Remote-sensing reflectance (R
rs

, sr-1), defined as the ratio of water-leaving radiance (L
w
, W m-2 sr-1 nm-1) to down-

welling irradiance just above the surface (E
d
, W m-2 nm-1), is a key property in optical oceanography, from which a 

wide range of physical and biogeochemical properties are derived [1]. Separately, the validation of airborne or 

spaceborne systems for ocean color remote sensing requires accurate measurements of R
rs

 (or L
w
) in the field. To 

achieve this, several approaches have been implemented in the past decades, and the advantages and drawbacks of 

these are summarized in Mueller et al. [2] and Lee et al. [3]. These conventional methods generally not measure 

L
w
 directly, rather measure some key components and then calculate the desired L

w
. The involved post-

measurement data processing include removal of surface reflected light, propagation of L
u
(z) (vertical profile of 

upwelling radiance) to L
w
, etc., which will bring in considerable uncertainties in the derived L

w
 and then R

rs
. The 

Skylight-Blocked Approach (SBA, Lee et al. [3,4]) is a scheme to measure L
w
 directly, which avoids challenges in 

dealing with moving clouds or stratified waters and results in L
w
 with high precision. However, because the 

radiance sensor looks down while illumination is from above, inevitably there will be shadows from the sensor as 

well as from the supporting platform [5], which should be corrected for accurate L
w
 and then R

rs
.  

 The shading effect (shading error) in L
w
 measurement was first discussed in Gordon and Ding [5] 

(represented as GD92 hereafter in short) for a sensor floating right on the surface. Based on GD92, relative 

shading error (ε) is defined as 

ߝ = ೠೝೠିೠ౩ౚೠೝೠ .                                          (1)  

 L
u
shaded and L

u
true are the upwelling radiance just beneath the surface with shading and without shading, 

respectively. After the transmission through the water-air interface, Eq. (1) could be rewritten as: 

ߝ = ೢೝೠିೢೌೞೠೝೢೝೠ ,                                    (2)  

with  L
w

shade and L
w

true are the water-leaving radiance with shading and without shading, respectively.  

Gordon and Ding [5] pointed out that the shading error is a function of the absorption coefficient, the size of 

the radiometer or the housing, and solar zenith angle at subsurface. They further proposed a simple equation to 

relate the shading error with the above listed variables as: ߝ = 1 − exp	[− ଶோ୲ୟ୬(ఏೢ)].                                           (3) 

In Eq. (3), θ
w
 is the subsurface zenith angle of sunlight (accordingly, θ

0
 is defined as the zenith angle of sun above 

surface hereafter), a (m-1) is the absorption coefficient and R (m) is the radius of the sensor or housing. In the years 

following the studies of Gordon and Ding (1992), shading effects for upwelling irradiance and for sensors 10's of 

centimeters below the surface were assessed using Monte Carlo (MC) simulations as well [5-9]. 

SBA is also a floating system different with that evaluated in GD92 [5] and a detailed cartoon of the sensors 
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Fig. 7. Estimated ε through K (Eqs. (5) and (7)) and Gordon and Ding (y-axis) .VS. calculated ε from MC (x-axis). 

 

Note that in the above evaluations and later on shading error corrections, the azimuth angle of the radiance 

sensor (ϕ) is set at 0° (as the coordinate system present in Fig. 4), since the impact of azimuth angle on the shading 

effect (as long as ϕ  is kept < 120°  from the sun plane) is negligible. 

 

3.3 Correction of shading error  

3.3.1 Overall scheme of shading correction 

An imperative step in the L
w
 measurement by SBA (and other in-water measurements) is to correct the shading 

error due to the system. As shown in Gordon and Ding’s study [5] and the above, this error depends on IOPs, sun 

angle as well as the size of the radiometer. Although the latter two can be known for any given measurement 

system and time and location, the IOPs are not handily available at the time of measuring L
w
. Here we present an 

effective scheme to derive IOPs from the shaded L
w
, and then use this IOP products to correct the shading error.  

Let's define a remote-sensing reflectance under the shading effect as 

                                ܴ௦௦ௗ = ೢೞೌா(ା) .                                                    (8)             

This R
rs

shade can then be related to the desired no-shade R
rs

 (R
rs

true) as: ܴ௦௦ௗ = ܴ௦௧௨(1 −  (9)                                                     .(ߝ

Decades of studies [21,22] have found that R
rs

true can be modeled as a function of IOPs through  

ܴ௦௧௨(ߣ) = .ହଶೝೞ(ఒ)ଵିଵ.ೝೞ(ఒ),                                              (10) 

with r
rs

 the remote sensing reflectance right below the surface and can be expressed as  that shown in Lee et al. 

(ߣ)௦ݎ  ,[23] = ݃௪ ್ೢ()()ା್() + ݃ ್()()ା್(),                                          (11) ݃(ߣ) = {1ܩ − ଵܩ exp ቂ−ܩଶ ್(ఒ)()ା್()ቃ}.                                                  (12) 

Here g
w
 and g

p
 are two model parameters for molecular scattering and particle scattering phase functions, 

respectively, while values of G
0
, G

1
, and G

2
 are constants for given light geometry and particle phase function 

[22]. Since ε is also a function of the absorption and backscattering coefficients (Eqs. (5)-(7)), the above models 

indicate that R
rs

shade is simply also a function of IOPs, therefore we may derive these IOPs from R
rs

shade spectrum 

similarly as that to derive IOPs from no-shade R
rs

.  

 We adopted the hyperspectral optimization processing exemplar (HOPE) described in Lee et al. [24] for this 

derivation. Briefly, a and b
b
  are modeled as:  ܽ(λ) = ܽ௪(λ) + ܽ(λ) + ܽௗ(λ),                          (13) 



ܾ(λ) = ܾ௪(λ) + ܾ(λ).                              (14) 

Here a
w
 and b

bw 
are the absorption and backscattering coefficient of pure seawater with same values used for MC 

simulation in this study. a
ph

 and a
dg

 are the absorption coefficient of phytoplankton and detritus and CDOM, 

respectively; b
bp

 is the back scattering coefficient of particles. a
ph

, a
dg

 and b
bp

 spectra are further modeled, 

respectively, as [24-26]: ܽ(ߣ) = [ܽ(ߣ) + ܽଵ(ߣ)ln	(ܲ)]ܲ,                                  (15)  ܽௗ(ߣ) = ܩ expൣܵௗ(440 − ൧,                                            (16)  ܾ(λ)(ߣ = (ସସఒ )ఎܾ(440),                              (17)  

In which, a
0
 and a

1
 are model constants presented in Lee [27], S

dg
 is the slope of a

dg
.  P, G, η and b

bp
(440), 

which represent a
ph

(440), a
dg

(440), slope of b
bp

 and particle backscattering at 440 nm, are four free variables to 

model R
rs

shade. To improve the performance of this scheme, an initial guess of η (η
ini

) was determined as in QAA 

version 6 (QAA_v6) [28] without considering shading error at both 440 nm and 555 nm: ߟ = 2.0{1 − 1.2exp[−0.9 ೝೞ(ସସ)ೝೞ(ହହହ)]}.                                                       (18) 

௦(λ)ݎ = ோೝೞೞೌ().ହଶାଵ.ோೝೞೞೌ().                                                (19) 

Where R
rs

shade is the in-situ R
rs

 (or R
rs

shade from MC simulation). The upper and lower boundary of variation range 

of η is set as 0.5*η
ini

 and 1.5*η
ini

, respectively. 

To estimate the value of S
dg

, a referenced band at 555 nm is chosen with its relative low shading error 

(normally less than 10%) and strong signal for most cases. Based on Eq. (19), neglect of shading error will result 

less than 10% error on estimation of r
rs

(555), which has limited impact on estimation of S
dg

 (about 5%). With this 

neglect of shading error at 555nm, from Eq. (19), we have value of r
rs

(555) calculated as: 

௦(555)ݎ = ோೝೞೞೌ(ହହହ).ହଶାଵ.ோೝೞೞೌ(ହହହ) .                                                                      (20) 

While at the same time, from Eq. (11), r
rs

(555) is a function of IOPs at 555nm as well: 

௦(555)ݎ = ݃௪ ್ೢ(ହହହ)(ହହହ)ା್(ହହହ) + ݃ ್(ହହହ)(ହହହ)ା್(ହହହ),                                          (21) 

From Eqs. (14)-(15) and (17), r
rs

(555) could be expressed as:  

௦(555)ݎ   = 	 ଶ݂൫ܲ, ,ܩ ܾ(440), ,ߟ ܵௗ൯.                                                        (22) 

Since value of r
rs

(555) is known and calculated from Eq. (20), Eq. (22) could be rewritten as: ܵௗ = 	 ଷ݂൫ܲ, ,ܩ ܾ(440),  ൯.                                                                     (23)ߟ

Consequently, R
rs

shade becomes a function of four free variables P, G, η and b
bp

(440) which could be derived 

numerically through spectral optimization (Huang et al., Werdell et al.) [29,30].  

 The error function for the spectral optimization is defined as:    



ݎݎܧ   = 	 {௩(ఒ	ୀ	ସ	ି	ହ	)ൣோೝೞೞೌ_(ఒ	)	ି	ோೝೞೞೌ(ఒ	)൧మ}బ.ఱ௩(ఒ	ୀ	ସ	ି	ହ	)ൣோೝೞೞೌ(ఒ	)	൧ 	                           (24)  

 
Where R

rs
shade_mod is the modeled shading R

rs
 estimated through Eqs. (9)-(17), R

rs
shade is the in-situ R

rs
 (or R

rs
shade 

get from MC simulation). Subsequently ε was estimated based on the derived IOPs (Eqs. (5)-(7)). Further, from 

Eq. (9), the shading-corrected R
rs

 (R
rs

correct) became:  

ܴ௦௧(ߣ) = ோೝೞೞೌ(ఒ)(ଵ	ି	ఌ(ఒ)	) .                           (25) 

3.3.2 Evaluation of the shading-correction scheme 

To characterize the difference between the derived value (i.e., R
rs

correct, derived IOPs) and the true value (i.e., 

R
rs

true, input IOPs in MC simulation or IOPs in real world), NRMSE (normalized root-mean-square error) is 

employed:  

ܧܵܯܴܰ = ට∑ (௬ොି௬)మసభ  ଵ௬ത,                                                     (26) 

where ݕො and ݕ are the predicted and the true value of a property (e.g., R
rs

), respectively, and ݕത is the average of 

the true value. 

Examples of R
rs

correct spectra for different Chl and SPM values obtained from the above processes, along with its 

comparison with R
rs

true spectra for θ
0
 = 10°, 30°, and 60°, are presented in Figs. 8 and 9. It is found in general the 

NRMSE between R
rs

correct and R
rs

true is under 2% for these low and high Chl and SPM waters, and for θ
0
 from 10° 

to 60°, respectively. Larger (> 15%) difference is found for wavelengths beyond 720 nm and for θ
0 as 10° (as 

shown in Fig. 8), a result of R
rs

 with high absorption (> 1.2 m-1) and under intense self-shading (> 40%, 28%, 20% 

when θ
0 = 10°, 30°, 60°, respectively). For such scenarios, the accuracy of R

rs
 is not that valuable as its application 

in ocean color remote sensing is limited. Separately, from Fig. 8, about 10% relative difference of ε is found in 

blue bands (λ = 400 – 440 nm) for several cases (Chl = 5.0 mg m-3, SPM = 0.0, 1.0 and 5.0 g m-3 when θ
0
 = 10°). 

These are simply due to a mismatch between the power-law model (Eq. (17)) used to describe the b
bp

 spectrum did 

not match the b
bp

 spectrum used in MC simulations. Consequently, larger errors in the retrieved IOPs were 

resulted, which then propagates to the estimation of ε. Nevertheless, even with such conditions, on average the 

resulted R
rs

correct (λ = 400 – 720 nm) is still within 3% (3%, 1.5%, 1% when θ
0 = 10°, 30°, 60°, respectively) of 

R
rs

true, which suggests a successful removal of the shading effects, at least for cases studied here. 
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Appendix: IOPs of each components for MC simulations 

Similar as the Hydrolight “Case-2” model setting, the IOPs input for MC simulations are divided into four parts: 

pure water, chlorophyll, CDOM and SPM.  

As mentioned previously, the IOPs of pure water are taken from Lee et al. [11], Pope and Fry [12], and 

Morel [13], respectively. For the other three constituents, the same models as those embedded in Hydrolight are 

applied.  

The IOPs of Chl is estimated by: ܽ(ߣ) = (ߣ).ହ [17],                                                      (27) ܾ[ܮܪܥ](ߣ)∗ܽ = ହହହఒ)[ܮܪܥ](ߣ)∗0.3ܽ ).ଶ	[15].                                                    (28)                        

Where [CHL] is the concentration of chlorophyll (mg m-3). A backscattering ratio of 0.01 is assign to chlorophyll.  

 For CDOM, the absorption is calculated as presented in Eq. (4).  

 For SPM, the IOPs is determined by: ܽௌெ(ߣ) = ܽ∗ௌெ(ߣ)[ܵܲܯ],			                                                            (29) ܾௌெ(ߣ) = ܾ∗ௌெ(ߣ)[ܵܲܯ].			                                                            (30) 

Where [SPM] is the concentration of SPM in (g m-3). The value of ܽ∗ௌெ and ܾ∗ௌெ is taken from average specific 

particle absorption and scattering in Hydrolight, which could be retrieved from 

“HE5/data/defaults/astarmin_average.txt”, “HE5/data/defaults/bstarmin_average.txt”, respectively. A 

backscattering ratio of 0.03 is assigned to SPM.  

 The volume scattering function will be constructed based on the back scattering ratio [18]. 
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