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Abstract: Fowler’s Sneaker Depth (FSD), analogous to the well known Secchi disk depth 
(Zsd), is a visually discerned citizen scientist metric used to assess water clarity in the 
Patuxent River estuary. In this study, a simple remote sensing algorithm was developed to 
derive FSD from space-borne spectroradiometric imagery. An empirical model was formed 
that estimates FSD from red-end remote sensing reflectances at 645 nm, Rrs(645). The model 
is based on a hyperbolic function relating water clarity to Rrs(645) that was established using 
radiative transfer modeling and fine tuned using in-water FSD measurements and coincident 
Rrs(645) data observed by NASA’s Moderate Resolution Imaging Spectroradiometer aboard 
the Aqua spacecraft (MODISA). The resultant FSD algorithm was applied to Landsat-8 
Operational Land Imager data to derive a short time-series for the Patuxent River estuary 
from January 2015 to June 2016. Satellite-derived FSD had an inverse, statistically significant 
relationship (p<0.005) with total suspended sediment concentration (TSS). Further, a distinct 
negative relationship between FSD and chlorophyll concentration was discerned during 
periods of high biomass (> 4 μg L−1). The complex nature of water quality in the mid-to-
upper Chesapeake Bay was captured using a MODISA-based FSD time series (2002-2016). 
This study demonstrates how a citizen scientist-conceived observation can be coupled with 
remote sensing. With further refinement and validation, the FSD may be a useful tool for 
delivering scientifically relevant results and for informing and engaging local stakeholders 
and policy makers. 
© 2017 Optical Society of America 

OCIS codes: (010.4450) Oceanic optics; (280.4991) Passive remote sensing; (010.5620) Radiative transfer. 
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1. Introduction

Historically, the aquatic remote-sensing community has focused on developing algorithms 
that can quantify in-water optical parameters with the best-possible precision and accuracy. 
Whilst these may be fit for the purpose of scientific research or environmental management, 
many satellite-derived parameters are conceptually abstract and not easily interpretable by the 
general public. This is due, in part, to the anticipated audience/data users who are often 
focused on complex scientific problems, and less so on general public interest or actual 
societal needs. Nonetheless, remote-sensing data can complement more rudimentary in situ 
observations, such as the Secchi disk depth (Zsd) [1–4] and the Forel-Ule Color Index [5], to 
help study long-term spatiotemporal variability in marine optical conditions. 

Members of the general public who volunteer to participate in scientific research are 
known as “citizen scientists” [6, 7]. In marine science, citizen scientists have been key to a 
number of studies on topics such as marine litter, seabirds, marine mammals, and coastal 
habitat condition [7]. Increasingly, academic researchers are collecting large amounts of 
scientific observations, or “crowdsourcing” data, by actively working with citizen scientists at 
geographical scales spanning from the local (e.g. SCUBA surveys of sea turtles [8]) to the 
global (e.g. CoralWatch [9]). It is important to note that citizen scientist activities can extend 
well beyond crowdsourcing to the interpretation and analysis of data, and even the defining of 
research questions and the collaborative design of scientific studies [6]. 

Optical observations of environmental conditions by citizen scientists are growing more 
useful for monitoring marine ecosystem health. To improve spatiotemporal observations of 
water clarity (turbidity), the broader community is increasingly being encouraged to take their 
own measurements based on user-friendly guidelines established by scientists [2, 10]. Indeed, 
a number of smart phone apps and websites have been established to encourage data 
crowdsourcing by the broader community (e.g. Citclops/EyeOnWater [11], Secchi Disk 
Project [12] and HydroColor [13]). Citizen scientist observations in environmental sciences 
are typically based on low cost, robust, straightforward and easily interpretable methods. 
Motivations for such observations are numerous, driven mostly by the need of immersion to 
the scientific process, sometimes resulting in participation in the decision making process 
from the “bottom-up” perspective [14]. 

The Chesapeake Bay, centered on 38.1°N 76.2°E, is a large estuary located in the mid-
Atlantic region of the USA. It has a length of nearly 300 km and a surface area spanning 
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11,500 km2 [15]. Sediment cores and direct observations have provided evidence that water 
quality in Chesapeake Bay has declined over the past 200 years as a direct consequence of 
watershed land use changes [15, 16]. Specifically, land clearing, agricultural practices, and 
urban development in the watershed have led to increased suspended sediment loads, excess 
nutrients (nitrogen and phosphorus), sewage, and other pollutants being transported into the 
Bay via rivers [15, 17]. This in turn has had a detrimental impact on ecosystem health leading 
to eutrophication, increased turbidity, decline in benthic vegetation, and deep-water hypoxia 
[15]. 

The Patuxent River is the sixth largest sub-estuary in the Chesapeake Bay, and discharges 
the seventh largest volume of freshwater [18]. It is located on the western side of the Bay and 
has a watershed spanning approximately 2,600 km2, wholly situated within the state of 
Maryland. From the 1950s onwards, population growth in the watershed led to a marked 
decline in water quality [19]. This was particularly noticeable when reviewing historical Zsd 
measurements collected in the lower Patuxent River [19, 20]. These data showed water clarity 
conditions in mesohaline waters during 1960/70’s were markedly poorer than in the 1930s 
[20]. Throughout the 1970s community awareness about declining water quality and 
ecosystem health helped shape environmental policy. Indeed, in the 1980’s statutory 
measures were enacted to improve water quality in the Patuxent River and comprehensive 
watershed management guidelines were established [19, 21]. 

Retired Maryland State Senator Bernie Fowler, a key figure associated with water quality 
improvement in the area, with the support of Tom Wisner, a local school teacher, conceived 
an engaging citizen scientist observation: the “Sneaker Index” [22, 23]. Akin to Zsd, the 
Sneaker Index gives a visual appraisal of water column clarity by recording the depth at 
which the observer’s white shoes are no longer visible [24, 25]. Figure 1 shows Senator 
Bernie Fowler (Ret.) and his white sneakers. Although distinctly similar to Zsd, the Sneaker 
Index was conceived as a public awareness tool apparently with little consideration of the 
Secchi disk method [23]. Motivated by his concern for water clarity in the Patuxent River, 
and in hope to observe improved conditions after watershed improvement measures were set 
in place, every June since 1988 Senator Bernie Fowler (Ret.) holds annual Patuxent River 
‘wade-in’ events [25]. Not only have the annual wade-ins provided a fun and engaging way to 
raise awareness of water quality changes to the general public, they have also resulted in a 28-
year record of water clarity. However powerful due to their longevity, these observations are 
just a snapshot of the highly variable system, and as such susceptible to short-scale variability 
(e.g. windy day), and are unable to resolve intra- and inter-annual spatial variability. 

The objective of this paper was to develop a simple method for observing the Sneaker 
Index, hereby referred to as “Fowler’s Sneaker Depth” (FSD), from remotely sensed imagery. 
The FSD serves as a useful way to communicate aquatic remote sensing concepts with citizen 
scientists. In particular, as an already familiar concept, remotely sensed FSD could potentially 
be used to discuss spatial patterns of turbidity in the Patuxent River with the general public. 
We also examine the potential of satellite derived FSD for resolving intra- and inter-annual 
variability in regional water clarity. We acknowledge that a number of other studies have 
used remote sensing to observe trends in water quality parameters in the Chesapeake Bay 
[26–28], however, none of these have derived a citizen scientist water clarity metric 
specifically developed by community water quality advocates. The primary driver of water 
clarity (turbidity) in the Patuxent River estuary, as in many parts other parts of the 
Chesapeake Bay, is total suspended solids (TSS; both volatile and inorganic material [17, 
29]). In coastal and inland waters, the magnitude of the light reflected from the water-column 
at red wavelengths (e.g. remote-sensing reflectance at 645 nm, Rrs(645)) is often proportional 
to TSS concentration [30, 31]. Based on these assertions, we expect FSD to be dependent 
upon TSS concentration, and in turn, we assume that it may be possible to predict FSD from 
sensor-observed Rrs(645). In the end, a proof-of-concept FSD algorithm is presented and 
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variability of FSD is evaluated over finer temporal scales for the Patuxent River estuary and 
the mid-to-upper Chesapeake Bay region. 

Fig. 1. Retired Maryland State Senator Bernie Fowler in 2012 holding the white sneakers he 
wears at annual Patuxent River wade-in events. Image credit: Maryland Department of 
Planning [22]. 

2. Data and modeling

2.1 Fowler’s Sneaker Depth data 

In-water FSD measurements were collected at annual ‘wade-ins’ that have occurred on the 
second Sunday in June, from 1988 onwards. Participants slowly wade into a section of the 
Patuxent River, located on the western side of the Chesapeake Bay as shown in Fig. 2, until 
their white sneakers are no longer visible. Once this occurs, a wooden meter stick is used to 
measure the water-column depth in inches. FSD data were sourced from the Maryland 
Department of Planning website [22]. We note that annual wade-ins have occurred at two 
separate locations: Broomes Island (BI) from 1988 – 2009, and Jefferson Paterson Park (JPP) 
and from 2010 – present, both locations are indicated in Fig. 2. For this study we converted 
the FSD from inches to meters, and considered only years that MODIS Aqua (MODISA) was 
in orbit (2003 – 2016). Full details are given in Table 1. 

It is important to acknowledge that annual wade-ins are community events devised for the 
purpose of raising public awareness. Thus, FSD data were never intended for use in satellite 
algorithm development and may lack some scientific rigor. For example, each year many 
participants, often numbering several hundred [25], attend the wade-ins. Accordingly, it is 
possible that some fine sediments are resuspended by foot traffic thereby adding uncertainty 
to FSD observations. Although, in a recorded video of the 1990 wade-in [24] when water 
clarity was 0.4m [22], sediment stirring by Bernie Fowler’s white sneakers appears minimal. 
Further, because the wade-ins occur on a fixed date (second Sunday in June), environmental 
conditions that can influence water clarity, such as tidal forcing, are unlikely to be same year-
to-year. Nonetheless, for the purpose of developing a simple satellite algorithm, we believe 
the FSD data has been collected with sufficient consistency to be of useful quality. 
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Fig. 2. Quasi-true color image of the Patuxent River estuary and adjacent Chesapeake Bay 
captured by Landsat-8 OLI on 18 September 2015. Waters near the river mouth appear 
greenish-yellow most likely due to an abundance of phytoplankton. Waters upstream from the 
river mouth are a distinct brown color, likely due to suspended mineral sediment. Annotated in 
red letters are the wade-in locations of Broomes Island (BI) and Jefferson Patterson Park (JPP), 
the monthly monitoring sites St Leonard (LEI.2) and Above Point Patience (LEI1.3), and the 
Chesapeake Bay Laboratory (CBL). 

2.2 Radiative transfer modeling 

To conceptualize how visually-discerned water clarity depth relates to Rrs(645), a brief 
radiative transfer study was performed. Specifically, Hydrolight-Ecolight 5 (HE5) radiative 
transfer code [32] was used to theoretically calculate Zsd and Rrs(645) for a range of water-
column optical conditions. Our underlying assumption was that that any relationship between 
Zsd and Rrs(645) would be similar to that of FSD and Rrs(645). A set of 575 inherent optical 
properties (IOPs) were synthesized using the methodology of IOCCG [33]. These IOP 
combinations spanned a range of optical conditions from pure seawater – defined by an 
absence of chlorophyll (Chl) through to highly turbid conditions (100 μg Chl L−1). For 
brevity, we will not detail how we parameterized HE5 radiative transfer software (i.e. 
atmospheric, surface, and the water-column conditions) as these details are described 
elsewhere [33]. 

Using the simulated HE5 data set, it was possible to develop a mathematical model to 
predict water clarity depth (i.e. Zsd) as a function of Rrs(645). To determine how well the 
mathematical model fit the data, appropriate metrics were used to compare modeled water 
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clarity depth (i.e Zsd or FSD), Ẑ , with known (i.e. HE5-modeled or in situ) water clarity
depth, Z. Specifically, we used the linear regression metrics of r-squared and regression slope 
to assess model fit. The median ratio (MR) was used to assess bias, where 

ˆ .i iMR median Z Z =   (1)

2.3 Satellite imagery 

2.3.1 Concurrent MODISA imagery 

Level-1 MODISA data were downloaded from NASA Ocean Biology Distributed Active 
Archive Center’s website (OB.DAAC: http://oceancolor.gsfc.nasa.gov/) and processed using 
NASA’s L2GEN processing code that is distributed as part of the SeaDAS ocean-color 
display and analysis software suite (http://seadas.gsfc.nasa.gov/). Values of Rrs(645) and 
Rayleigh-corrected radiances, ρs(λ), were derived. We note that the 645 nm band of MODISA 
is the only visible band of the sensor with 250 m x 250 m resolution making it suitable for 
observing narrow sub-kilometer scale channels and estuaries of the Chesapeake Bay. For 
algorithm development, it is best practice to have satellite overpass dates coincident with in 
situ data collection dates. However, due to effects such as thick cloud cover, sunglint, and 
orbit gaps, MODISA data was not always available at the time of wade-ins. Accordingly, we 
used MODISA data ± 1 day on either side of wade-ins, when coincident images were 
unavailable, in order to maximize the number of data points (see Table 1). We note that the 
standard land masking procedure used in L2GEN obscured the Patuxent River estuary. Thus, 
for algorithm development purposes, the default land mask was switched off during L2GEN 
processing. 

After L2GEN processing was complete, output level-2 files were visually inspected one-
by-one using SeaDAS software. For each file, Rrs(645) was displayed, and a custom coastline 
and landmask was generated using 150 m resolution NASA Shuttle Radar Topographic 
Mission Global Coverage (SRTM_GC) data. Next, quasi-true color images were generated 
using the ρs(645), ρs(555), and ρs(469) (red, green, and blue) bands. By inspecting the 
land/coastline mask and quasi-true color imagery together it was possible to discern the 
Patuxent River and visually determine the quality of Rrs(645) data. If the scene was clear and 
of good quality, the SeaDAS geometry tool was used to draw a 5 x 5 pixel box nearest to the 
wade-in sites. Care was taken to ensure the box did not contain land pixels. The SeaDAS 
statistics tool was then used to calculate the mean, median and standard deviation of the 5 x 5 
boxed regions. 

Environmental factors that affect turbidity, such as tide, may differ between the wade-in 
and the time of satellite overpass. Although the Patuxent River estuary experiences micro-
tidal conditions, we still examined the difference in tide height between the time of wade-in 
(approximately 14:00) and satellite overpass. For this study, no direct record of tides was 
available for BI and JPP. Instead, we used NOAA tidal harmonics for nearby CBL (NOAA 
station 8577330) to calculate tide height relative to mean sea level (MSL). These data, shown 
in Table 2, indicate that for most years tidal situations were comparable with absolute 
differences usually less than 0.20 m. However, we note that in 2013 and 2016 the absolute 
difference in tide height was 0.28 m and 0.30 m, respectively. 

2.3.2 High resolution Landsat-8 imagery 

The Operational Land Imager (OLI) aboard the Landsat-8 satellite provides data with 30 m x 
30 m pixel resolution. This spatial resolution of OLI makes it ideal for observing fine-scale 
narrow inlets and estuaries of the Chesapeake Bay that are poorly resolved by MODISA [34]. 
OLI also provided a high quality satellite data set independent of MODISA suitable for 
evaluating the FSD algorithm. All OLI level-1 files that contained the Patuxent River estuary 
region were downloaded from the US Geological Survey (USGS) EarthExplorer website 

                                                                                  Vol. 25, No. 8 | 17 Apr 2017 | OPTICS EXPRESS A367 



(http://earthexplorer.usgs.gov/). This resulted in a total of 15 clear scenes spanning January 
2015 – July 2016. All level-1 data were processed using L2GEN with the output level-2 files 
containing Rrs(λ) and ρs(λ) data. As for MODISA, the standard landmask was turned off 
during data processing. Each individual OLI image was assessed visually as for MODISA 
imagery (see section 2.3.1), and data were extracted for a small 5 x 5 pixel box nearest to JPP 
site. 

Table 1. Details of in-water FSD wade-ins and MODISA satellite overpass 

Wade-in date 
(dd/mm/yyy) 

Location 
Fowler 

Sneaker Depth 
[m] 

Median 
MODIS 
Rrs(645) 

[sr−1] 

MODIS 
Rrs(645) 

Coefficient of 
Variation 

± days of 
satellite 
overpass 

08/06/2003 BI 0.62 0.0072a 2.42E-3 + 1
13/06/2004 BI 0.80 0.0116 1.70E-03 + 1
12/06/2005 BI 0.69 - - 0
11/06/2006 BI 0.69 - - −1 
10/06/2007 BI 0.53 0.0157 1.00E-3 −1 

08/06/2008 BI 0.66 0.0140 8.58E-4 −1 
14/06/2009 BI 0.64 0.0127 1.80E-3 0
13/06/2010 JPP 0.87 0.0096 3.86E-4 0
12/06/2011 JPP 0.79 - - 0
10/06/2012 JPP 0.88 0.0094 4.12E-4 0

09/06/2013 JPP 0.86 0.0076 2.02E-4 −1 

08/06/2014 JPP 0.58 0.0069a 1.80E-3 −1 
14/06/2015 JPP 1.13 0.0086 2.05-4 0

12/06/2016 JPP 0.78 - - −1 
aSuspected outlier. 

Table 2. Details of tide height on wade-in days and during MODISA satellite overpass 

Wade-in date 
(dd/mm/yyy) 

Location 
± days of 
satellite 
overpass 

Satellite 
data 

available 
Yes/No 

Tidea 
height at 
2pm on 
day of 

wade-in 
[m] 

Tidea height 
at overpass 

time [m] 

Absolute 
difference 

between tide 
[m] 

08/06/2003 BI + 1 Yes 0.19 0.14 0.05
13/06/2004 BI + 1 Yes 0.10 0.15 0.05
12/06/2005 BI 0 No 0.04 −0.07 0.11 
11/06/2006 BI −1 No −0.07 0.13 0.20 
10/06/2007 BI −1 Yes 0.19 0.07 0.12 
08/06/2008 BI −1 Yes 0.04 −0.02 0.06 
14/06/2009 BI 0 Yes 0.07 −0.07 0.14 
13/06/2010 JPP 0 Yes −0.12 −0.06 0.06 
12/06/2011 JPP 0 No 0.14 0.18 0.04
10/06/2012 JPP 0 Yes 0.11 −0.01 0.12 
09/06/2013 JPP −1 Yes −0.12 0.16 0.28 
08/06/2014 JPP −1 Yes 0.17 0.11 0.06 
14/06/2015 JPP 0 Yes 0.02 0.13 0.11
12/06/2016 JPP −1 No 0.17 −0.15 0.32 

aTide calculated for CBL; datum is mean sea level (MSL). 

2.3.3 MODISA time-series 

To determine the capability of FSD for observing decadal variability, the entire MODISA 
archive (2002 – 2016) was processed for the Chesapeake Bay region. Daily level-2 swath 
resolution (unmapped) data were produced using L2GEN, then files containing valid data 
were spatially aggregated to an equal area grid representation with standard pixel resolution 
of 500 m. These data were then temporally aggregated to a monthly resolution (n = 168). 
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From this monthly time-series, a sub-region was extracted encompassing the mid-to-upper 
Chesapeake Bay (30.6 – 37.9°N, 75.6 – 76.9°W). The MODISA-derived parameters used 
were Rrs(645), Chl, and the particulate backscattering coefficient at 443 nm, bbp(443). Chl 
values were derived using the standard NASA algorithm [35] and bbp(443) values were 
derived using default configuration of the Generalized Inherent Optical Properties framework 
algorithm (GIOP) [36]. We note the magnitude of bbp(443) is typically considered directly 
proportional to TSS [37]. 

2.4 Environmental observations 

To contextualize satellite-derived values of FSD with estuarine processes, we sourced in situ 
data of various environmental conditions. Hourly rates of Patuxent River discharge, measured 
at USGS station 01594440 near Bowie, MD were obtained from the USGS website [38]. 
Measurements of Chl were collected in 15 minute intervals by a YSI EXO2 probe at the 
University of Maryland’s Center for Environmental Studies - Chesapeake Biological 
Laboratory (CBL) pier, as part of CBL Pier Monitoring Program [39]. Discrete measurements 
of Chl and total suspended sediments (TSS) at two monitoring stations located near the FSD 
wade-in sites: St Leonard (LEI1.2) and Above Point Patience (LEI1.3) were obtained from 
the Maryland Department of Natural Resources [40]. Discrete data samples were analyzed 
following the EPA approved methods. Locations of monitoring sites are shown in Fig. 2. 

3. Results and discussion

3.1 Relating water clarity depth to Rrs(645) 

The scatter plots in Fig. 3 show how simulated Zsd monotonically decreases with increasing 
Rrs(645) with asymptotic behavior occurring at both axes. It was determined that this 
relationship could be well represented using a hyperbolic function of the form 

0

1

.
(645)SD

rs

c
Z

c R
= (2)

Using non-linear least squares regression, the coefficients c0 and c1 were found to have 
values of 0.252 m and 20.0 sr, respectively. The linear regression statistics for the hyperbolic 
model were an r-squared value of 0.95, regression slope of 0.91 and median ratio of 1.09. 
Collectively, these statistics indicated that the hyperbolic model explains the relationship 
between Zsd and Rrs(645) with good precision and low bias. We note that the asymptotic 
behavior of the hyperbolic function may be problematic, particularly where very low values 
of Rrs(645) may lead to large water clarity depths. Indeed, water clarity depths exceeding 
several meters are unlikely in turbid waters of the Chesapeake Bay. Accordingly, water 
clarity depths exceeding 12 m, the point at which asymptotic y-axis behavior begins, should 
be interpreted with caution. We also note for FSD, water clarity depths deeper than a person 
is tall cannot be validated via the existing wade-in methodology. 

Because FSD is analogous to Zsd, we postulated that Eq. (2) should be applicable for 
relating FSD to Rrs(645). Using non-linear least squares regression we fitted the hyperbolic 
curve through the ten FSD data points that had coincident MODISA-observed Rrs(645) data 
(see Table 1). Initial results revealed that the model performed poorly with an r-squared value 
of 0.04, a regression slope of 0.26, and a median ratio of 0.93. On closer inspection, two data 
points were deemed out-of-family; one of them having coefficient of variation greater than 
20% (Table 1). These two data points (see red circle in Fig. 3) were excluded from further 
analysis. The curve was refit, and the linear regression statistics were much improved as 
evidenced by an r-squared of 0.68, a regression slope of 0.89, and a median ratio of 1.01. The 
corresponding hyperbolic fit coefficients c0 and c1 were 0.058 m and 6.83 sr respectively. 

We wish to note that it is not surprising that the hyperbolic fit coefficients would differ 
between Zsd and FSD. Particularly as observed FSD values are slightly smaller than modeled 
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Zsd values. Whilst the two measurements are similar, the sampling protocols for Zsd and FSD 
differ greatly which may, in part, explain differences between the two water clarity metrics. 
In particular, FSD is more intrusive than Zsd as the observer has to physically enter the water 
to make a measurement. This presence of the observer’s body in the water could potentially 
stir up sediments and, depending sun position, cause self-shading of the white sneakers. In 
addition, the way HE5 calculates Zsd using the model of Preisendorfer [41] has its own 
underlying assumptions related, in part, to the photopic reflectance property of a white Secchi 
disk with a surface area of approximately 0.3 m2 [42]. We concede that these assumptions 
may not hold for a pair of white sneakers with a surface of area of approximately 0.02 m2. 

Fig. 3. Panel A shows simulated Zsd (grey data points) varying with Rrs(645). A region-of-
interest box, defined by dotted line, surrounds in-water FSD data (blue data points) plotted 
against coincident MODISA-observed Rrs(645). Panel B zooms in on the region-of-interest box 
showing the in-water FSD data points more clearly. A red line encircles two suspected outliers. 
In both panels, two best fit lines are displayed: a dashed line for Zsd depth vs. Rrs(645) and a 
solid line for FSD vs. Rrs(645). 

3.2 Sample FSD image 

To demonstrate the utility of FSD for visualizing spatial patterns in water clarity, we 
processed a sample Landsat-8 OLI image of the Patuxent River estuary and part of the 
adjacent Chesapeake Bay. We selected an image captured on 24 January 2016 after an intense 
blizzard, dubbed “Winter Storm Jonas”, had passed over the region [43]. During the storm, 
the Chesapeake Bay region was significantly impacted by heavy snowfall, strong winds, and 
a storm surge. From the derived FSD image, shown in Fig. 4(b), we can visualize the acute 
impact the storm had on water clarity, particularly at a time (mid-winter) when conditions are 
often considered to be clearest. 

Figure 4(a) shows a quasi-true color image with land appearing white, due to aggregated 
snow. The waters of the upper Patuxent River estuary and the adjacent Chesapeake Bay are 
brown colored and highly turbid, presumably due to physical forcing (wind and storm surge 
action [43]) causing localized erosion and/or resuspension of sediments. Areas of the mid-to-
lower Patuxent River Estuary appear dark colored suggesting the waters there are highly 
absorbing and/or lacking highly scattering particulate matter. The derived FSD image is 
shown in Fig. 4(b). FSD can be interpreted using a color scheme where warm colors 
correspond to turbid water and cool colors correspond to clearer water. Unsurprisingly the 
spatial patterns of FSD shown in Fig. 4(b) match well with brown colored water depicted Fig. 
4(a). 

The median FSD observed for the adjacent Chesapeake Bay was 0.62 m while for the 
upper Patuxent River estuary the median FSD was 0.70m. For the dark colored waters of the 

                                                                                  Vol. 25, No. 8 | 17 Apr 2017 | OPTICS EXPRESS A370 



mid-to-lower Patuxent River estuary (near BI and JPP), FSD had a median value of 2.0 m. 
We note that no coincident in situ water clarity observations were collected for direct 
comparison with satellite-derived values. However, five days later on 29 January 2016 routine 
water quality monitoring measured in situ Zsd values at LEI1.2 and LEI1.3 of 2.1 m and 2.2 
m, respectively. We note that OLI-derived FSD values for LE1.2 and LEI1.3 stations on 24 
January were 2.4 m and 2.7 m, respectively. Although encouraging, this cursory comparison 
is not conclusive as FSD and Zsd are not directly comparable and there were five days 
separating the satellite and in situ observations. Nonetheless, this example can be used 
effectively to communicate the concept of spatial heterogeneity in water clarity and also 
demonstrate how severe weather can impact water quality in the region. 

Fig. 4. Landsat-8 OLI imagery of the Patuxent River and adjacent Chesapeake Bay captured on 
24 January 2016 following a severe winter storm. Panel A shows a quasi-true color image of 
the region. Highly turbid waters appear brown whilst clearer, less scattering waters are dark 
colored. Panel B shows FSD, the depth at which you can no longer see a pair of white 
sneakers, derived using Eq. (2). Black pixels in panel B correspond to invalid (bad data) pixels 
where atmospheric correction failure occurred. 

3.3 Patuxent River time-series 

A short FSD time-series (January 2015 – July 2016) was calculated from OLI Rrs(655) data 
observed immediately adjacent to the JPP site. The time-series, shown in Fig. 5, demonstrates 
large intra- and inter-annual variability in water clarity. Direct measurements of FSD fit 
nicely in the OLI derived FSD time series. During winter months, FSD was deepest with a 
maxima of 11.82 m reached in December of 2015 coinciding with low TSS and Chl values as 
measured by the nearby LE1.2 and LE1.3 monitoring stations. We note, however, this deep 
FSD value cannot be directly validated. The shallowest FSD values were observed during late 
spring/early summer, timed near the annual wade-in, when highest TSS and Chl 
concentrations were measured at LE1.2 and LE1.3. 

No correlation between the Patuxent River discharge rate and FSD was found. A 
statistically significant negative relationship was found between FSD and LEI1.2 TSS 
(p<0.005, r-squared = 0.85, n = 5, only the samples collected on the same day were used 
here), supporting the concept of FSD dependence on particle loads. The relationship between 
FSD and Chl seems to be a complex one; the discrete Chl samples collected at monitoring 
sites do not display a significant correlation with FSD. However, for the data set collected at 
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CBL pier, we found a statistically significant negative trend between FSD and Chl 
concentrations for the periods in which Chl concentrations exceeded 4 µg L−1 (p = 0.054, r2 = 
0.72). 

Our results suggest that water clarity in the vicinity of JPP (mid-estuary), for most of the 
OLI-observed period, is driven by particulate matter of local origin probably eroded and/or 
resuspended sediment and detrital particles. During periods of increased Chl concentration (> 
4 µg L−1), control of water clarity seems to be driven by phytoplankton biomass, originating 
from the more saline (lower) part of the Patuxent River estuary. Indeed, despite a reduction in 
point source nutrient inputs in the Patuxent River watershed, summer phytoplankton blooms 
in the lower Patuxent River estuary have persisted [44]. Recent studies suggest that the 
dominant nutrient source driving this observed productivity has shifted from watershed-based 
to Chesapeake Bay-oriented [44, 45]. Our data do not have the temporal resolution needed to 
tease out the potential influence of tides on the observed trends. Cumulatively, our results 
complement contemporary understanding that water clarity seasonal reduction in the lower 
Patuxent River estuary is driven by an increase in phytoplankton biomass due to excess 
nutrient input and to the lesser extent by incoming inorganic sediment load. 

Collectively the results suggest that the FSD algorithm is applicable to turbid waters that 
exhibit high optical scattering due to suspended particles or high phytoplankton biomass (> 4 
µg L−1). However, we concede that for low scattering (low turbidity) waters, the current FSD 
algorithm is likely to underperform. Under such circumstances, the signal at Rrs(655) will be 
small and inputting such values into the hyperbolic model (Eq. (2)) may lead to unrealistically 
large FSD retrievals. This identifies an aspect for further algorithm improvement. 

Fig. 5. Patuxent river time-series, panel A depicts FSD variability over the period of year and a 
half, for the sampling site (panel A), followed by the monthly variability of total suspended 
sediments on two monitoring stations in proximity of sampling site (panel B). Panel C is 
showing the chlorophyll variability on same monitoring stations (red and blue), and 
chlorophyll variability measured by the probe on CBL pier. Variability of the Patuxent River 
discharge is depicted on panel D. 
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3.4 Chesapeake Bay time-series 

MODISA-derived FSD in Chesapeake Bay displays no significant long-term trends during 
the fourteen-year period of the MODISA mission. Median FSD for 2002-2016 period was 3.7 
m, while the range was 1.7–7.2 m, with maximum and minimum FSDs encountered during 
2015 and 2016. These extreme FSDs were encountered during the periods of lowest and 
highest particle loads, as respectively indicated by bbp(443) values; see Figs. 6(a) and 6(b). 
The presence of phytoplankton doesn’t seem to co-vary with FSD, although decreases in the 
FSD are visible during the periods of high Chl concentrations (e.g., spring blooms of 2013, 
2014; Figs. 6(a) and 6(b)). Comparison of in-water FSD collected in the Patuxent River 
estuary (purple stars, Fig. 6(a)) with MODISA derived monthly FSD demonstrate no 
correlation between these two systems, and FSD is significantly smaller in Patuxent River 
system (two-tailed t-test, p<0.001). 

Fig. 6. Chesapeake Bay time-series, panel A depicts FSD variability over the MODISA 
mission, followed by the monthly variability of Chlorophyll a (blue) and backscattering (red) 
(panel B). FSD seems to co-vary with backscattering in the bay (Panel D), indicating that is 
more susceptible to the changes in sediment load than the chlorophyll concentration (Panel C). 

Due to the nature of the algorithm, a strong correlation was expected between bbp(443) 
and FSD, however, our results yielded an r-squared value of 0.3 for the type II linear 
relationship, pointing to other sources controlling the water clarity of the upper-to-mid 
Chesapeake Bay. The Chesapeake Bay is a complex estuary and visibility in its upper part, 
due to the influence of the Susquehanna River sediment loading, acts in the similar way to 
Patuxent River [46]. However, in parts of the mid-to-upper Bay phytoplankton is controlling 
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water clarity. This may be reason that FSD is not performing well as a Bay-integrated metric 
for water clarity. 

Interestingly, the MODISA time-series points to an increase in FSD amplitude during the 
last two years (2014-2016). Indeed, analysis revealed that the average FSD and its standard 
deviation has significantly increased for the 2014-2016 period, when compared to the rest of 
the mission (two tailed t-test, p = 0.0095). Similarly, increases in the magnitude of stream-
flow variability (which is directly related to the sediment load) have also been noted in this 
area [47] and are attributed to changes in regional climate variability. 

4. Conclusion

The Fowler Sneaker Depth is a citizen scientist metric of water clarity for the Patuxent River 
estuary. The FSD is conceptually easy to understand, and useful for communicating long-term 
trends in water clarity to the general public. However, because the citizen scientist-observed 
FSD is a discrete observation measured at one location once a year, intra- and inter-annual 
variability cannot be resolved. To address this concern, we developed a simple remote-
sensing algorithm for deriving FSD with MODISA and/or Landsat-8 OLI imagery that was 
capable of resolving FSD variability at finer temporal scales. Our results presented here 
demonstrate how a community-based optical observation can be scaled-up to remote sensing. 
However, in this study we have assumed that highly scattering suspended particulate matter is 
the dominant driver of water clarity in the Patuxent River estuary. We acknowledge that this 
may lead to anomalously large FSD values under low scattering conditions. Accordingly, 
future algorithm refinement should consider strongly absorbing matter (i.e. CDOM and 
phytoplankton). Additionally, the FSD algorithm could be improved with the collection of 
more in situ FSD data, perhaps via a new citizen scientist crowdsourcing project. We expect 
that with further refinement and validation, the FSD algorithm could be used for (i) delivering 
scientifically-relevant results, (ii) engaging and educating local stakeholders, and (iii) 
informing policy makers. 
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